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Frequency-Selective Channel State Feedback in
Multiuser MIMO Downlink

Filippo Tosato, Member, IEEE

Abstract—In this paper we derive a novel method for encod-
ing the MIMO channel state information (CSI) for frequency
selective channels and limited feedback. The technique is based
on the decomposition of the directional information of a MIMO
channel in a two-coordinate system formed by the tangent space
of a Grassmann manifold and the tangent space of a unitary
group. The first component provides a non-redundant description
of the subspace spanned by a set of channel eigenvectors, while
the second component provides a non-redundant addendum of
information to identify the strongest channel vector directions
within that subspace. One advantage of this feedback repre-
sentation is that it allows to exploit the correlation of MIMO
channels by applying standard source coding techniques to the
two coordinate components. We also provide simulation results
of an LTE downlink system, which show that the proposed CSI
feedback description offers dramatic throughput improvement
over the existing feedback scheme for MU-MIMO transmission.

Index Terms—Antenna arrays, communication system signal-
ing, feedback communication, algebraic-geometric codes.

I. INTRODUCTION

THE MIMO broadcast channel has been the subject of
intensive study in the recent past. Some of the most

relevant information-theoretic findings, including the duality
principle with the MIMO multiple-access channel, the charac-
terisation of the sum-rate capacity and the dirty-paper coding
strategy to achieve capacity have appeared in [1]–[5]. The
full description of the capacity region was given in [6], under
perfect channel state information at both the receiver (CSIR)
and the transmitter (CSIT).

The design of the transmitter precoder and efficient resource
scheduling algorithms have also been thoroughly investigated,
with the aim to operate the system at the desired point
of the capacity region. A plethora of schemes have been
proposed, which can be categorised in two broad families:
1) linear preprocessing schemes, including zero-forcing tech-
niques [7], [8], near MMSE solutions [9] and many variations
thereof, such as the regularised channel inversion [10] and
block-diagonalisation [7], [11]. 2) Non-linear preprocessing
schemes, which comprise the Tomlinson-Harashima precoding
(THP) and the vector perturbation (VP) technique [12].

The most critical aspect for real-world downlink multiuser
MIMO to deliver significant throughput gain is the availability
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of reliable CSIT. CSI at the transmitter is commonly provided
through feedback from each mobile, especially for frequency-
division duplexing (FDD), where channel reciprocity is hard
to exploit. These feedback channels for CSI signalling are
provided in all modern wireless communication systems, such
as the 3GPP long-term evolution (LTE), LTE-Advanced and
the IEEE 802.16 standards, to support closed-loop spatial
multiplexing transmission modes. However, the maximum rate
of feedback on these control channels is very limited, hence
optimisation of the CSI feedback is fundamental.

The finite-rate feedback case for the MIMO broadcast
channel has also been a prolific area of research in recent times
with most contributions focussing on the flat-fading channel.
It was acknowledged that for a MIMO transmitter the most
important information about a user’s channel vectors consists
of their direction and that the representation of such directional
information can be achieved through vector quantisation with
codebooks given by unit vectors distributed on a multidimen-
sional unit sphere. Structured spherical vector quantisers can
be designed by constructing packings in Grassmann manifolds
[13]–[16]. In [17] the analysis of ergodic achievable rates,
under finite-rate feedback, is made possible by considering
random ensembles of spherical vector quantisation codebooks
and a zero-forcing precoding strategy. These results are ex-
panded in [18] to more realistic feedback channels affected
by noise, fading, delay, imperfect channel estimation at the
mobile terminals and user selection. In particular, it is shown
that for an M × 1 × K system, with M transmit anten-
nas and K ≥ M single-antenna receivers, the number of
quantisation bits per user needs to increase with SNR as
B = α(M −1) log2 SNR, for some α ≥ 1, in order to achieve
the optimal multiplexing gain (i.e. the pre-log factor of the
sum-rate at high SNR) of M .

The frequency-selective finite-rate feedback case has re-
ceived much less attention, despite its relevance for the new
generation of wireless systems, which mostly rely on MIMO-
OFDM schemes to boost spectral efficiency in the downlink.
One of the challenges in designing a CSI feedback scheme
for the frequency-selective channel is how to exploit the cor-
relation of the channel vectors across the available bandwidth
to reduce the amount of bits needed for their representation.
Clearly, sending a CSI feedback message for each narrow
subcarrier is wasteful of resources and impractical. One simple
solution, adopted for example in the LTE standard, is to
deliver separate feedback indications for blocks of a few
dozens subcarriers. Albeit effective in reducing the signalling
overhead, this is a rather crude way of exploiting the frequency
correlation of the channel.
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In [19] the authors propose an interpolation-based method
to expand the precoder matrices provided through feedback
on a few pilot subcarriers to all the subcarriers in a single
user MIMO-OFDM system. The interpolation is done by
appropriately sampling the geodesic curve connecting the
precoder subspaces at consecutive pilot positions, where the
precoders are seen as points in the Grassmann manifold. Note
that the precoders for non-pilot subcarriers are determined
by interpolation at the transmitter, whereas the precoders
calculated in the pilot positions by the receiver are fed
back in a conventional way, by independently quintising each
precoder matrix with a codebook shared between transmitter
and receiver. Extension of this scheme to a MIMO broad-
cast channel does not appear straightforward: in a multiuser
downlink transmission the precoder is designed by combin-
ing one or more precoding vectors from different users in
such a way that spatial interference is minimised. Therefore,
subspace interpolation should be applied separately to each
user’s precoder subspace, while maintaining the orthogonality
between these subspaces as much as possible. A second
algorithm proposed in [19], which can be combined with the
interpolation method, consists in finding a median precoder
in a cluster of subcarriers, which still lies in the Grassmann
manifold and is obtained by averaging the precoders of all the
subcarriers in the cluster.

In [20] a different approach is presented, inspired by the
rate-distortion theory, which takes full advantage of the chan-
nel correlation. The scheme generates the CSI feedback by
quantising the coefficients of the channel baseband impulse
response in the time domain. By assuming that these coeffi-
cients are uncorrelated, one can simply apply a scalar uniform
quantiser to the real and imaginary part of each coefficient
independently, with the number of bits determined by the
reverse water-filling rule, which minimises the distortion-rate
function. However, there are several drawbacks in a practical
implementation of such a scheme: 1) if the number of channels
coefficients to quantise is too large because, for example, a
receiver has multiple antennas, we may want to report only
the most significant channel vector directions instead of the
full channel matrix. In this case, it is not obvious how to
scale down the number of time-domain coefficients to provide
such selective information. 2) Quantising the CSI in the time-
domain introduces unnecessary overhead if the user has to
report the channel state on a few discontinuous subbands
rather than the whole bandwidth. 3) In typical MIMO-OFDM
systems channel estimation at the terminals is acquired in
the frequency domain, hence obtaining the impulse response
for a broadband channel requires an additional IDFT (inverse
discrete Fourier transformation) across the entire bandwidth at
the terminal side.

In this paper we propose a novel solution to the finite-rate
CSI feedback problem for the frequency-selective (OFDM)
case, which operates directly in the frequency domain. Once
recognised that orthonormal matrices provide the structure
for the MIMO channel directional information, we intro-
duce a non-redundant representation of such matrices, i.e.
a representation that requires as few real coefficients as the
number of real degrees of freedom. After representing the
channel directional information by a non-redundant set of

real coefficients, we are able to remove the correlation across
frequency by applying standard source coding techniques,
for example the Karhunen-Loève transformation or the more
economical DCT (discrete cosine transformation) followed by
vector quantisation of the transformed coefficients.

Our proposed representation is based on a transformation
of a reference system in the Stiefel manifold into a two-
coordinate system given by the Cartesian product of tangent
spaces in the Grassmann manifold and the unitary group,
respectively. The non-redundant representation of the Grass-
mann coordinate component is achieved by means of the
geodesic curve originating from a fix reference point (e.g.
the identity point) at time1 t = 0 and passing through the
wanted point at time t = 1, where time in our context is just
an auxiliary parameter. A similar procedure applies to obtain
a non-redundant expression for the unitary group coordinate
component.

Unlike the methods in [19], our technique does not ap-
ply interpolation nor averaging between precoder matrices.
Instead, we achieve a loss-less non-redundant representation
of the orthonormal matrices and apply standard source coding
techniques to the set of coefficients representing these matri-
ces at different subcarrier positions. The source compression
mechanism is similar in concept to the approach taken in [20],
however we apply it in the frequency domain rather than the
time domain representation of the CSI.

The proposed solution to the encoding of wideband CSI
feedback in MIMO systems appears to be novel in the
literature. Moreover, the main original contributions of the
paper are: 1) a computationally efficient method to derive
a representation of orthonormal matrices, i.e. points in the
Stiefel manifold, with the smallest possible number of coeffi-
cients, 2) an incremental technique to compress the directional
information contained in a set of channel eigenvectors across
multiple subcarriers or clusters of subcarriers. By compressing
the first of the two coordinates we encode the vector subspaces
spanned by a set of eigenvectors and by compressing the
second coordinate we provide an addendum of information
about the relative strength of the corresponding eigenvalues.

The remainder of this paper is organised as follows. In
Sec. II we introduce the system model and show what aspects
of the MIMO channel spatial structure are critical to ensure
beam separation at the transmitter. In Sec. III we derive our
two-stage CSI feedback decomposition and in Sec. IV we
provide algorithmic procedures for the encoding and decoding
operations, whose complexity is assessed in Sec. V. In Sec. VI
we apply source coding techniques to the two CSI coordinate
components to obtain the final feedback message. Finally, in
Sec. VII we present extensive simulation results on a real LTE
MIMO downlink, while Sec. VIII draws the conclusions.

1The time variable here should not be confused, in general, with the
physical time of the transmission system. In fact, when representing the
samples of the channel frequency response across frequency, “t” should be
replaced by frequency, whereas if we consider the time variation of that
frequency response, “t” correctly denotes time. However, throughout the paper
we keep the “time” notation to avoid confusion when we describe a geodesic
path in terms of the “velocity” and “acceleration” vectors.
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II. SYSTEM MODEL

We consider a MIMO downlink system with a single
transmitter (base station) equipped with M antennas and an
arbitrary number of receivers (users) each having N ≤ M
antennas. At any useful time and frequency, K users are
scheduled for transmission, with 1 ≤ K ≤ M . This broadcast
channel is characterised by the set of input-output equations,
for k = 1, . . . ,K ,

yk = H†
kx+ nk , (1)

where Hk is the M ×N channel matrix containing the base-
band complex coefficients, † denotes Hermitian transposition,
x is the transmitted signal vector and nk ∼ CN(0, I) is
an i.i.d. proper Gaussian noise vector. The input power is
constrained such that tr (E[xx†]) ≤ P , where P denotes the
total transmitted power (energy per channel use).

We assume that a precoding matrix is applied at the trans-
mitter to map the k-th scheduled user data vector uk onto the
M transmit antennas. We call layers, i.e. spatial streams, the
columns of the precoding matrix and rank of user k, Lk ≤ N ,
the number of layers assigned to the k-th scheduled user. We
also assume that the total number of layers, L =

∑K
k=1 Lk,

cannot exceed M .
The channel state information available at the transmitter

(CSIT) is provided by each user through a short feedback
message, which is used for precoder generation, user schedul-
ing, and modulation and coding adaptation. In this work we
are primarily interested in the component2 of the CSI feedback
describing the spatial “structure” of the channel matrix Hk.

The precoding operation can be designed in many different
ways, but in all cases the primary objective is that of spatially
separating the transmit layers such that the system does not
become interference limited. In order to do so the transmitter
has to be provided with some information about the vector
space spanned by the columns of Hk, for any user k. Let
us introduce the singular value decomposition (SVD) of a
generic user’s channel: H = UHΣHVH

†, where we omit
the user index for simplicity. In the ideal case, the directional
information is provided by the channel left singular vectors,
UH. On the other hand, in the simplest possible case, a
directional indication can be conveyed by a precoding matrix
of choice, selected by a user from a finite codebook such that
it is the closest match to the channel singular vectors, in terms
of providing the largest received SINR.

In general, we can distinguish two levels of accuracy in the
directional information. The first level is the minimum infor-
mation required by the transmitter to ensure an interference-
free system, and that is knowledge of the column space of
UH. The second level is full directional information provided
by the particular orthonormal matrix UH, which allows the
identification of the strongest directions for transmission. Note
that the directional information may also be restricted to the
few strongest channel directions, i.e. only a subset of the

2In a typical LTE CSI feedback message, for example, the main indication
of the channel spatial structure (a.k.a. precoder matrix indicator) is accom-
panied by some indication of the preferred transmission rank (a.k.a. rank
indicator) and the estimated signal-to-noise ratio measured at the decoder
input for each codeword (a.k.a. channel quality indicator).

columns of UH, or a linear combination thereof, may be
signalled to the transmitter.

Once the transmitter has obtained spatial information from
each receiver in the form of a column space of UH or the
actual orthonormal matrix, it can generate a suitable precoder
by using, for example, the zero-forcing design criterion [7],
[17], combined with a user selection mechanism. An example
of a simple greedy user selection strategy that can be combined
with any precoding technique is described in [21]. In real
OFDM systems the transmitter typically applies the same
precoder to a number of adjacent subcarriers forming a cluster
of one or more resource blocks. Consequently, the receivers
have to provide directional CSI feedback for each cluster
of the configured bandwidth by using very limited feedback
resources (a few bits). Therefore, exploiting the frequency
correlation by compressing the feedback information results
in more accurate CSIT for the same number of feedback bits,
which can improve the precoder design significantly as will
become apparent in the simulation results.

III. REPRESENTATION OF CSIT BY TANGENT SPACES

The problem of CSIT representation can be described
mathematically as finding an efficient representation for 1) the
vector subspace spanned by the columns of an orthonormal
matrix and/or 2) the orthonormal matrix itself. In the sequel,
we show how these quantities can be represented by as few
real coefficients as their respective number of degrees of
freedom. We call this non-redundant representation. Moreover,
the representation of 2) can be made incremental with respect
to 1) in the sense that it consists of the same representation
as 1) plus an addendum of information.

The algebraic structures needed to achieve such represen-
tations are the complex unitary group, the Stiefel and the
Grassmann manifolds. In the following derivation we will see
that a non-redundant representation of these manifolds can be
achieved by association with their tangent space. The tangent
space has an intuitive definition in Euclidean space, as the
space formed by the tangent vectors at a point of a “surface”
or manifold. The intuition suggests that the dimension of the
tangent space is the same as that of the manifold and that it
is possible to represent a point in the manifold by means of a
velocity vector by taking a reference point in the surface and
drawing the geodesic path, i.e. the shortest path connecting
the reference point to the point we want to represent. More
precisely, we can take as a representation of a point in a
manifold the velocity vector at a reference point of origin that
allows to get to the final point along the geodesic connecting
the two points in a reference time interval (e.g. one unit of
time) at “constant speed”. The concept of “constant speed” can
be rigorously defined by imposing that the acceleration vector
is normal to the tangent at any point along the geodesic. This
condition turns out to be a necessary and sufficient to define
a geodesic path [22].

Before introducing our CSIT representation we review some
fundamental differential-geometric properties, however a more
complete survey of the geometry of the real version of these
manifolds can be found, for example, in [22] or [23] and
references therein.
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A. The Unitary Group

If the number of transmit and receive antennas is the same,
full directional information is provided by an M ×M unitary
matrix, which can be represented as a point in the complex
unitary group

UM = {P ∈ C
M×M | P†P = I} . (2)

Lemma 1: The complex unitary group is a manifold of real
dimensions3 dimR(UM ) = 2M2 −M2 = M2, which equals
the number of real dimensions of its tangent space. At a point
P, the tangent space consists of all vectors of the form: PA,
with A skew-Hermitian.

Therefore, representing P by listing the real and imaginary
parts of its matrix elements is redundant by a factor of two.
By taking the point I as reference we can represent the tangent
space as

u(M) = {A ∈ C
M×M | A† = −A} . (3)

The geodesic equation in the unitary group can be derived
by imposing that the acceleration vector is in the normal space
of P(t) at any point, which yields

P(t) = P(0)eAt , (4)

with A skew Hermitian. Given the initial point, P(0) = O
and the point P(1) = P of the geodesic, reached at time
t = 1, the skew-Hermitian matrix A can be found by taking
the eigenvalue-decomposition (EVD) of the inner product

O†P = QejΦQ† = eQjΦQ† � eA , (5)

such that
A = QjΦQ†, (6)

where {ejφn}, n = 1, . . . ,M , are the eigenvalues of O†P. In
particular, by choosing I as the initial point, we can find A
by taking the eigenvalue decomposition of P and the velocity
vector at I along the geodesic is A, which can be used as an
equivalent representation of P.

In conclusion, we only need M2 real coefficients to list the
lower (or upper) triangular part of A as opposed to the 2M2

coefficients needed to represent the real and imaginary part of
all the entries of P.

B. The Stiefel Manifold

If N < M or, in general, the number of reported channel
eigenvectors is lower than M , full directional information is
conveyed by an M × N orthonormal matrix, which can be
represented by a point in the complex Stiefel manifold

VM,N = {P ∈ C
M×N | P†P = I} . (7)

The manifold can be seen as a quotient group of the unitary
group, thanks to the following coset representation: VM,N =
UM/H , where H ⊂ UM is such that

H =

(
I 0
0 UM−N

)
. (8)

3The real unitary group, however, has dimensions: dimR(UM ) = M2 −∑M
i=1 (i− 1) =

M(M+1)
2

, as found in [22].

Thus, a point in the Stiefel manifold, also referred to as an
N -frame in the source coding language, can be written as
P = P̄ ( I

0 ), where P̄ is an equivalent class of the unitary
group4, i.e. P̄ =

{(
P P⊥

)
H
}

, with P⊥P
†
⊥ = I−PP†.

As for the orthogonal group, we can seek a non-redundant
representation of a point P in the Stiefel manifold by means
of the tangent at a reference point O along the geodesic path
connecting O and P. The tangent space of VM,N can be found
by decomposing the tangent space (3) with respect to H as
u(M) = h ⊕ h⊥, where h is the tangent space of H at I,
called “vertical” component, and

h⊥ =

{(
A −B†

B 0

)
| A ∈ C

N×N ,A† = −A ,

B ∈ C
(M−N)×N

}
, (9)

is the “horizontal” component.
Lemma 2: The number of real dimensions of the complex5

Stiefel manifold VM,N is: dimR(VM,N ) = dimR(UM ) −
dimR(UM−N ) = N(2M − N), which equals the number
of real dimensions of its tangent space. The quotient group
representation of the tangent in the Steifel manifold is given
by the horizontal tangent (9).

The geodesic is obtained by restricting the geodesic of the
orthogonal group (4) to the horizontal space, which yields

P(t) = P(0)e

(
A −B†
B 0

)
t
, (10)

where the velocity vector
(

A −B†
B 0

)
can be taken as a repre-

sentation of the point P(1), given the point of origin P(0). To
the author’s knowledge, a method for explicitly calculating A
and B in (10) from P(0) and P(1), is currently unknown6.
However, we will see in the next section how we can obtain
a non-redundant representation of P ∈ VM,N , by using a
combination of the geodesics in the Grassmann manifold and
unitary group.

C. A Two-coordinate Decomposition

The CSI information associated with the vector space
spanned by the columns of an M×N matrix P is represented
by the complex Grassmann manifold

GM,N = {〈P〉 | P ∈ VM,N} , (11)

where 〈P〉 indicates the N -dimensional subspace of CM

spanned by the columns of P. Similarly to the Stiefel man-
ifold, GM,N = UM/H , H ⊂ UM , has the structure of a
quotient group of the unitary group with

H =

(
UN 0
0 UM−N

)
. (12)

Thus, a point in the Grassmann manifold can be written as
a set of orthonormal matrices4 〈P〉 = {P̄ ( I

0 )}, where P̄ =

4In the following, when using the quotient representation for a manifold
or its tangent space we will omit the post multiplication by the subgroup H
and by

(
I
0

)
whenever this does not generate confusion.

5The real Stiefel manifold, however, has dimensions: dimR(VM,N ) =
M(M+1)

2
− (M−N)(M−N+1)

2
= MN − N(N−1)

2
.

6In [22] a method is described to calculate the Stiefel geodesic from P(0)
and Ṗ(0). However, the technique is not applicable when the points P(0)
and P(1) are provided instead.
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{(
P P⊥

)
H
}

is an equivalence class in UM , and P⊥P
†
⊥ =

I−PP†.
Similarly to the previous two manifolds, a non-redundant

representation can be achieved through the tangent at a refer-
ence point 〈O〉 along the Grassmann geodesic connecting 〈O〉
and 〈P〉. By decomposing the tangent space (3) with respect
to the equivalence class H , we obtain: u(M) = h⊕h⊥, where
the vertical component h is the tangent space of H at I, and
the horizontal component is given by

h⊥ =

{(
0 −B†

B 0

)
| B ∈ C

(M−N)×N

}
. (13)

Lemma 3: The number of real dimensions of the complex7

Grassmann manifold equals that of its tangent space and
is given by: dimR(GM,N ) = M2 − N2 − (M − N)2 =
2N(M−N). The horizontal tangent (13) is the quotient group
representation of the Grassmann manifold tangent.

By restricting the geodesic of the unitary group (4) to the
horizontal space, we obtain the geodesic in the Grassmann
manifold:

P(t) = P(0)e

(
0 −B†
B 0

)
t
. (14)

In order to use the matrix B as an equivalent representation of
〈P〉, we need to fix the starting point P(0) = O and calculate
the geodesic curve impinging on a representing N -frame of
〈P〉 at time 1.

To simplify the derivation, let us also assume for now that
N ≤ M/2. This restriction will be removed later on. Let Θ
be the N×N diagonal matrix of the principal angles between
two subspaces 〈O〉 and 〈P〉.

The geodesic curve can be calculated by taking the CS-
decomposition of the inner product(
O O⊥

)† (
P P⊥

)
=(

Q1 0 0
0 Q21 Q22

)( cosΘ − sinΘ 0
sinΘ cosΘ 0
0 0 I

)(
V1 0 0
0 V21 V22

)†

(15)

where we define Q2 = (Q21 Q22 ) and V2 = (V21 V22 ). More
on how to calculate the CS-decomposition can be found, for
example, in [24, §2.6.4]. Let us introduce the rotation matrices
Ṽ1 and Ṽ2, of size N × N and (M − N) × (M − N),
respectively, defined as

Ṽ1 � V1Q
†
1 (16)

Ṽ2 � V2Q
†
2. (17)

By multiplying both sides of (15) by the block diagonal unitary
matrix

(
Ṽ1 0

0 Ṽ2

)
and by using the definition of the matrix

exponential and its basic properties, we obtain(
O O⊥

)† (
PṼ1 P⊥Ṽ2

)
=

e

⎛
⎝Q1 0

0 Q21

⎞
⎠
⎛
⎝0 −Θ
Θ 0

⎞
⎠
⎛
⎝Q

†
1 0

0 Q†
21

⎞
⎠

= e

⎛
⎝0 −B†

B 0

⎞
⎠
,

(18)

7The real Grassmann manifold, instead, has dimensions: dimR(GM,N ) =
M(M+1)

2
− N(N+1)

2
− (M−N)(M−N+1)

2
= N(M −N).

where we have defined

B � Q21ΘQ†
1. (19)

By introducing the independent time variable, we acknowledge
that (18) yields the implicit geodesic (14) with P(0) = O and
P(1) = PṼ1. Hence, the (M −N)×N matrix (19) can be
taken as a non-redundant representation of 〈P〉 and from (18)
we obtain the following explicit geodesic curve, which allows
the reconstruction of the N -frame P(1) = PṼ1 from B (and
the initial point O)

P(t) = OQ1 cos(Θt)Q†
1 +O⊥Q21 sin(Θt)Q†

1. (20)

Note that (18) also provides the geodesic curve connecting the
orthogonal complements 〈O⊥〉 and 〈P⊥〉 in GM,M−N , with
equation

P⊥(t) = −OQ1 sin(Θt)Q†
21+

O⊥
(
Q21 cos(Θt)Q†

21 +Q22Q
†
22

)
. (21)

Therefore, if N > M/2, we can always switch to the
orthogonal complements, apply the same derivation and use
equation (21) for the geodesic. Thus, (19) can also be taken as
non-redundant representation of 〈P⊥(1)〉 and (21) allows the
reconstruction of the representing (M −N)-frame P⊥(1) =
P⊥Ṽ2.

In the reconstruction of P(1) or P⊥(1) from B we need
to take the SVD of B, which gives, in general, different
component matrices from those in (19):

B =
(
Q̃21 Q̃22

)(Θ
0

)
Q̃†

1. (22)

However, the two decompositions (19) and (22) are related as
follows: Q̃21 = Q21L, Q̃1 = Q1L, where L is the product
of a permutation matrix and a diagonal matrix with complex
exponentials on the diagonal. Moreover, the following identity
holds true: Q22Q

†
22 = Q̃22Q̃

†
22, because the two matrices span

the same subspace. Therefore, all the terms in (20) and (21)
are unaffected by the particular choice of SVD.

We can combine this representation in the Grassmann
manifold with the representation in the unitary group described
in Sec. III-A to provide a non-redundant description of a point
in the Stiefel manifold. In fact, if we want to represent the
particular frame P ∈ VM,N , rather than the subspace 〈P〉, we
can find the matrix exponential representation of the matrix
Ṽ†

1 ∈ UN , with respect to some reference point O1, such that
Ṽ†

1 = O1e
A. Then, from the pair (B,A) (and by knowing

the fixed reference points O and O1), we can reconstruct P
by taking the product of the two reconstructed matrices. More
precisely, by taking the SVD of B, from (20) we get

PṼ1 = OQ1 cos(Θ)Q†
1 +O⊥Q21 sin(Θ)Q†

1, (23)

and, by taking the EVD of the skew-Hermitian matrix A, from
(5) we obtain

Ṽ†
1 = O1Q(cosΦ+ j sinΦ)Q†. (24)

The N -frame P ∈ VM,N is simply given by the right
multiplication of (23) by (24). Note that, in the complex case,
we need 2N(M − N) real coefficients to represent B and
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N2 real coefficients for A. In total, the pair (B,A) requires
N(2M − N) real coefficients, which is the number of real
degrees of freedom of VM,N . Hence, we have achieved a
non-redundant representation for VM,N . The same two-step
representation applies in the case N > M/2, where we use
the reconstruction formula (21) instead of (20) and we apply
the exponential map to Ṽ2 ∈ UM−N instead of Ṽ1.

IV. TWO-STAGE REPRESENTATION OF CSIT

From the above discussion we conclude that a non-
redundant representation of the full channel directional infor-
mation, given by the M ×N matrix of channel eigenvectors,
UH, can be achieved in two stages by using the transformation

UH → (B,A), (25)

where B is (M −N)×N and A is N ×N skew-Hermitian.
Algebraically, this transformation corresponds to the change
of coordinates:

VM,N → h⊥(GM,N )× u(N), (26)

where h⊥(GM,N ) is the tangent space in the Grassmann
manifold GM,N , defined in (13), and u(N) is the tangent
space in the unitary group U(N), defined in (3).

This representation has the advantage of providing two
levels of refinement of CSIT: if only B is known, we can
reconstruct the subspace 〈UH〉, which is enough to generate
an interference-free multiuser transmission. If the second
component, A, is also made available we can reconstruct the
full MIMO spatial structure by combining the two indications.

Note that instead of providing the matrix B, as per (19), to
represent 〈UH〉, we may equivalently use

B′ � Q21 sinΘQ†
1, (27)

where we have replaced the principal angles Θ with their sine.
This new matrix can be calculated, for N ≤ M/2, as

B′ = O†
⊥PṼ1, (28)

as can be easily verified from the geodesic expression (20) for
t = 1. Similarly, for N > M/2, B′ can be found from

B′ = −Ṽ†
2P

†
⊥O, (29)

as appears from (21). The advantage of replacing B with B′ is
to save the calculation of N ‘arccos’ functions needed to find
the principal angles Θ. However, if the coefficients of B′ are
to be later quantised to produce a feedback message, some
eigenvalues of the quantised matrix may exceed one. These
values need to be rounded down to one in the reconstruction
phase, which may introduce some additional reconstruction
error. Therefore, in the following we will always use B for
subspace representation.

We also note that a similar replacement of the skew-
Hermitian matrix A, given by (6), with the matrix: A′ =
Qj sin(Φ)Q†, is not possible because the latter does not
provide an equivalent representation in UN . This is because
the angles {φn} are defined in (−π, π], unlike the singular
values of B, {θn} which are in [0, π/2).

We are now ready to give an algorithmic procedure to
perform the transformation (25). Let us fix as reference point
the identity, (O O⊥) = IN .

1) Calculation of B.

• If N ≤ M/2: set O =
(
IN
0

)
, O⊥ =

(
0

IM−N

)
and P = UH. Compute the CS-decomposition (thin
version) of P =

(
P1

P2

)
, with P1 ∈ CN×N and P2 ∈

C(M−N)×N . Find the matrix Ṽ1 from (16) and B
from (19).

• If N > M/2: set O =
(
IM−N

0

)
, O⊥ =

(
0
IN

)
and

P⊥ = UH. Compute the CS-decomposition (thin
version) of P⊥ =

(
P1

P2

)
, with P1 ∈ C(M−N)×N

and P2 ∈ CN×N . Find the matrix Ṽ2 from (17)
and B from (19).

2) Calculation of A. Set O = IN ,

• If N ≤ M/2: set P = Ṽ†
1. Compute A from (6).

• If N > M/2: set P = Ṽ†
2. Compute A from (6).

The reverse transformation of (25) is performed by the
following procedure.

1) Reconstruction of 〈UH〉. Calculate the SVD of B as per
(22)8 and compute an N -frame representative, ŨH, of
〈UH〉 as follows:

• If N ≤ M/2,

ŨH =

(
Q̃1 cosΘQ̃†

1

Q̃21 sinΘQ̃†
1

)
(30)

• If N > M/2,

ŨH =

( −Q̃1 sinΘQ̃†
21

Q̃21 cosΘQ̃†
21 + Q̃22Q̃

†
22

)
(31)

2) Reconstruction of UH. Calculate the EVD: A =

Q̃jΦQ̃†, and the unitary matrix

Ṽ = Q̃(cosΦ+ j sinΦ)Q̃†. (32)

The matrix of channel eigenvectors, UH, is recon-
structed by the matrix product

UH = ŨH Ṽ. (33)

V. COMPLEXITY ANALYSIS

A final look now at the complexity involved in the above
calculations. The computational cost of a CS-decomposition
(thin version) of an M×N matrix, with M ≥ N , is essentially
that of an SVD of size min{N,M − N} × N . This is the
main cost of calculating the B component matrix above. The
calculation of the A component matrix, instead requires one
EVD of size min{N,M−N}×min{N,M−N}. On the other
hand, reconstructing 〈UH〉 from B requires one SVD of size
(M −N)×N , whilst reconstructing UH from A entails one
EVD of size min{N,M−N}×min{N,M−N}. Because the
computational costs of SVD’s and an EVD’s are comparable,
we can conclude that any of the operations described above
requires the equivalent complexity of one small SVD of size
dictated by the number of receiving antennas. In Table I we
compare the complexity of the proposed feedback scheme with
a simple clustering method like the one used currently in the
LTE family of standards, whereby a single codebook index
is reported per cluster. We assume that F is the number of

8Note that Q̃22 = 0 if N ≤ M/2.
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TABLE I
COMPLEXITY COMPARISON BETWEEN THE PROPOSED FEEDBACK AND THE LTE FEEDBACK MECHANISM FOR A FEEDBACK RANK N .

Proposed scheme
LTE feedback

B feedback A feedback

Receiver

Calculation of B O(FN3) — —

Calculation of A — O(FN3) —

Transform coding (DCT) O(N(M −N)F logF ) O(N2F logF ) —

Vector quantisation O(2B) O(2B) O(F2B)

Transmitter

Transform decoding (IDCT) O(N(M −N)F logF ) O(N2F logF ) —

Subspace reconstruction: 〈UH〉 O(MN2 +N3), for N < (M −N)

O(N3), for N ≥ M −N
— —

Matrix reconstruction: UH — O(N3) —

frequency clusters for which CSI feedback is provided and B
the number of bits per feedback index. The vector quantisation
operation to calculate the codebook index is similar in both
schemes and its complexity grows exponentially with B. How-
ever, whilst the LTE scheme performs F codebook searches,
in our scheme only one codebook index is generated for the B
component and one for the A component, irrespectively of the
number of clusters. The proposed compression scheme bears
the additional cost of calculating the B and A matrices for the
F clusters and a discrete cosine transform (DCT) for the two
sets of coefficients (see Sec. VI). For the SVD decomposition
we use the R-SVD algorithm developed by Chan [25], which
requires 6MN2+20N3 flops to compute the thin version SVD
of a matrix of size M×N , with M ≥ N (see [24, §5.4.5]). The
flop count for a thin SVD of size min{N,M−N}×N is 26N3

for N ≤ (M −N) and 6N(M−N)2+20(M−N)3 < 26N3

for N > (M−N). Therefore, the complexity of this operation
amounts to O(N3). Similarly we can derive the complexity
for the other SVDs and EVDs. With regard to the transform
encoding operation, we need to operate 2N(M−N) DCTs of
size F for the B component and N2 DCTs of size F for the A
component (see Sec. VI), which require a computational cost
of O(N(M −N)F logF ) and O(N2F logF ), respectively.

VI. QUANTISATION OF THE CSIT

Once the CSIT has been encoded by the transformation
(25) in the matrices B and A, these have to be quantised in
some way before being fed back to the transmitter on a digital
control channel.

One of the advantages of the CSIT description (33) is that
it allows to exploit the correlation of the channel vectors in
frequency selective channels by quantising the elements of
B and A across the frequency blocks in a MIMO-OFDM
system. In fact, we can apply the rate-distortion theory to
the quantisation of B and A in a similar fashion to [20] but
without the drawbacks of dealing with the channel impulse
response, as pointed out in the introduction.

In particular, if there are F frequency resource blocks for
which to report CSI, one can calculate a matrix pair represen-
tation for each block, (B1,A1), . . . , (BF ,AF ) and remove
the correlation of the samples by applying the Karhunen-
Loève (K-L) transformation to the 2N(M −N) length-F se-
quences of real coefficients of B and N2 length-F sequences

of real coefficients of A. Then, scalar or vector quantisation
can be applied to the K-L transformed coefficients.

One practical implementation of this transform coding
scheme, which does not require knowledge of the channel
correlation matrix, is obtained by replacing the K-L trans-
formation with the DCT [26]. It is well known (see, for
example, [26]) that for highly correlated signals the DCT
exhibits essentially the same performance as the optimum K-
L transform. We then use one vector quantisation codebook
to quantise all the DCT-transformed coefficients of the B
matrix and another codebook for the vector quantisation of
the transformed coefficients of A. These codebooks can be
designed, for example, by using the LBG algorithm [27].
We have used this transform coding and vector quantisation
scheme in the simulation study reported in the next section.

VII. NUMERICAL RESULTS

For our simulations we consider a MIMO-OFDM downlink
transmission in an LTE system [28] with a system bandwidth
of 1.4 MHz, 4 transmit antennas (M = 4), 4 receive antennas
(N = 4) and 4 users (K = 4). The channel model is the SCM
(spatial channel model) for a typical urban configuration [29].
The transmission bandwidth is divided up in 6 resource blocks
(RB). A resource block is a frequency-time unit for resource
allocation comprising 12 OFDM subcarriers and spanning one
subframe of 1ms in time, which corresponds to the duration
of 14 OFDM symbols.

In our simulation setup we use typical LTE parameters
for the feedback granularity and overhead. In particular, we
assume each user feeds back one CSI report for every sub-
frame and every 2 RBs. We recall that each CSI feedback
message consists, according to the LTE terminology, of a
PMI (precoding matrix indicator), which is associated to an
orthonormal matrix of channel directional vectors or precoding
vectors, one RI (rank indicator), which indicates the rank
of such orthonormal matrix, and one CQI (channel quality
indicator) for each codeword, or independently encoded data
stream, configured by the base station. In the simulations, we
assume that each scheduled user receives a single codeword
whose coded symbols are multiplexed across the transmit
layers assigned to a user. We also fix the feedback overhead
as follows. The CQI is a 4-bit indicator of the modulation
and coding scheme (MCS) for a codeword that ensures a
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TABLE II
SIMULATION PARAMETERS FOR THE LTE SYSTEM.

Channel model SCM, typical urban

Carrier frequency 2GHz

eNodeBa antenna configuration 4 elements, 10λ spacing

UEb antenna configuration 4 elements, 0.5λ spacing

Number of UEs 4

No. layers per scheduled UE 1,2,3,4

No. codewords per UE per subframe 1

DL transmission bandwidth 1.4MHz

UE velocity 3 km/h

PDCCHc/PDSCHd configuration 3/11 OFDM symbols

Scheduling unit in time 1 subframe

Scheduling unit in freq. 2 RBs

Channel coding LTE Rel-8 turbo coding

Link adaptation LTE Rel-8 MCS

Detector MMSE

Feedback granularity 2 RBs, 1 subframe

Feedback overhead per UE 30 bits/1ms/1.4MHz

Precoding scheme Zero-forcing

Scheduler maximum cell throughput

Common reference signals LTE Rel-8 CRS

Demodulation reference signals LTE Rel-10 DM-RSe

CSI feedback delay 5ms

Channel estimation for CSI feedback 2D-MMSE

Channel estimation for demodulation 2D-MMSE
ai.e., LTE base station
buser equipment
cphysical downlink control channel
dphysical downlink shared channel
eLTE Rel-10 introduced DM-RS support for more than 2 layers [31]

predetermined average frame error rate (FER), typically 1%.
Hence, 16 combinations of turbo codes and QAM modulations
are available for MCS selection at the transmitter. The RI is
a 2-bit index corresponding to the four possible ranks of the
precoding matrix between 1 and M . Finally, we assume that
the PMI is a 4-bit index as in LTE Rel-8/9 for four transmit
antennas. Therefore, in all our comparisons the feedback
overhead for CSIT is limited, for each user, to 30 bits per
millisecond for the whole bandwidth or 0.0214 bit/s/Hz. The
total uplink resources needed to support all the four users’
feedback is then 0.0857 bit/s/Hz, which should be a small
proportion of the throughput achieved in the downlink to make
a MIMO limited feedback scheme worthwhile. We assume that
the feedback channel is error free, but it introduces a delay of
5ms. The precoder is zero-forcing combined with the simple
greedy user selection described in [21].

Two sets of pilots are provided in the downlink frame for
channel estimation. The CRS (common reference signals) are
inserted after the precoding operation and used to estimate the
downlink channel for CSI feedback generation. The DM-RS
(demodulation reference signals) are inserted before precoding
and used to estimate the combination of precoder and channel
for correct signal demodulation. In all simulations we assume
two-dimensional MMSE (2D-MMSE) channel estimation [30]
on both the DM-RS and CRS. The main simulation parameters
are summarised in Table II.

In the following results we compare the feedback scheme
of Sec. IV, with and without quantisation, to the codebook-
based feedback mechanism adopted in LTE. While in the LTE
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Fig. 1. Throughput comparison when the users report a rank-1 indicator
(RI=1). 1 layer is allocated per user (NLY=1) and 1 user scheduled per RB
(KMAX=1).
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Fig. 2. Throughput comparison when the users report a rank-2 indicator
(RI=2). 2 layers are allocated per user (NLY=2) and 1 user scheduled per RB
(KMAX=1).

feedback each user reports separate PMIs per frequency sub-
block, in our scheme one indicator is generated for the B
matrix and one for the A matrix for the whole bandwidth
in order to exploit the frequency correlation of the MIMO
channel. Each indicator is obtained as described in Sec. VI
by applying vector quantisation to the DCT-transformed co-
efficients. When reporting both feedback components, B and
A, the two indicators can be multiplexed in time such that
the total signalling overhead is the same as for a single
indicator feedback. In particular, we study the performance
of the two feedback schemes for different values of the user’s
reported rank (RI), the actual number of layers assigned to
each scheduled user9, indicated by the parameter NLY, and
the maximum number of users scheduled per RB, denoted by
KMAX.

In Fig. 1 and 2 we look at the special case of a single user
allocated per RB (SU-MIMO), for RI=1 and 2, respectively.
Note that for RI=1, a single unit-norm vector is reported and
full directional information is conveyed by the B matrix only.
In fact, (30) allows to reconstruct the reported vector up to a

9This can be lower or equal to the reported RI, as the transmitter can
override the rank indicated by a user.
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Fig. 3. Throughput comparison when the users report a rank-1 indicator
(RI=1). 1 layer is allocated per user (NLY=1) and up to 2 users scheduled
per RB (KMAX=2). The average number of users scheduled per RB is also
plotted.
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Fig. 4. Throughput comparison when the users report a rank-2 indicator
(RI=2). 1 layer is allocated per user (NLY=1) and up to 2 users scheduled
per RB (KMAX=2). The average number of users scheduled per RB is also
plotted.

phase shift, which is irrelevant for the precoder calculation. It
is well known that the LTE codebook-based feedback scheme
is optimised primarily for single-user transmission and we can
see that it performs very close to the unquantised feedback
curve. We note in Fig. 2 that the addendum of information
provided by the matrix A does not improve performance by
much: the main reason, in this case, is that a single codeword
is multiplexed on both spatial vectors signalled by a user
such that the link adaptation needs to match their average
channel gain. Hence, identifying the strongest eigenvector in
this 2-dimensional subspace does not improve the precoder
gain significantly. In both SU-MIMO parameter configurations
the frequency selective feedback through the B matrix outper-
forms the LTE feedback scheme.

In Figs. 3 to 5 we consider a proper MU-MIMO trans-
mission with a maximum of 2 users scheduled per RB and
for RI=1,2,3, respectively. In all cases, the first stage of the
CSI representation, by the matrix B, is the most informative
feedback by providing a much more accurate description of
the MIMO channel structure than the LTE-type feedback and
also by exploiting the channel frequency correlation. As we
observed previously, the B feedback component provides the
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Fig. 5. Throughput comparison when the users report a rank-3 indicator
(RI=3). 2 layers are allocated per user (NLY=2) and up to 2 users scheduled
per RB (KMAX=2). The average number of users scheduled per RB is also
plotted.
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Fig. 6. Throughput comparison when the users report a rank-2 indicator
(RI=2). 1 layer is allocated per user (NLY=1) and up to 4 users scheduled
per RB (KMAX=4). The average number of users scheduled per RB is also
plotted.

transmitter with interference rejection capability, whereas the
A component helps maximising the channel gain for each user.
However, when operating in MU-MIMO mode, the mismatch
between the quantised directional channel feedback and the
actual channel vectors causes residual interference between
the scheduled users that cannot be predicted by either the
transmitter or the receivers. An addition gain is provided by
adding the A component, which is reflected in the small
additional throughput we see in Figs. 4 to 6 when both
feedback components are sent back.

Finally, in Fig. 6 we consider the case where all 4 users
can be multiplexed together in the same RB, with RI=2. As in
the previous configurations, the B component of the feedback
offers a dramatic improvement in cell throughput compared to
the LTE feedback.

From these results we note that the B component seem to
have much greater impact in performance compared to the A
component. This is in part motivated by the very coarse CSI
representation provided by just 12 bits for a 4×4 system over a
wide bandwidth, which impairs the accuracy of the refinement
provided by the A component of the feedback.
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VIII. CONCLUSION

In this paper we introduced a new method for encoding
the MIMO CSI for frequency selective channels and limited
feedback. The technique is based on the decomposition of
the directional information of a MIMO channel in a two-
coordinate system formed by the tangent space of a Grassmann
manifold and the tangent space of a unitary group. The
first component provides a non-redundant description of the
subspace spanned by a set of channel eigenvectors, while
the second component provides a non-redundant addendum of
information to identify the strongest channel vector directions
within that subspace. The first CSI feedback component,
given by the B matrix, turns out to be the most important
for MU-MIMO transmission because it conveys the informa-
tion needed for to generate an interference-free transmission,
while the second component, given by A matrix, improves
the precoder gain for an individual user. One advantage
of this feedback representation is that it allows to exploit
the frequency correlation of selective MIMO channels. We
showed that the two-stage feedback encoding and decoding are
computationally inexpensive operations as they require each
the equivalent complexity of one small SVD for either of the
two components. We have run extensive simulations of an LTE
downlink system and showed that the proposed CSI feedback
description provides dramatic throughput improvement over
the existing feedback scheme for MU-MIMO transmission.
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