
Given a snapshot of a social network, can we infer which
new interactions among its members are likely to occur
in the near future? We formalize this question as the link-
prediction problem, and we develop approaches to link
prediction based on measures for analyzing the “prox-
imity” of nodes in a network. Experiments on large coau-
thorship networks suggest that information about future
interactions can be extracted from network topology
alone, and that fairly subtle measures for detecting node
proximity can outperform more direct measures.

Introduction

As part of the recent surge of research on large, complex
networks and their properties, a considerable amount of atten-
tion has been devoted to the computational analysis of social
networks—structures whose nodes represent people or other
entities embedded in a social context, and whose edges repre-
sent interaction, collaboration, or influence between entities.
Natural examples of social networks include the set of all sci-
entists in a particular discipline, with edges joining pairs who
have coauthored articles; the set of all employees in a large
company, with edges joining pairs working on a common pro-
ject; or a collection of business leaders, with edges joining pairs
who have served together on a corporate board of directors. The
increased availability of large, detailed datasets encoding such
networks has stimulated extensive study of their basic proper-
ties, and the identification of recurring structural features (e.g.,
see the work of Adamic & Adar, 2003; Grossman, 2002; New-
man, 2002; Watts, 1999; Watts & Strogatz, 1998; for a thorough
recent survey, see Newman, 2003).

Social networks are highly dynamic objects; they grow and
change quickly over time through the addition of new edges,
signifying the appearance of new interactions in the underly-
ing social structure. Identifying the mechanisms by which
they evolve is a fundamental question that is still not well
understood, and it forms the motivation for our work here. We

define and study a basic computational problem underlying
social-network evolution, the link-prediction problem: Given
a snapshot of a social network at time t, we seek to accurately
predict the edges that will be added to the network during the
interval from time t to a given future time t�.

In effect, the link-prediction problem asks: To what extent
can the evolution of a social network be modeled using fea-
tures intrinsic to the network itself ? Consider a coauthorship
network among scientists, for example. There are many rea-
sons exogenous to the network why two scientists who have
never written an article together will do so in the next few
years: For example, they may happen to become geographi-
cally close when one of them changes institutions. Such col-
laborations can be hard to predict. But one also senses that a
large number of new collaborations are hinted at by the
topology of the network: Two scientists who are “close” in
the network will have colleagues in common and will travel
in similar circles; this social proximity suggests that they
themselves are more likely to collaborate in the near future.
Our goal is to make this intuitive notion precise and to
understand which measures of “proximity” in a network lead
to the most accurate link predictions. We find that a number
of proximity measures lead to predictions that outperform
chance by factors of 40 to 50, indicating that the network
topology does indeed contain latent information from which
to infer future interactions. Moreover, certain fairly subtle
measures—involving infinite sums over paths in the
network—often outperform more direct measures such as
shortest-path distances and numbers of shared neighbors.

We believe that a primary contribution of the present article
is in the area of network-evolution models. While there has
been a proliferation of such models in recent years—e.g., see the
work of Barabasi et al., 2002; Davidsen, Ebel, and Bornholdt,
2002; Jin, Girvan, and Newman, 2001; for recent work on col-
laboration networks, or the survey of Newman, 2003—these
models have generally been evaluated only by asking whether
they reproduce certain global structural features observed in
real networks. As a result, it has been difficult to evaluate and
compare different approaches on a principled footing. Link
prediction, on the other hand, offers a very natural basis for
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such evaluations: A network model is useful to the extent that it
can support meaningful inferences from observed network
data. One sees a related approach in recent work of Newman
(2001a), who considers the correlation between certain net-
work-growth models and data on the appearance of edges of
coauthorship networks.

In addition to its role as a basic question in social-network
evolution, the link-prediction problem could be relevant to a
number of interesting current applications of social networks.
Increasingly, for example, researchers in artificial intelligence
and data mining have argued that a large organization (e.g., a
company) can benefit from the interactions within the informal
social network among its members; these ties serve to supple-
ment the official hierarchy imposed by the organization itself
(Kautz, Selman, & Shah, 1997; Raghavan, 2002). Effective
methods for link prediction could be used to analyze such a
social network to suggest promising interactions or collabora-
tions that have not yet been identified within the organization.
In a different vein, research in security has recently begun to
emphasize the role of social-network analysis, largely moti-
vated by the problem of monitoring terrorist networks; link
prediction in this context allows one to conjecture that particu-
lar individuals are working together even though their interac-
tion has not been directly observed (Krebs, 2002).

The link-prediction problem also is related to the problem
of inferring missing links from an observed network: In a num-
ber of domains, one constructs a network of interactions based
on observable data and then tries to infer additional links that,
while not directly visible, are likely to exist (Goldberg & Roth,
2003; Popescul & Ungar, 2003; Taskar, Wong, Abbeel, &
Koller, 2003). This line of work differs from our problem for-
mulation in that it works with a static snapshot of a network
rather than considering network evolution; it also tends to take
into account specific attributes of the nodes in the network
rather than evaluating the power of prediction methods that are
based purely on the graph structure.

We turn to a description of our experimental setup in the
next section. Our primary focus is on understanding the rel-
ative effectiveness of network-proximity measures adapted
from techniques in graph theory, computer science, and the
social sciences, and we review a large number of such tech-
niques. Finally, we discuss the results of our experiments.

Data and Experimental Setup

Suppose that we have a social network in which
each edge represents an interaction between
u and v that took place at a particular time t(e). We record multiple
interactions between u and v as parallel edges, with potentially
different timestamps. For two times t � , let G[t, ] denote the
subgraph of G consisting of all edges with a timestamp between
t and . Here, then, is a concrete formulation of the link-prediction
problem. We choose four times t0 � � t1 � and give an
algorithm access to the network G[t0, ]; it must then output a list
of edges not present in G[t0, ] that are predicted to appear in the
network G[t1, ]. We refer to [t0, ] as the training interval and
[t1, ] as the test interval.t�1

t�0t�1

t�0

t�0

t�1t�0
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Of course, social networks grow through the addition of
nodes as well as edges, and it is not sensible to seek predic-
tions for edges whose endpoints are not present in the training
interval. Thus, in evaluating link-prediction methods, we will
generally use two parameters, training and test, and define
the set Core to consist of all nodes that are incident to at least

training edges in G[t0, ] and at least test edges in G[t1, ]. We
will then evaluate how accurately the new edges between
elements of Core can be predicted.

We now describe our experimental setup more specifically.
We work with five coauthorship networks G, obtained from the
author lists of articles contained in five sections of the physics
e-Print arXiv, www.arxiv.org (see Figure 1 for statistics
on the sizes of each of these five networks). Some heuristics
were used to deal with occasional syntactic anomalies, and au-
thors were identified by first initial and last name, a process
that introduces a small amount of noise due to multiple authors
with the same identifier (Newman, 2001b). The errors intro-
duced by this process appear to be minor.

Now consider any one of these five graphs. We define the
training interval to be the 3 years from 1994 through 1996,
and the test interval to be the 3 years from 1997 through 1999.
We denote the subgraph G[1994, 1996] on the training inter-
val by Gcollab A, Eold and use Enew to denote the set of
edges u, v such that u, v A, and u, v coauthor an article
during the test interval, but not the training interval—these are
the new interactions we are seeking to predict. In our experi-
ments on the arXiv, we can identify which authors are active
throughout the entire period on the basis of the number of
articles published and not on the number of coauthors. Thus,
here we define the set Core to consist of all authors who have
written at least training 3 articles during the training period
and at least test 3 articles during the test period.Jk

Jk
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Training Period Core

Authors Articles Collaborationsa Authors Eold Enew

astro-ph 5,343 5,816 41,852 1,561 6,178 5,751

cond-mat 5,469 6,700 19,881 1,253 1,899 1,150

gr-qc 2,122 3,287 5,724 486 519 400

hep-ph 5,414 10,254 47,806 1,790 6,654 3,294

hep-th 5,241 9,498 15,842 1,438 2,311 1,576

aA collaboration is an ordered pair of authors who have written at least
one article together during the training period. This number is odd in the
cond-mat dataset because in that arXiv section there were three (an odd
number) instances of “self-collaboration”—where 2 authors of the same
article have the same first initial and last name; the 2 researchers are there-
fore conflated into a single node x, and a collaboration between x and x is
recorded. These self-collaborations are examples of the rare errors that are
introduced because multiple authors are mapped to the same identifier.

FIG. 1. The five sections of the arXiv from which coauthorship networks
were constructed: astro-ph (astrophysics), cond-mat (condensed matter),
gr-qc (general relativity and quantum cosmology), hep-ph (high energy
physics–phenomenology), and hep-th (high energy physics–theory). The set
Core is the subset of the authors who have written at least training � 3 articles
during the training period 1994–1996 and test � 3 articles during the test
period 1997�1999. The sets Eold and Enew denote undirected edges between
Core authors that first appear during the training and test periods, respectively. 

k

k
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Evaluating a Link Predictor

Each link predictor p that we consider outputs a ranked list
Lp of pairs in A � A � Eold; these are predicted new collabora-
tions, in decreasing order of confidence. For our evaluation, we
focus on the set Core, so we define (Core �
Core) and . Our performance measure for Predictor p
is then determined as follows: From the ranked list Lp, we take
the first n pairs that are in Core � Core, and determine the size
of the intersection of this set of pairs with the set  .

Methods for Link Prediction

In this section, we survey an array of methods for link pre-
diction. All the methods assign a connection weight score(x, y)
to pairs of nodes x, y , based on the input graph Gcollab, and
then produce a ranked list in decreasing order of score(x, y).
Thus, they can be viewed as computing a measure of proxim-
ity or “similarity” between nodes x and y, relative to the
network topology. In general, the methods are adapted from
techniques used in graph theory and in social-network analy-
sis; in a number of cases, these techniques were not designed
to measure node-to-node similarity and hence need to be
modified for this purpose. Figure 2 summarizes most of these
measures; we discuss them in more detail later. Note that

98

Enew
�

n J |Enew
� |

xEnew
� J Enew

some of these measures are designed only for connected
graphs; because each graph Gcollab that we consider has a giant
component—a single component containing most of the
nodes—it is natural to restrict the predictions for these mea-
sures to this component.

Perhaps the most basic approach is to rank pairs x, y by
the length of their shortest path in Gcollab. Such a measure
follows the notion that collaboration networks are “small
worlds,” in which individuals are related through short
chains (Newman, 2001b) (In keeping with the notion that
we rank pairs in decreasing order of score(x, y), we define
score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to one
are joined by an edge in Gcollab, and hence they belong to
the training edge set Eold. For all of our graphs Gcollab, there
are well more than n pairs at shortest-path distance two, so
our shortest-path predictor simply selects a random subset of
these distance-two pairs.

Methods Based on Node Neighborhoods

For a node x, let �(x) denote the set of neighbors of x in
Gcollab. A number of approaches are based on the idea that two
nodes x and y are more likely to form a link in the future if
their sets of neighbors �(x) and �(y) have large overlap; this

98

FIG. 2. Values for score(x, y) under various predictors; each predicts pairs x, y in descending order of
score(x, y). The set �(x) consists of the neighbors of the node x in Gcollab.
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approach follows the natural intuition that such nodes x and y
represent authors who have many colleagues in common and
hence who are more likely to come into contact themselves. Jin
et al. (2001) and Davidsen et al. (2002) defined abstract models
for network growth using this principle, in which an edge x, y
is more likely to form if edges x, z and z, y are already pre-
sent for some z.

Common neighbors. The most direct implementation of
this idea for link prediction is to define score(x, y) 
�(x) 
�(y)
, the number of neighbors that x and y have in common.
Newman (2001a) computed this quantity in the context of 
collaboration networks, verifying a correlation between the
number of common neighbors of x and y at time t and
the probability that they will collaborate in the future.

Jaccard’s coefficient and Adamic/Adar. The Jaccard
coefficient—a commonly used similarity metric in informa-
tion retrieval (Salton & McGill, 1983)—measures the prob-
ability that both x and y have a feature f, for a randomly
selected feature f that either x or y has. If we take “features”
here to be neighbors in Gcollab, this approach leads to the
measure

Adamic and Adar (2003) considered a similar measure, in
the context of deciding when two personal home pages are
strongly “related.” To do this, they computed features of the
pages and defined the similarity between two pages to be

This quantity refines the simply counting of common fea-
tures by weighting rarer features more heavily. This idea
suggests the measure score(x, y)

Preferential attachment. This has received considerable
attention as a model of the growth of networks (Barabási &
Albert, 1999; Mitzenmacher, 2004). The basic premise is that
the probability that a new edge has node x as an endpoint is
proportional to |�(x)|, the current number of neighbors of x.
Newman (2001a) and Barabási et al. (2002) further proposed,
on the basis of empirical evidence, that the probability of
coauthorship of x and y is correlated with the product of the
number of collaborators of x and y. This proposal corre-
sponds to the measure score(x, y) |�(x)| 	 |�(y)|.

Methods Based on the Ensemble of All Paths

A number of methods refine the notion of shortest-path
distance by implicitly considering the ensemble of all paths
between two nodes.

Katz (1953). Katz defined a measure that directly sums over
this collection of paths, exponentially damped by length to
count short paths more heavily. This notion leads to the measure

J
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9898
98 where is the set of all length- paths from x to y, and 

� 0 is a parameter of the predictor (A very small yields pre-
dictions much like common neighbors because paths of length 3
or more contribute very little to the summation.) One can verify
that the matrix of scores is given by (I � M)�1 � I, where M
is the adjacency matrix of the graph. We consider two variants of
this Katz measure: (a) unweighted, in which � 1 if x and
y have collaborated and 0 otherwise, and (b) weighted, in which

is the number of times that x and y have collaborated.

Hitting time, PageRank, and variants. A random walk on
Gcollab starts at a node x and iteratively moves to a neighbor
of x chosen uniformly at random from the set �(x). The hit-
ting time Hx,y from x to y is the expected number of steps
required for a random walk starting at x to reach y. Because
the hitting time is not in general symmetric, it also is nat-
ural to consider the commute time Cx,y Hx,y � Hy, x. Both
of these measures serve as natural proximity measures and
hence (negated) can be used as score(x, y).

One difficulty with hitting time as a measure of
proximity is that Hx,y is quite small whenever y is a node
with a large stationary probability y, regardless of
the identity of x. To counterbalance this phenomenon, we
also consider normalized versions of the hitting and com-
mute times, by defining or

Another difficulty with these measures is their sensitive
dependence to parts of the graph far away from x and y, even
when x and y are connected by very short paths. A way of coun-
teracting this dependence is to allow the random walk from x to
y to periodically “reset,” returning to x with a fixed probability

at each step; in this way, distant parts of the graph almost
never will be explored. Random resets form the basis of the
PageRank measure for Web pages (Brin & Page, 1998), and we
can adapt it for link prediction as follows. Define score(x, y)
under the rooted PageRank measure with parameter [0, 1]
to be the stationary probability of y in a random walk that
returns to x with probability each step, moving to a random
neighbor with probability 1 � . Similar approaches have been
considered for personalized PageRank, in which one wishes to
rank Web pages based both on their overall importance, the core
of PageRank, and their relevance to a particular topic or individ-
ual, by biasing the random resets toward topically relevant or
bookmarked pages (Haveliwala, 2003; Haveliwala, Kamvar, &
Jeh, 2003; Jeh & Widom, 2003; Kamvar, Haveliwala,
Manning, & Golub, 2003).

SimRank (Jeh & Widom, 2002). SimRank is a fixed point of
the following recursive definition: Two nodes are similar to the
extent that they are joined to similar neighbors. Numerically,
this quantity is specified by defining similarity(x, x) 1 andJ

a
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for a parameter � [0, 1]. We then define score(x, y)
similarity(x, y). SimRank also can be interpreted in terms of
a random walk on the collaboration graph: It is the expected
value of , where is a random variable giving the time at
which random walks started from x and y first meet.

Higher Level Approaches

We now discuss three “meta-approaches” that can be used
in conjunction with any of the methods discussed earlier.

Low-rank approximation. Because the adjacency matrix
M can be used to represent the graph Gcollab, all of our link-
prediction methods have an equivalent formulation in terms
of this matrix M. In some cases, this correspondence was
noted explicitly earlier (e.g., in the case of the Katz similar-
ity score), but in many other cases the matrix formulation
also is quite natural. For example, the common-neighbors
method consists simply of mapping each node x to its row
r(x) in M, and then defining score(x, y) to be the inner prod-
uct of the rows r(x) and r(y).

A common general technique when analyzing the
structure of a large matrix M is to choose a relatively small
number k and compute the rank-k matrix Mk that best
approximates M with respect to any of a number of standard
matrix norms. This computation can be done efficiently using
the singular-value decomposition, and it forms the core of
methods such as latent semantic analysis in information
retrieval (Deerwester, Dumais, Furnas, Landauer, & Harshman,
1990). Intuitively, working with Mk rather than M can be
viewed as a type of “noise-reduction” technique that gener-
ates most of the structure in the matrix, but with a greatly
simplified representation.

In our experiments, we investigate three applications of low-
rank approximation: (a) ranking by the Katz measure, in which
we use Mk rather than M in the underlying formula; (b) ranking
by common neighbors, in which we score by inner products of
rows in Mk rather than M; and—most simply of all—(c) defin-
ing score(x, y) to be the x, y entry in the matrix Mk.

Unseen bigrams. Link prediction is akin to the problem of
estimating frequencies for unseen bigrams in language
modeling—pairs of words that co-occur in a test corpus, but
not in the corresponding training corpus (e.g., see the work
of Essen & Steinbiss, 1992). Following ideas proposed in
that literature (e.g., Lee, 1999), we can augment our esti-
mates for score(x, y) using values of score(z, y) for nodes z
that are “similar” to x. Specifically, we adapt this approach to
the link-prediction problem as follows. Suppose we have
values score(x, y) computed under one of the measures
above. Let denote the nodes most related to x under
score(x,	), for a parameter ZZ�. We then define enhancedd �

dSx
�d�

98

/g/
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similarity(x, y) :� g #  
©a��(x) ©b��(y)similarity(a, b)
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scores in terms of the nodes in this set:

Clustering. One might seek to improve on the quality of a
predictor by deleting the more “tenuous” edges in Gcollab

through a clustering procedure, and then running the predictor
on the resulting “cleaned-up” subgraph. Consider a measure
computing values for score(x, y). We compute score(u, v) for all
edges in Eold, and delete the (1� ) fraction of these edges for
which the score is lowest, for a parameter . We now
recompute score(x, y) for all pairs x, y on this subgraph; in this
way, we determine node proximities using only edges for which
the proximity measure itself has the most confidence.

Results and Discussion

As discussed in the first section, many collaborations form
(or fail to form) for reasons outside the scope of the network;
thus, the raw performance of our predictors is relatively low.
To more meaningfully represent predictor quality, we use as
our baseline a random predictor, which simply predicts ran-
domly selected pairs of authors who did not collaborate in the
training interval. The probability that a random prediction
is correct is just the ratio between |Enew|, the number of possi-
ble correct predictions, and |Eold|, the number of
possible predictions that can be made (Any pair chosen from
the set Core of core authors is a legal prediction unless they
had already collaborated, which occurs for |Eold| pairs.) A ran-
dom prediction is correct with probability between 0.15%
(cond-mat) and 0.48% (astro-ph).

Figures 3 and 4 show each predictor’s performance on
each arXiv section, in terms of the factor improvement over
random. One can use standard tail inequalities (e.g., see the
text of Motwani & Raghavan, 1995) to show that the proba-
bility of a random predictor’s performance exceeding its
expectation by a factor of 5 is very small: this probability
ranges from about 0.004 for gr-qc to about 10�48 for
astro-ph. Thus, almost every predictor performs signifi-
cantly better than random predictions on every dataset.

Figures 5, 6, and 7 show the average relative performance of
several different predictors versus three baseline predictors—
the random predictor, the graph-distance predictor, and the
common-neighbors predictor. There is no single clear winner
among the techniques, but we see that a number of methods
significantly outperform the random predictor, suggesting that
there is indeed useful information contained in the network
topology alone. The Katz measure and its variants based on
clustering and low-rank approximation perform consistently
well; on three of the five arXiv sections, a variant of Katz
achieves the best performance. Some of the very simple
measures also perform surprisingly well, including common
neighbors and the Adamic/Adar measure.

Q |Core|R2 �

98
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 scoreweighted
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Predictor astro-ph cond-mat gr-qc hep-ph hep-th

probability that a random prediction is correct 0.475% 0.147% 0.341% 0.207% 0.153%
graph distance (all distance-2 pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 18.0 40.8 27.1 26.9 46.9
preferential attachment 4.7 6.0 7.5 15.2 7.4
Adamic/Adar 16.8 54.4 30.1 33.2 50.2
Jaccard 16.4 42.0 19.8 27.6 41.5
SimRank g� 0.8 14.5 39.0 22.7 26.0 41.5
hitting time 6.4 23.7 24.9 3.8 13.3
hitting time—normed by stationary distribution 5.3 23.7 11.0 11.3 21.2
commute time 5.2 15.4 33.0 17.0 23.2
commute time—normed by stationary distribution 5.3 16.0 11.0 11.3 16.2

rooted PageRank a � 0.01 10.8 27.8 33.0 18.7 29.1
a � 0.05 13.8 39.6 35.2 24.5 41.1
a � 0.15 16.6 40.8 27.1 27.5 42.3
a � 0.30 17.1 42.0 24.9 29.8 46.5
a � 0.50 16.8 40.8 24.2 30.6 46.5

Katz (weighted) b� 0.05 3.0 21.3 19.8 2.4 12.9
b� 0.005 13.4 54.4 30.1 24.0 51.9
b� 0.0005 14.5 53.8 30.1 32.5 51.5

Katz (unweighted) b� 0.05 10.9 41.4 37.4 18.7 47.7
b� 0.005 16.8 41.4 37.4 24.1 49.4
b� 0.0005 16.7 41.4 37.4 24.8 49.4

FIG. 3. Performance of various predictors on the link-prediction task defined in the section on Data and Experimental Setup. For each predictor and each
arXiv section, the given number specifies the factor improvement over random prediction. Two predictors in particular are used as baselines for comparison:
graph distance and common neighbors (see Methods for definitions). Italicized entries have performance at least as good as the graph-distance predictor; bold
entries are at least as good as the common-neighbors predictor (see also Figure 4).

Predictor astro-ph cond-mat gr-qc hep-ph hep-th

probability that a random prediction is correct 0.475% 0.147% 0.341% 0.207% 0.153%
graph distance (all distance-2 pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 18.0 40.8 27.1 26.9 46.9

Low-rank approximation: rank � 1024 15.2 53.8 29.3 34.8 49.8
Inner product rank � 256 14.6 46.7 29.3 32.3 46.9

rank � 64 13.0 44.4 27.1 30.7 47.3
rank � 16 10.0 21.3 31.5 27.8 35.3
rank � 4 8.8 15.4 42.5 19.5 22.8
rank � 1 6.9 5.9 44.7 17.6 14.5

Low-rank approximation: rank � 1024 8.2 16.6 6.6 18.5 21.6
Matrix entry rank � 256 15.4 36.1 8.1 26.2 37.4

rank � 64 13.7 46.1 16.9 28.1 40.7
rank � 16 9.1 21.3 26.4 23.1 34.0
rank � 4 8.8 15.4 39.6 20.0 22.4
rank � 1 6.9 5.9 44.7 17.6 14.5

Low-rank approximation: rank � 1024 11.4 27.2 30.1 27.0 32.0
Katz (b� 0.005) rank � 256 15.4 42.0 11.0 34.2 38.6

rank � 64 13.1 45.0 19.1 32.2 41.1
rank � 16 9.2 21.3 27.1 24.8 34.9
rank � 4 7.0 15.4 41.1 19.7 22.8
rank � 1 0.4 5.9 44.7 17.6 14.5

unseen bigrams common neighbors, d � 8 13.5 36.7 30.1 15.6 46.9
(weighted) common neighbors, d � 16 13.4 39.6 38.9 18.5 48.6

Katz (b� 0.005), d � 8 16.8 37.9 24.9 24.1 51.1
Katz (b� 0.005), d � 16 16.5 39.6 35.2 24.7 50.6

unseen bigrams common neighbors, d � 8 14.1 40.2 27.9 22.2 39.4
(unweighted) common neighbors, d � 16 15.3 39.0 42.5 22.0 42.3

Katz (b� 0.005), d � 8 13.1 36.7 32.3 21.6 37.8
Katz (b� 0.005), d � 16 10.3 29.6 41.8 12.2 37.8

clustering: r� 0.10 7.4 37.3 46.9 32.9 37.8
Katz (b1 � 0.001, b2 � 0.1) r� 0.15 12.0 46.1 46.9 21.0 44.0

r� 0.20 4.6 34.3 19.8 21.2 35.7
r� 0.25 3.3 27.2 20.5 19.4 17.4

FIG. 4. Performance of various meta-approaches on the link-prediction task defined in the Data and Experimental Setup section. As before, for each pre-
dictor and each arXiv section, the given number specifies the factor improvement over random predictions (see Figure 3).
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FIG. 5. Relative average performance of various predictors versus random predictions. The value shown is the average ratio over the five datasets of the given
predictor’s performance versus the random predictor’s performance. The error bars indicate the minimum and maximum of this ratio over the five datasets. The
parameters for the starred predictors are as follows: (a) for weighted Katz, � 0.005; (b) for Katz clustering, 1 � 0.001, � 0.15, 2 � 0.1; (c) for low-rank
inner product, rank � 256; (d) for rooted Pagerank, � 0.15; (e) for unseen bigrams, unweighted common neighbors with � 8; and (f) for SimRank, � 0.8.gda
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Similarities Among the Predictors and the Datasets

Not surprisingly, there is significant overlap in the predic-
tions made by the various methods. In Figure 8, we show the
number of common predictions made by 10 of the most
successful measures on the cond-mat graph. We see that
Katz, low-rank inner product, and Adamic/Adar are quite
similar in their predictions, as are (to a somewhat lesser
extent) rooted PageRank, SimRank, and Jaccard. Hitting
time is remarkably unlike any of the other nine in its predic-
tions, despite its reasonable performance. The number of
common correct predictions shows qualitatively similar be-
havior (see Figure 9). It would be interesting to understand
the generality of these overlap phenomena, especially be-
cause certain of the large overlaps do not seem to follow
obviously from the definitions of the measures.

It is harder to quantify the differences among the datasets,
but their relationship is a very interesting issue as well. One
perspective is provided by the methods based on low-rank
approximation: On four of the datasets, their performance
tends to be best at an intermediate rank while on gr-qc they
perform best at rank 1 (see Figure 10, e.g., for a plot of the
change in the performance of the low-rank matrix-entry

predictor as the rank of the approximation varies). This fact
suggests a sense in which the collaborations in gr-qc have
a much “simpler” structure than those in the other four. One
also observes the apparent importance of node degree in
the hep-ph collaborations: The preferential-attachment
predictor—which considers only the number (and not the
identity) of a scientist’s coauthors—does uncharacteristically
well on this dataset, outperforming the basic graph-distance
predictor. Finally, it would be interesting to make precise a
sense in which astro-ph is a “difficult” dataset, given the
low performance of all methods relative to random and
the fact that none beats simple ranking by common neigh-
bors. We will explore this issue further when we consider
collaboration data drawn from other fields.

Because almost all of our experiments were carried out
on social networks formed via the collaborations of physi-
cists, it is difficult to draw broad conclusions about link
prediction in social networks in general. The culture of
physicists and of physics collaboration (e.g., see the work of
Katz & Martin, 1997) plays a role in the quality of our
results. The considerations discussed earlier suggest that
there are some important differences even within physics
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FIG. 6. Relative average performance of various predictors versus the graph-distance predictor. The plotted value shows the average taken over the five
datasets of the ratio of the performance of the given predictor versus the graph-distance predictor; the error bars indicate the range of this ratio over the
five datasets. All parameter settings are as in Figure 5.

(depending on the subfield), and an important area for future
study is to understand how other social networks differ from
the ones that we studied here.

Small Worlds

It is reassuring that even the basic graph-distance predictor
handily outperforms random predictions, but this measure has
severe limitations. Extensive research has been devoted to
understanding the so-called small-world problem in collabora-
tion network; that is, accounting for the existence of short paths
connecting virtually every pair of scientists (Newman, 2001b).
This property is normally viewed as a vital fact about the
scientific community (New ideas spread quickly, and every dis-
cipline interacts with—and gains from—other fields.), but in
the context of our prediction task, we come to a different con-
clusion: The small-world problem is really a problem. The
shortest path between two scientists in wholly unrelated
disciplines is often very short (and very tenuous). To take
one particular, but not atypical, example, the developmental

psychologist Jean Piaget has as small an Erdös number—3
(Castro & Grossman, 1999)—as most mathematicians and
computer scientists. Overall, the basic graph-distance predictor
is not competitive with most of the other approaches studied;
our most successful link predictors can be viewed as using mea-
sures of proximity that are robust to the few edges that result
from rare collaborations between fields.

Restricting to Distance 3

The small-world problem suggests that there are many pairs
of authors separated by a graph distance of 2 who will not col-
laborate, but we also observe the dual problem: Many pairs
who collaborate are at distance greater than 2. Between
71 (hep-ph) and 83% (cond-mat) of new edges form
between pairs at distance 3 or greater (see Figure 11).

Because most new collaborations are not at distance 2, we
also are interested in how well our predictors perform when
we disregard all distance-2 pairs. Clearly, nodes at distances
greater than 2 have no neighbors in common, and hence this
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Adamic/ Katz common hitting Jaccard’s weighted low-rank rooted unseen 
Adar clustering neighbors time coefficient Katz inner product Pagerank SimRank bigrams

Adamic/Adar 1,150 638 520 193 442 1,011 905 528 372 486

Katz clustering 1,150 411 182 285 630 623 347 245 389

common neighbors 1,150 135 506 494 467 305 332 489

hitting time 1,150 87 191 192 247 130 156

Jaccard’s coefficient 1,150 414 382 504 845 458

weighted Katz 1,150 1,013 488 344 474

low-rank inner product 1,150 453 320 448

rooted Pagerank 1,150 678 461

SimRank 1,150 423

unseen bigrams 1,150

FIG. 8. The number of common predictions made by various predictors on the cond-mat dataset, of 1,150 predictions. Parameter settings are as in Figure 5.

Adamic/ Katz common hitting Jaccard’s weighted low-rank rooted unseen 
Adar clustering neighbors time coefficient Katz inner product Pagerank SimRank bigrams

Adamic/Adar 92 65 53 22 43 87 72 44 36 49

Katz clustering 78 41 20 29 66 60 31 22 37

common neighbors 69 13 43 52 43 27 26 40

hitting time 40 8 22 19 17 9 15

Jaccard’s coefficient 71 41 32 39 51 43

weighted Katz 92 75 44 32 51

low-rank inner product 79 39 26 46

rooted Pagerank 69 48 39

SimRank 66 34

unseen bigrams 68

FIG. 9. The number of correct common predictions made by various predictors on the cond-mat dataset, of 1,150 predictions. The diagonal entries indi-
cate the number of correct predictions for each predictor. Parameter settings are as in Figure 5.
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FIG. 7. Relative average performance of various predictors versus the common-neighbors predictor, as in Figure 6. Error bars display the range of the performance
ratio of the given predictor versus common neighbors over the five datasets; the displayed value gives the average ratio. Parameter settings are as in Figure 5.
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task essentially rules out the use of methods based on com-
mon neighbors. The performance of the other measures is
shown in Figure 12. The graph-distance predictor (i.e., pre-
dicting all distance-3 pairs) performs between about three and
nine times random and is consistently beaten by virtually all
of the predictors: SimRank, rooted PageRank, Katz, and the
low-rank and unseen-bigram techniques. The unweighted
Katz and unseen-bigram predictors have the best performance
(as high as about 30 times random, on gr-qc), followed
closely by weighted Katz, SimRank, and rooted PageRank.

The Breadth of the Data

We also have considered three other datasets: (a) the pro-
ceedings of two conferences in theoretical computer science,

Symposium on the Theory of Computing (STOC) and Founda-
tions of Computer Science (FOCS), (b) the articles found in
the Citeseer (www.citeseer.com) online database,
which finds articles by crawling the Web for any files in post-
script format, and (c) all five of the arXiv sections merged into
one. Consider the performance of the common-neighbors pre-
dictor compared to random on these datasets:

Performance versus random swells dramatically as the top-
ical focus of our dataset widens. That is, when we consider a
more diverse collection of scientists, it is fundamentally easier
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FIG. 10. Relative performance of the low-rank matrix-entry predictor for various ranks on each arXiv section. For each arXiv section, the performance of
this predictor, measured by the factor of improvement over random predictions, is shown for ranks 1, 4, 16, 64, 256, and 1024. Notice that for all arXiv sec-
tions save gr-qc, predictor performance is maximized by an intermediate rank; for that dataset, performance continues to improve as the rank decreases all
the way to rank 1.

STOC/FOCS arXiv sections combined arXiv sections Citeseer

6.1 18.0–46.9 71.2 147.0

Proportion of distance-two pairs that form an edge:

Proportion of new edges that are between distance-two pairs:

astro-ph hep-thhep-phgr-qccond-mat

astro-ph cond-mat gr-qc hep-ph hep-th

No. pairs at distance two 33,862 5,145 935 37,687 7,545
No. new collaborations at distance two 1,533 190 68 945 335
No. new collaborations 5,751 1,150 400 3,294 1,576

FIG. 11. Relationship between new collaborations and graph distance.
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Predictor astro-ph cond-mat gr-qc hep-ph hep-th

graph distance (all distance-three pairs) 2.8 5.4 7.7 4.0 8.6

preferential attachment 3.2 2.6 8.6 4.7 1.4

SimRank g� 0.8 5.9 14.3 10.6 7.6 21.9

hitting time 4.4 10.1 13.7 4.5 4.7
hitting time—normed by stationary distribution 2.0 2.5 0.0 2.5 6.6
commute time 3.8 5.9 21.1 5.9 6.6
commute time—normed by stationary distribution 2.6 0.8 1.1 4.8 4.7

rooted PageRank a � 0.01 4.6 12.7 21.1 6.5 12.6

a � 0.05 5.3 13.5 21.1 8.7 16.6

a � 0.15 5.4 11.8 18.0 10.7 19.9

a � 0.30 5.8 13.5 8.4 11.6 19.9

a � 0.50 6.3 15.2 7.4 12.7 19.9

Katz (weighted) b� 0.05 1.5 5.9 11.6 2.3 2.7

b� 0.005 5.5 14.3 28.5 4.2 12.6

b� 0.0005 6.2 13.5 27.5 4.2 12.6

Katz (unweighted) b� 0.05 2.3 12.7 30.6 9.0 12.6

b� 0.005 9.1 11.8 30.6 5.1 17.9

b� 0.0005 9.2 11.8 30.6 5.1 17.9

Low-rank approximation: rank � 1024 2.3 2.5 9.5 4.0 6.0
Inner product rank � 256 4.8 5.9 5.3 9.9 10.6

rank � 64 3.8 12.7 5.3 7.1 11.3

rank � 16 5.3 6.7 6.3 6.8 15.3

rank � 4 5.1 6.7 32.7 2.0 4.7

rank � 1 6.1 2.5 32.7 4.2 8.0

Low-rank approximation: rank � 1024 4.1 6.7 6.3 5.9 13.3

Matrix entry rank � 256 3.8 8.4 3.2 8.5 19.9

rank � 64 2.9 11.8 2.1 4.0 10.0

rank � 16 4.4 8.4 4.2 5.9 16.6

rank � 4 4.9 6.7 27.5 2.0 4.7

rank � 1 6.1 2.5 32.7 4.2 8.0

Low-rank approximation: rank � 1024 4.3 6.7 28.5 5.9 13.3

Katz (b� 0.005) rank � 256 3.6 8.4 3.2 8.5 20.6

rank � 64 2.8 11.8 2.1 4.2 10.6

rank � 16 5.0 8.4 5.3 5.9 15.9

rank � 4 5.2 6.7 28.5 2.0 4.7

rank � 1 0.3 2.5 32.7 4.2 8.0

unseen bigrams (weighted) common neighbors, d � 8 5.8 6.7 14.8 4.2 23.9

common neighbors, d � 16 7.9 9.3 28.5 5.1 19.3

Katz (b� 0.005), d � 18 5.2 10.1 22.2 2.8 17.9

Katz (b� 0.005), d � 16 6.6 10.1 29.6 3.7 15.3

unseen bigrams (unweighted) common neighbors, d � 8 5.4 5.1 13.7 4.5 21.3

common neighbors, d � 16 6.3 8.4 25.3 4.8 21.9

Katz (b� 0.005), d � 8 4.1 7.6 22.2 2.0 17.3

Katz (b� 0.005), d � 16 4.3 4.2 28.5 3.1 16.6

clustering: r� 0.10 3.2 4.2 31.7 7.1 8.6
Katz (b1 � 0.001, b2 � 0.1) r� 0.15 4.6 4.2 32.7 7.6 6.6

r� 0.20 2.3 5.9 7.4 4.5 8.0

r� 0.25 2.0 11.8 6.3 6.8 5.3

FIG. 12. The distance-three task: performance of predictors only on edges in Enew for which the endpoints were at distance three or more in Gcollab. Methods
based on common neighbors are not appropriate for this task (see Results and Discussion).
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to group scientists into fields of study (and therefore outper-
form the random predictor, which usually will make guesses
between fields). When we consider a sufficiently narrow set of
researchers (e.g., STOC/FOCS), almost any author can collab-
orate with almost any other author, and there seems to be a
strong random component to new collaborations (In extensive
experiments on the STOC/FOCS data, we could not beat
random guessing by a factor of more than about 7.) It is an
interesting challenge to formalize the sense in which the
STOC/FOCS collaborations are truly intractable to predict;
that is, to what extent information about new collaborations is
simply not present in the old collaboration data.

Future Directions

While the predictors that we have discussed perform rea-
sonably well, even the best (Katz clustering on gr-qc) is
correct on only about 16% of its predictions. There is clearly
much room for improvement in performance on this task, and
finding ways to take better advantage of the information in
the training data is an interesting open question. Another
issue is to improve the efficiency of the proximity-based
methods on very large networks; fast algorithms for approxi-
mating the distribution of node-to-node distances may be one
approach (Palmer, Gibbons, & Faloutsos, 2002).

The graph Gcollab is a lossy representation of the data; we
also can consider a bipartite collaboration graph Bcollab, with
a vertex for every author and article, and an edge connecting
each article to each of its authors. The bipartite graph
contains more information than Gcollab, so we may hope that
predictors can use it to improve performance. The size of
Bcollab is much larger than that of Gcollab, making experiments
prohibitive, but we have tried using the SimRank and
Katz predictors on smaller datasets (gr-qc, or shorter train-
ing periods). Their performance does not seem to improve,
but perhaps other predictors can fruitfully exploit the addi-
tional information in Bcollab.

Similarly, our experiments treat all training-period col-
laborations equally. Perhaps one can improve performance
by treating more recent collaborations as more important
than older ones. One also could tune the parameters of the
Katz predictor, for example, by dividing the training set into
temporal segments, training on the beginning, and then
using the end of the training set to make final predictions.

One also might try to use additional information such as
the titles of articles or the institutional affiliations of the
authors to identify the specific research area or geographic
location of each scientist, and then use areas/locations to
predict collaborations. In the field of bibliometrics, for
example, Katz (1994), Melin and Persson (1996), and Ding,
Foo, and Chowdhury (1999), among others, have observed
institutional and geographic correlations in collaboration; a
natural further direction would be to attempt to use geo-
graphic location, for instance, as a component of a predictor.
To some extent, such geographic information, or indeed any
other relevant properties of the nodes, is latently present in

b

the graph Gcollab—precisely because such factors already
have played a role in the formation of old edges in the train-
ing set; however, direct access to such information may well
confer additional predictive power, and it is an interesting
open question to better understand the strength of such in-
formation in link prediction.

Finally, there has been relevant work in the machine-
learning community on estimating distribution support
(Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 1999):
Given samples from an unknown probability distribution P, we
must find a “simple” set S so that We can
view training-period collaborations as samples drawn from a
probability distribution on pairs of scientists; our goal is to
approximate the set of pairs that have positive probability of
collaborating. There also has been some potentially relevant
work in machine learning on classification when the training
set consists only of a relatively small set of positively labeled
examples and a large set of unlabeled examples, with no
labeled negative examples (Yu, Zhai, & Han, 2003). It is an
open question whether these techniques can be fruitfully
applied to the link-prediction problem.
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