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Abstract

The performance of a multicomputer network depends on the switching technique
and the routing algorithm used. The wormhole switching technique has been widely
used in the recent multicomputers. The most costly resources in a multicomputer
network using wormhole routing are channel bandwidth and buffer memory. This

thesis focuses on the buffer managementissues in wormhole routed multicomputers.

The commonly used buffer organizations for recent multicomputers are central-
ized and dedicated buffer organizations. The results presented in this thesis indicate
that the dedicated buffer organization has a better performance than tke centralized
in the uniform traffic. In the hot-spot traffic the centralized organization outper-
forms the dedicated. The hybrid buffer organization proposed in this thesis inherits
the merits of the two. Hybrid buffer organization performs similar to the dedicated
buffer organization under uniform traffic and its performance is intermediate to that
of the two organizations for hot-spot traffic. The simulation results presented suggest
that the hybrid buffer organization can be designed to configure itself dynamically

from the dedicated to centralized depending on the traffic conditions.
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Chapter 1

Introduction

The problem domain to which computers could be applied, is expanding rapidly.
There is almost no field of study which is not taking advantage of computers. As
computers are used to solve many complex problems, the demand for larger and

faster computer systems is also increasing steadily.

In order to meet this requirement and to manufacture computers with increased
speed and capacity for lower cost. computer architects have followed two general ap-
proaches [4]. The first uses conventional serial computer architecture. The second

approach exploits the parallelism inherent in many problems.

Data Parallelism found in data takes advantage of large number of independent
data elements. For each data element a processor is assigned and all the operations

are performed on the data in parallel.

Control Parallelism is used to program most multiprocessor computers. In this
approach threads of control that could operate independently are identified and then
different processors are used to run these threads in parallel. The primary problems

of this approach are the difficulty in identifying and synchronizing these independent
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Figure 1.1: High-level taxonomy of parallel computer architectures (3]

threads of control.

1.1 Parallel Architectures

A parallel architecture provides an explicit, high-level framework for the develop-
ment of parallel programming solutions by providing multiple processors, whether
simple or complex, that cooperate to solve problems through concurrent execution

[5]- A simple taxonomy of parallel computer architectures based on this definition

is shown in Figure 1.1.

1.1.1 Synchronous architectures

Synchronous parallel architectures support data parallelism. These architectures

coordinate concurrent operations in lockstep through global clocks, central control

units, or vector unit controllers.
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Pipelined vector processors. Pipelined vector processors directly support
massive vector and matrix calculations ([6]. These machines are characterized by
multiple, pipelined functional units, which implement arithmetic and boolean op-
erations for both vectors and scalars and which can operate concurrently. Cray-1,
Fujitsu VP-200, Data Cyber 205 and Texas Instrumerts Advanced Scientific Com-

puter are example machines of this architecture.

SIMD architectures. SIMD architectures typically employ a central control
unit, multiple processors, and an interconnection network for either processor-to-
processor or processor-to-memory communications. The control unit broadcasts a
single instruction to all processors, which execute the instruction in lockstep fashion
on local data. The interconnection network allows instruction results calculated at
one processor to be communicated to another processor for use as operands in a

subsequent instruction.

Processor array architectures are structured for numerical SIMD execution and
have often been employed for large-scale scientific calculations. such as image pro-
cessing and nuclear energy modeling [7]. Loral's Massively Parallel Processor. ICL’s
Distributed Array Processor and Thinking Machines’ Connection Machine {CM1

and CM2) exemplify this kind of architecture.

Associate memory processor architectures are built around an associative memory
and constitute a distinctive type of SIMD architecture that uses special comparison
logic to access stored data in parallel according to its content [8]. Bell Labora-
tories’ Parallel Element Processing Ensemble and Loral’s Associative Processor are

the machines developed using this architecture and are used for database-oriented

applications.

Systolic architectures. These architectures are used to build machines to solve

the problems of special-purpose systems [9]. These computers are pipelined multi-
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Figure 1.2: MIMD-shared memory architecture: bus interconnection (3]

processors in which data is pulsed in rhythmic fashion from memory and though a
network of processors before returning to memory. A global clock and explicit tim-
ing delays synchronize this pipelined data flow, which consists of operands obtained
from memory and partial results to be used by each processor. Carnegie Mellon's

Warp and Saxpy’'s Matrix-1 fall into this category.

1.1.2 MIMD architectures

MIMD architectures employ control parallelism i.e., they use multiple processors
that execute independent instruction streams using local data. MIMD computers
support parallel solutions that require processors to operate in largely autonomous
manner. The software processes executing on MIMD architectures are synchronized
by accessing data in shared memory units or by passing messages though an in-
terconnection network. MIMD architectures are asynchronous computers and are
characterized by a decentralized hardware control. MIMD architectures can be di-

vided into shared-memory and distributed-memory systems.
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Shared-memory architectures

Shared memory architectures (Figure 1.2) accomplish interprocessor coordination
by providing a global, shared memory that each processor can address. Commercial
shared-memory architectures, such as Flexible Corporation’s Flex/32 and Encore
Computer’'s Multimax are examples for this category. These machines have no
massage sending latency problem but suffer from data access synchronization and
cache coherency problems. These computers are also referred to as multiprocessor

systemns.

Distributed-memory architectures

Distributed memory architectures (Figure 1.3) connect processing nodes, consisting
of an autonomous processor and its local memory, with a processors-to-processor
interconnection network. Nodes share data by explicitly passing messages though
the interconnection network, since there is no shared memory. These systems are
also referred as multicomputer systems. As the scope of this thesis is multicomputer

networks, the remainder of the thesis focuses on this type of networks.
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Figure 1.4: A typical multicomputer node [1]

1.2 Multicomputer Networks

Multicomputer architecture has become a popular architecture for constructing mas-
sively parallel computers because they scale well; i.e., as the numter of nodes in the
system increases, the total communication bandwidth, memory bandwidth. and pro-
cessing capability of the system also increase. Several examples for these machines
are given in the subsequent sections.

A multicomputer network consists of hundreds or thousands of nodes connected
in some fixed topology [1]. As shown in Figure 1.4, a multicomputer node minimally
contains a microprocessor, local memory, and hardware support for inter-node com-
munication. Specific applications may dictate inclusion of specialized co-processors
for floating point, graphics, or secondary storage operations. Ideally, each node
would be directly connected to all other nodes {fully connected or complete net-
work). The packaging constrains and hardware costs limit the number of connec-
tions to a small number, typically ten or less. Because the node degree is limited,
messages must often be routed though a sequence of intermediate nodes (multiple-

hop networks) to reach their final destinations.
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Figure 1.5: Multicomputer network topologies

In summary, multicomputers have large numbers of nodes executing instruc-
tions asynchronously. The communication between processors is message based with
moderate overhead. The user implemented programs are decomposed into medium
grained computation tasks. A multicomputer network is characterized by four fac-
tors: topology, routing, flow control and switching [5]. There are also other factors

that can be considered.

1.2.1 Topology

The topology of a network, usually modeled as a graph, defines how the nodes are
interconnected by channels. Two requirements of a network are that it must accom-
modate a large number of nodes and exhibit a low network latency [3]. There are
many ways to interconnect nodes in multicomputer networks. Most of the popular
direct network topologies fall in the general category of either n-dimensional meshes
or k-ary n-cubes because their regular topologies and simple routing. Some sample

topologies are shown in Figure 1.5.
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Mesh

A n-dimensional mesh has kg X... X kn-2Xkn—; nodes, k; nodes along each dimension ¢,
where k; > 2. Each node Xisidentified by n coordinates, gn—1 (X}, 0p—2(X). ..., 1(X),
oo(X), where 0 < g3(X) < k;—1for0<i<n—1 Two nodes X and Y are neigh-
bors if and only if ¢;(X) = ¢;(Y) for all i, 0 £ i < n — 1, except one, j, where
0i(Y) = 0;(X) = 1. Thus, nodes have from n to 2n neighbors, depending on their

location in the mesh (Figure 1.5(a}).

k-ary n-cubes

In a k-ary n-cube, all nodes have the same number of neighbors. The definition of
a k-ary n-cube differs from that of an n-dimensional mesh in that all the A;'s are
equal to k£ and two nodes X and Y are neighbors if and only if ¢;,(X) = &;(Y) for
all 4, 0 < 7 < n — 1, except one, 5. where ¢;(Y) = (0;(X) £1) mod & The use
of modular arithmetic in the definition results in wraparound channels in the k-ary
n-cube, which are not present in the n-dimensional mesh. A k-ary n-cube contains

k™ nodes.

Several special cases of the n-dimensional meshes and k-ary n-cubes have been
proposed or implemented as multicomputer network topologies. When n=1, the k-
ary n-cube collapses to a ring with k£ nodes (Figure 1.5(b)). When n=2, the topology
is a 2D torus with k* nodes (Figure 1.5(d)). A hypercube is an n-dimensional mesh

in which k; =2 foralli, 0 < i < m — 1, that is, a 2-ary n-cube (Figure 1.5(c)).

Hypercubes, low-dimensional meshes, and tori can be compared in terms of their
bisection width 7, that is, the minimum number of channels that must be removed
to partition the network into two equal subnetworks. If N = 2°" nodes are present
in each topology network then Maypercuse = 27" ~') M2pmesh = 27, and Thpeorus = 2",
respectively. The bisection density is the product of n and the channel width W and

can be used as a measure of the network cost. If all the networks have the same
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bisection density, then

"V'.’Dmesh/I’Vhypercube = 2n—l =,/N/2
and

7 - -2 _
IL2Dtm'r.u/u' hypercube = M7 =/ /4

In other words, for the same cost, the 2D mesh and 2D torus can support wider
channels and there by offer higher channel bandwidth. However, the low-dimensional
networks have larger diameters, which is the maximum distance between two nodes.

The diameters of the topologies are 2n, 2**! — 2, and 2™ — 1, respectively.

Both the hypercube and the torus are symmetric networks in that there exists
a homomorphism that maps any node of the graph representing the network graph
onto any other node. Mesh networks, on the other hand, are asymmetric because

the wraparound channels are absent.

The Intel Touchstone Delta, Cray T3E, and Symult 2010 use a 2D mesh; the

MIT J-machine and Caltech’s Mosaic use a 3D mesh; and the Ncube-2/3 uses a

hypercube.

1.2.2 Routing

In the absence of the complete network, routing determines the path selected by a
message to reach its destination. Efficient routing plays a very important role for
the performance of the multicomputer networks. For maximum system performance,
a routing algorithm should have high throughput and exhibit following important
features: low-latency message delivery, avoidance of deadlocks, live-locks and star-

vation and ability to work well under various traffic patterns.

Routing can be classified into deterministic or adaptive. In deterministic routing.

the path is completely determined by the source and destination addresses. This
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method is also referred to as oblivious routing. The well-known e-cube routing al-

gorithm (discussed in Chapter 2) is an example of deterministic routing.

In edaptive routing for a given source and destination, the path taken by a partic-
ular packet depends on dynamic network conditions, such as the presence of faulty
or congested channels. A routing algorithm is said to be minimal. if the path se-
lected is one of the shortest paths between the source and destination pair. Using
a minimal routing algorithm, every channel visited will bring the message closer
to the destination. A non-minimal routing algorithm allows messages to follow
a longer path, usually in response to current network conditions. If non-minimal
routing is used, care must be taken to avoid a situation in which the message will

continue to be routed though the network but never reach the destination (live lock).

A minimal fully-adaptive algorithms do not impose any restrictions on the choice
of shortest paths to be used in routing messages; in contrast, partially adaptive min-
imal algorithms allow only a subset of available minimal paths in routing messages.
An adaptive routing algorithm can be fully- or partially-adaptive. *-channel and
Nhop routing algorithms are examples for fully-adaptive routing algorithms (dis-

cussed in Chapter 2).

1.2.3 Flow control

A network consists of many channels and buffers. Flow control deals with the al-
location of channels and buffers to a message as it travels along a path though
the network. A resource collision occurs when a message cannot proceed because
some resource that it requires is held by another message. Whether the message is
dropped, blocked in place, buffered, or rerouted though another channels depends on
the flow control policy. A good flow control policy should avoid channel congestion

while reducing the network latency.



Chapter 1. Introduction 11

The allocation of channels and their associated buffers to messages can be viewed
from two perspectives. The routing algorithm determines which output channel is
selected for a message arriving on a given input channel. Therefore, routing can
be referred to as the output selection policy. Since an outgoing channel can be
requested by messages arriving on many different input channels, an input selection
policy is needed to determine which packet may use the output channel. Possible
input selection policies include round robin, fixed channel priority, and first come,

first served. The input selection policy affects the fairness of routing algorithms.

1.2.4 Switching

Switching is the actual mechanism that removes data from an input channel and
places it on an output channel. Network latency is highly dependent on the switching
technique used. Four switching techniques have been adopted in multicomputer
networks: store-and-forward, circuit switching, virtual cut-through, and wormhole

routing.

Store-and-forward

In store-and-forward switching, when a message reaches an intermediate node, the
entire message is stored in a message buffer. The message is then forwarded to a
selected neighboring node when the next output channel is available and the neigh-
boring node has an available buffer. This switching strategy was adopted in the
research prototype Cosmic Cube and several first-generation commercial multicom-

puters, including the iPSC-1, Ncube 1, Ametek 14, and FPS T-series.

Store-and-forward technique is simple, but it has two major drawbacks. First,
each node must buffer every incoming message, consuming memory space. Second,
the network latency is proportional to the distance between the source and desti-

nation nodes. The network latency is (L/B)D, where L is the message length. B
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is the channel bandwidth, and D is the length of the path between the source and

destination.

Virtual cut-through

In virtual cut-through, a message is stored at an intermediate node ouly if the next
required channel is busy. The network latency is (Ly/B)D + L/B where L, is the
length of the header field. This is true only if there is no contention for channels along
the paths. When L >> L, the second term, L/B, will dominate, and the distance
D will produce a negligible effect on the network latency. The research prototype
Harts, developed at University of Michigan, is a hexagonal mesh multicomputer that

adopts virtual cut-through switching mechanisms.

Circuit switching

In circuit switching, a physical circuit is constructed between the source and desti-
nation nodes during the circuit establishment phase. In the message transmission
phase, the message is transmitted along the circuit to the destination. During this
phase, the channels constituting the circuit are reserved exclusively for the circuit;
hence, there is no need for buffers at intermediate nodes. In the circuit termination

phase, the circuit is torn down as the tail of the message is transmitted.

The network latency for circuit switching is (L./B)D + L/B, where L. is the
length of the control packet transmitted to establish the circuit. If L, << L, the
distance D has a negligible effect on the network. If a circuit cannot be established
because a desired channel is being used by other messages, the circuit is said to
be blocked. Depending on the way blocked circuits are handled, the partial cir-
cuit may be torn down, with establishment to be attempted later. This policy is
called loss mode. Some second-generation multicomputers, such as Intel's iPSC-2

and iPSC/860, used circuit switching.
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(a)

©)

Figure 1.6: Comparison of different switching techniques: (a) store-and-forward

(b} circuit (c) wormhole [3]

Unlike store-and-forward switching, both virtual cut-through and circuit switch-
ing offer low network latencies that are relatively independent of path length. The
virtual cut-through requires that blocked messages be buffered, and circuit switching

makes it difficult to support sharing of channels among messages.

Wormbhole routing

In wormhole routing a message is divided into a number of flits (flow control digits)
for transmission. The header flit governs the route. As header advances along the
specified route, the remaining flits follow in a pipeline fashion. If the header flit
encounters a channel already in use, it is blocked until the channel becomes avail-

able. Rather than buffering the remaining flits by removing them from the network



Chapter 1. Introduction 14

channels, as in virtual cut-though, the flow control within the network blocks the
trailing flits and they remain in flit buffers along the established route. The network
latency for wormhole routing is (Ly/B)D + L/B, where Ly is the length of each
flit, B is the channel bandwidth, D is the path length, and L is the length of the
message. If Ly << L, the path length D will not significantly affect the network

latency unless it is very large.

Figure 1.6 compares the compares the communication latency of wormhole rout-
ing with that of store-and-forward switching and circuit switching in a contention-
free network. In this case, the behavior of virtual cut-though is the same as that
of wormhole routing, so virtual cut-though is not shown explicitly. The channel
propagation delay is typically small relative to L/B and is ignore here. The figure
shows the activities of each node over time when a packet is transmitted from a
source node S to the destination node D through three intermediate nodes, 11, 12,
13. The time required to transfer the packet between the source processor and its
router, and between the last router and the destination processor, is ignored. Un-
like store-and-forward switching, both circuit switching and wormhole routing have
communication latencies that are nearly independert of distance between the source

and destination nodes.

1.3 Goals and Contributions of the Thesis

The goal of this research work is to study various buffer management strategies in
Wormhole-routed multicomputer networks. To this end, the torus network is used
to study the performance of buffer organizations. The buffer organizations consid-

ered are 1) centralized, 2) dedicated and 3) hybrid (described in detail in Chapter 3).

During this research work it has been observed that in hot-spot traffic with
constant number of buffers, the centralized buffer organization results in a better

performance (higher utilization and lower latency) than the dedicated organization.
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Under uniform traffic dedicated buffer organization performs better.

In practice, the traffic is bounded between hot-spot and uniform traffic. There-
fore, it is necessary to handle these two cases in an efficient way. A new buffer
organization, called hybrid buffer organization, is proposed in this thesis. This new
organization can act as the centralized for hot-spot traffic and it can work like the
dedicated organization for uniform traffic. In hybrid organization, the total number
of buffers n is partitioned into p (0 < p < n) dedicated buffers and n — p centralized
buffers. And, by changing p appropriately depending on the traffic pattern it is pos-
sible to achieve a better performance by switching dynamically between centralized

and dedicated buffer organizations.

Chapter 2 provides necessary background. In this chapter the basic concepts of
wormhole routing such as deadlocks, virtual channels, deterministic and adaptive
routing are discussed. This chapter also described rCUBE system as an example

massively parallel computer.

Chapter 3 discusses different issues of buffer management. The centralized, ded-

icated, and hybrid buffer organizations are described in detail.

Chapter 4 describes the system model used in the simulation experiments to

evaluate the relative performance of the buffer organizations.

Chapter 5 gives the results of the simulations. In this chapter an analysis of the

results obtained is also given.

Finally, the conclusions , contributions and future work of this research are given

in Chapter 6.
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Background

2.1 Wormbhole Routing

In wormhole routing (3] a message (packet) is divided into a number of flits for
transmission. The size of a flit depends on system parameters, in particular the
channel width. Normally, the bits constituting a flit are transmitted in parallel be-
tween two routers. The header flit (or flits) of the message governs the route. As
the header advances along the specified route, the remaining flits follow in a pipeline
fashion, as shown is Figure 2.1. If header flit encounters a channel already in use, it
is blocked until the channel becomes available. The flow control within the network
blocks the trailing flits and they remain in flit buffers along the established route.
Once a channel has been acquired by a packet, it is reserved for the packet. The

channel is released when the last, or tail, flit has been transmitted on the channel.

The pipelined nature of wormhole routing produces two positive effects. First, in
the absence of network contention, network latency is relatively insensitive to path
length. Secondly, large packet buffers at each intermediate node are obviated; only
small FIFO flit buffer is required. When the flit buffers are as large as the messages

themselves, the behavior wormhole routing resembles that of virtual cut-through.

Flits passing between two adjacent nodes use a handshaking protocol. In the
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Figure 2.2: Handshaking between two routers through a request/acknowledge

line:(a) B is ready to accept a flit by setting R/A to low; (b) A is ready ready
to send flit 7 by raising R/A to high; (c) flit is latched in B’s flit buffer; (d) B sets

R/A to low when flit 7 is removed (also A has received flit i+1) (3]
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example in Figure 2.2, a unidirectional channel from router A connects to router B.
A single-wire request/acknowledge (R/A) line is associated with the channel. The
R/A line can be raised only by router A, the requesting side, and lowered only router
B, the acknowledging side. When A is ready to send a flit to B, A must wait unit
the R/A line is low. A then places the data on the data channel and raises the R/A
line to high. Router B will lower the R/A line when it has removed the flit from the

flit buffer.

In circuit switching, once a channel is assigned to a packet, it cannot be used
by other packets until the channel is released. In conmtrast, wormhole routing al-
lows a channel to be shared by many packets. Wormbhole routing also allows packet
replication, in which copies of flit can be sent on multiple output channels. Packet

replication is useful in supporting broadcast and multi-cast communication.

Wormbhole switching technique has been a popular switching technique in new-
generation multicomputer networks. The first commercial multicomputer to adopt
wormhole routing was Ametek 2010, which used a 2D mesh topology. The Ncube-2,
which uses a hypercube topology, has also adopted wormhole routing. The Intel
Touchstone Delta and Inter Paragon use wormhole routing in a 2D mesh. Finally,

MIT’s research prototype J-machine uses wormhole routing in a 3D mesh.

2.2 Deadlocks

A multicomputer network is said to be in a deadlock condition when no message
can advance towards its destination. This situation can postpone message delivery
indefinitely [17]. Deadlock can occur if messages are allowed to hold some resource
while requesting others. Consider the example shown in Figure 2.3 where channel
deadlock occurred between four routers and four messages. Each message is hold-
ing a flit buffer while requesting the flit buffer being held by another message. In

this locked state, no communication can occur over the deadlocked channels until
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Figure 2.3: An example of channel deadlock involving four packets [5]

exceptional action is taken to break the deadlock.

In store-and-forward and virtual cut-through switching, the resources are buffers.
In circuit switching and wormhole routing, the resources are channels. Because
blocked packets holding channels (and their corresponding flit buffers) remain in

the network, wormhole routing is particularly susceptible to deadlock.

Livelock is a different situation in which some messages are not able to reach
their destination, even if they never block permanently [2]. A message may be
traveling around its destination node, never reaching it because the channels required
to do so are occupied by other messages. This situation can occur when messages

are allowed to follow non-minimal paths.

2.2.1 Channel dependency graphs

A channel dependency graph can be used to develop deadlock free routing algorithms

[17). Channel dependence graph for a multicomputer network and a routing algo-
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Figure 2.4: Breaking deadlock by adding virtual edges

rithm is a directed graph D=G(C,E), where the vertex set C(D) cousists of all the
unidirectional channels in the network, and the edge set E(D) includes all the pairs
of connected channels, as defined by the routing algorithm. In other words. if (a,b)
belongs to E(D), then a and b are, respectively, an input channel and an output
channel of a node, and the routing algorithm may route messages from a to . A
routing algorithm for a multicomputer network is deadlock free if and only if there
is no cycle in the channel dependence graph. Counsider, for example, the case of a
uni-directional four-cycle shown in Figure 2.4(a), the corresponding channel depen-
dence graph is shown in 2.4(b). Since there is a cycle in the channel dependence
graph, deadlock is possible. One way to break the deadlock is to split the channels
into two classes of virtual channels for each channel. If Cp is chosen as the dividing
channel of the cycle and split each channel into high virtual channels, Cy,...C}2. and

low virtual channels, Cqq, .., Co3, as shown in Figure 2.4(c).

Messages at a node numbered less than their destination are routed on the high

channels, and messages at a node greater than their destination node are routed



Chapter 2. Background 21

on the low channels. Channel Cy is not used. Now a total ordering of the virtual
channels can be obtained according to their subscripts: Ci3 > C2 > Cpp > C10 >
Co3 > Cga > Coy- Thus, there is no cycle in D and the routing function is dead-lock

free Figure 2.4(d).

2.3 Virtual Channels

A virtual channel consists of a buffer that can hold one or more flits of a message and
associated state information [16]. Several virtual channels may share the bandwidth
of a single physical channel. Virtual channels separate the allocation of buffers from
allocation of chanpels by providing multiple buffers for each channel in the network.
If a blocked packet A holds a buffer b,y associated with channel ¢;, another buffer b;;
is available allowing other messages to pass A. Figure 2.5(b) illustrates the addition
of virtual channels to the network of Figure 2.5(a). In this figure each buffer is
represented as A D.7, where K is the number of the node, D is the direction, and 1
is the buffer number. Message A remains blocked holding buffers 3E.1 and 4S.1. In
Figure 2.5(b), however message B is able to make progress becanse buffer 3E.2 is

available allowing it access to channel (3E to 4W).

Virtual channels were introduced for purposz of deadlock avoidance. In addition,
they increase throughput and additional degree of freedom in allocating resources
to messages in the network. The most costly resource in a multicomputer network
is the physical channel bandwidth. The second most costly resource is the buffer
memory. Adding virtual channel flow control to a network makes more effective use
of both of these resources by decoupling their allocation. The only expense is a

small amount of additional control logic.

2.3.1 Buffer organization

Each node of a multicomputer network (or interconnection network) contains a set

of buffers and a switch. If buffers are partitioned into sets associated with each
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Figure 2.5: (a) Packet B is blocked behind packet A while all physical channels
remain idle. (b) Virtual channels provide additional buffers allowing packet B to

pass blocked packet A [16]

input channel, an input-buffered node looks as shown in Figure 2.6.

A conventional network organizes the flit buffers associated with each channel
into a first-in, first-out (FIFO) queue as shown in Figure 2.7(a). This organization
restricts allocation so that each flit buffer can contain only flits from a single mes-
sage. If this message gets blocked, the physical channel is idle as no other message

is able to acquire the buffer resources needed to access the channel.

A network using virtual channel flow control organizes the flit buffers associated
with each channel into several lanes as shown in Figure 2.7(b). The buffers in each
lane can be allocated independently of the buffers in any other lane. This added
allocation flexibility increases channel utilization and thus throughput. A blocked
message, even one that extends though several nodes, holds only a single lane idle

and can be passed using any of the remaining lanes.
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2.3.2 Flow control

In a network using virtual channel flow control, flow control is performed at two
levels. Virtual channel assignment is made at the message level while physical
channel bandwidth is allocated at the flit level. When a message arrives at a node.
it is assigned (according to the routing algorithm) to an output virtual channel.
This assignment remains fixed for the duration of the message. The virtual channels
associated with a physical channel arbitrate for physical channel bandwidth on a

flit-by-flit basis.

2.3.3 Operation

Figure 2.8 illustrates the hardware required to support virtual channel flow control
on one physical channel. The transmitting node (node A) contains a status register
for each virtnal channel that contains the state of the lane buffer on the receiving
node (node B). This state information includes: bit to indicate if the lane is free,
a count of the number of free flit buffers in the lane, and optionally the priority of
message occupying the lane. Node B contains a lane buffer and a status register for
each virtual channel. The status maintained on node B includes input and output
pointers for each lane buffers and the state of channel: free, waiting (to be assigned

an output), and active.

Lane assignment for physical channel P is performed by node A. When a mes-
sage arrives in an input buffer on node A (not shown), it is assigned a particular
output channel based on its destination, the status of the output channels, and the
routing algorithm in use. The flow-control logic then assigns this message to any
free lane of the selected channel. If all lanes are in use, the message is blocked in
the waiting state until a lane is available. Maintaining lane state information on
the transmitting end of the channel allows lane assignment to be performed on a
single node. No additional inter node communication is required to maintain this

information as it is already required for flit-level flow control.
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Figure 2.8: Logic associated with one physical channel P to support virtual channel

flow control [16]

Once a lane is assigned to a packet, flit-level flow control is used to advance
the message across the switch and physical channel. To advance from an input
buffer on the node A to an input buffer on node B, a flit must gain access to 1)
a path through the switch to reach the output of the node A, and 2) the physical
channel to reach the input of node B. Typically entire switch is nonblocking, and
thus always available, or a few optional flit buffers are provided at the output of

node A so that switch and channel resources do not have to allocated simultaneously.

When the last flit of the message (the tail flit) leaves a node the lane assigned

to that message is deallocated and may be reassigned to another message.

2.3.4 Physical channel allocation

Flit-level flow control across the physical channel involves allocating channel band-

width among lanes that 1) have a flit ready to transmit and 2) have space for this
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flit at the receiving end. Any arbitration algorithm can be used to allocate this
resource including random, round-robin. or priority. For each physical channel, the
arbitration algorithm is implemented as combinatorial logic that operates on the
contents of the status registers and picks the highest priority lane that has space
available at the receiving end. For random and round-robin arbitration schemes,
priority information is generated by logic based on the lane’s position and the pre-
vious state. For priority based schemes, priority information is stored in the status

register for each lane.

2.4 Deterministic Routing

Another way to design a deadlock-free routing algorithm for a wormhole-routed
network is to ensure that cycles are avoided in the channel dependence graph. This
can be achieved by assigning each channel a unique number and allocating channels
to messages in strictly ascending (or descending) order [17]. If the behavior of
the algorithm is independent of current network conditions, it is deterministic. The

e-cube routing algorithm is an example for this class of routing algorithms.

2.4.1 e-cube routing

In e-cube routing algorithm, messages are routed in order of dimension, most sig-
nificant dimension first. In each dimension, 1, a message is routed in that dimension
until it reaches a node whose subscript matches the destination address in ith posi-
tion. The physical channel is divided into an upper and lower virtual channel. The
message is routed on the high channel if the ith digit of the destination address is
greater than the ith digit of the present node’s address. Otherwise, the message is
routed on the low channel. As this routing algorithm routes messages in order of

descending subscripts, it is deadlock free.

Formally, the definition of routing function Ry nc for k-ary n-cubes with C chan-

nels is given below:
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Figure 2.9: Example for the e-cube routing on a 4-mesh

Ry ~nc(cdor. 1)

= cdl(z - k9) if(dig(z,d) < dig(j,d))and(dig(z,d) # 0),

= cd0(z - k%) if(dig(z,d) > dig(j.d))or(dig(z,d) = 0),

= cil(z = k) if(Vk > i,dig(z. k) = dig(j. k))and(dig(n. 1) # dig(j. {)).

Where dig (x.d) extracts the dth digit of x, and k is the radix of the cube. The

subtraction. r — k%, decrements the dth digit of x modulo k.

The e-cube routing is illustrated in Figure 2.9. For a message to go from (0,0) to

2,2), the message moves in X-axis direction until it reaches (2,0} and then moves

on Y-axis.

2.5 Adaptive Routing

The main disadvantage of the deterministic routing is that it cannot respond to
dynamic network conditions such as congestion. An adaptive routing algorithm for
a wormhole-routed network, however, must ensure that it is deadlock free. To do
so often requires the use of additional channels; in particular, virtual channels. The

virtual channels may share one or more physical channels. *-Channels algorithm is
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an example of this class.

2.5.1 *-channels

*_channels is a fully adaptive, deadlock and livelock free algorithm. It requires a
moderate amount of resources in the routing nodes [11]. This algorithm is applica-

ble to n-dimensional tori. It can work for messages of unknown size.

*.channels requires 5 virtual channels per bidirectional link of an n-dimensional
tori, a number that does not depend on the size or dimension of the network. It
allows each message to choose adaptively, step by step, among ell the minimal paths
that take it to its destination. No minimal path is discarded in order to obtain

freedom from deadlock.

A simplified routing node model for a 2-dimensional tori is depicted in Figure

2.10. The central idea in the *-channels is simple. As shown in the figure there are
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basically two types of virtual channels, as will be explained below: star channels,
and non-star channels. Messages will move through the star channels when follow-
ing dimension-order oblivious routing (or e-cube routing). The non-star channels
will be used when taking any of the transitions that would not be allowed by the
e-cube routing algorithm, thus obtaining full adaptivity while preserving freedom

from deadlock. A more detailed description of the algorithm follows.

Counsider the direct link:((Zn_1,---. i, .--Zo). (Tn-1, ... (Ti+1)mod k. .... 20)). This
link will have three virtual channels associated with it:
1)€; £ 0.(znmnylzit 1)mod ky..z0)
2) €] -1 (znso (zit1)mod k..z0)?
3)Ci, s (znor, o fzit1)mod E,....z0)s
Analogously, link: ((zn_1, ..., T3, ---Zo)s (Tn-1. ... (Ti11)mod k, ..., Tq)) have three vir-
tual channels associated:

4)Ci,—,0,(rn_1,...,(:;—1)mod k,...,x0)*

5)Cl — 1 (2norr(zil)mod k.....z0)?

6)’«‘1’,—,(:,,_1,....(zg—l)mod k,....To):
The channels 1,2,4,5 are called star channels.

In both cases, the star channels will be used for dimension-order routing: mes-
sages will move though star channels with prefix ¢.4-,0 while correcting dimension
X; following orientation X" before taking a wrap-around link along dimension Xj;.
After taking a wrap-around link along dimension X; following orientation X, mes-

sages will move though star channels with prefix i,+,1 when correcting dimension .X;.

Therefore, a message will be allowed to correct any of the dimensions that need
correction through non-star channels, A message will be allowed to enter a star chan-
nel corresponding to dimension X; only if X; is the most significant dimension the

message needs to correct, and only if the star channel corresponds to the message’s
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Figure 2.11: Example of the *-Channel routing on a 4-Mesh

having taken a wrap-around along that dimension or not. *-Channel is illustrated

in Figure 2.11 for a message moving from (0,0) to (2.2).

2.5.2 Interaction between virtual flow control and adaptive

routing

Virtual channel flow control (VCFC) and adaptive routing are two concepts proposed
to improve the performance of multicomputer networks [19]. Employing adaptive
routing with a minimal channel topology (no extra virtual channels) can result in
a poor performance for uniform and some non-uniform traffic patters. Also, using
virtual channel flow control alone (using virtual channels to provide extra lanes, but
not allow adaptivity in routing) can severely degrade performance for certain traffic
patterns. It is also observed that adaptivity, partial or full, might not always result
in a better performance [12]. But, when virtual channel fiow control is combined
with adaptivity in routing, these effects are mitigated and a good performance is
obtained. Thus, there is lot of interaction between virtual channel flow control
and adaptivity. Adaptive algorithms perform well once VCFC is employed and
VCFC gives good benefits with adaptive algorithms. Hence, both adaptive routing
and VCFC are indeed beneficial and their real benefit can be felt when they are

employed together.
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Figure 2.12: Example of a WH router construction from a SAF router [14]

2.6 Construction of New WH Algorithms

The work on designing wormhole (WH) routing algorithms is done largely inde-
pendent of the results developed for Store-and-forward (SAF) switching computer
networks. Recently, it has been shown [14] by Boppana and Chalasani that a class of
SAF routing algorithms can also be used, with appropriate modifications, for WH
routing. They gave a sufficient condition for deadlock free routing by these WH
algorithms and also provided a sufficient condition for sharing flit buffers among
multiple channels without creating deadlock. NHop is one of the algorithms devel-

oped using this technique.

Figure 2.12 illustrates the construction of WH node from SAF node. In the
SAF algorithms based on buffer reservations, each message is given a class, and a
message of class i occupies a buffer of class i. A message takes hops from one buffer
to another until it occupies a buffer of its destination node, at which point it awaits
consumption. Then, the routing relation, S, for a SAF algorithm is from b x N\ to
b, where b is number of buffers per node and N is number of nodes in the network.

Hops allowed are given by the elements of S. The element (b;, y, b2) of S represents
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a hop allowed from buffer 4; to b, by a message destined to y.

The process of designing a WH algorithm, W, from a SAF algorithm. S, consists
of two steps: specification of ¢, the set of virtual channels. and W, the routing

relation from ¢ x NV to c.

1. Let by, ..., b, be the classes of buffers occupied by messages before reaching
their destinations in the SAF algorithm. Then, for the WH algorithm, on
each physical channel in the network, virtual chacnels of classes cy.....c,, are

provided. Figure 2.12 shows this for m = 2.

o

Let (b, y, b2) belongs to S, a hop from buffers b, to b, by a message destined to
y in the SAF routing. Then, (¢!, v 1), (m1.y, c'!) belong to W. where class(b;)
= class(c;) , channel{c; )=channel(b;, &), ¢! is any virtual channel simulated
for any buffer and physical channel combination used by the message to reach
by, and c!! is any virtual channel simulated for any buffer and physical channel
combination used by the message after reaching b. (see Figure 2.13). If (b;.
y, b2) is the first hop of the message in the SAF routing. then ¢! is inj. the
injection channel of the node of b,. If (b,.y, b2) is the last hop of the message

in the SAF routing, then c!! is cons, the consumption channel of the node of

bs.

Informally, if the SAF algorithm specifies that a message should occupy a buffer
of class b; at node z and use a channel from a set of physical channels, I, to complete
the next hop, the corresponding WH algorithm specifies that the message at z should
take the next hop using a virtual channel of class ¢; on any of the physical channels

in [. Negative hop algorithms is an example of this category.

2.7 The Negative-Hop Algorithm

In hop schemes, the class of the message at any time is a function of the hops it has

taken up to that point. Depending on the function used, various hop schemes can
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Figure 2.13: Illustration of hops in a WH algorithm constructed from a SAF

algorithm

be designed. For many networks, the NHop may require too many virtual channels
[12]. The channel requirements can be reduced using improved negative hop schemes
(INHop), which are based on the negative hop scheme. The basic technique of INHop

algorithm is discussed next.

2.7.1 The SAF version

The network is partitioned such that there are no cycles in any partition, and each
partition is given a unique number. Now a negative hop is a hop that takes a
message from a node in a higher numbered partition to a node in a lower numbered
partition. It has been proved that if Hy is the maximum number of negative hops
taken by any message under the improved negative-hop scheme, then Hy + 2 buffers
are enough for deadlock-free routing [14|. One of these Hy +2 buffers is required to
handle direct deadlocks that exist when messages between neighbors in the partition

are exchanged.

2.7.2 The WH version

A message can use any hop that takes it closer to its destination. A message that
has taken i negative hops uses a ¢; virtual channel for its next hop. Direct deadlocks

cannot occur with wormbhole switching, since messages exchanged between neighbors
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use distinct physical channels. Direct deadlocks occur with SAF switching because
of the centralized buffer pool. Therefore, the NHop WH algorithm require at most
1+ (ﬂ%'l—)) virtual channels, where A is the maximum number of inter-partition

hops a message can take and C'is the number of distinct partitions.

2.7.3 Application to tori

Coloring Scheme

In order to implement the NHop it is necessary to give a proper coloring scheme.
If the node set of a (k,n)-torus, where n is the dimension of the torus, and k is the
number nodes in each dimension, is partitioned into two subsets: Py, P;. The subset

to which a node r = (zn-1,.... Zo) belongs is determined using the following rule:
zeP, if (X074 ) mod 2 = 0 or zeP, otherwise.

For even k the underlying graph of the (k,n)-torus is bipartite, and the partition-
ing colors the graph. And the maximum number of negative hops in a (kn)-torus
with even k is n(k/2). For odd k, the (kn)-torus is not a bipartite graph and the
partitioning does not color the graph. To solve this problem, assume that for every
pair of the nodes a and b connected by a wraparound link, there is an imaginary
node ¢ between a and b on the wraparound link; further, assume that this imag-
inary node belongs to the subset other than that of a and 4. Thus a hop on the
wraparound link from a to b passes from a to the imaginary node c and then from ¢
to b. One of these hops is a negative hop. The net effect is to increase the maximum

number of hops in 2 dimension by 1, to [k/2]. for odd &.

Algorithm

(Initially, current-class =0 and current-host =source of the message.)
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if (current-host # destination) then
{
1. If color of the current-host is 0 or colors of the previous-host and current-host
match, then increment current-class by one.
2. Select any neighbor node that is on a shortest path to destination as the next-
host.
3. Reserve a virtual channel of current class.
4. If the virtual channel is available, set previous-host ¢ current-host, current-host

+ next-host, and route the message; otherwise. go to step 2.

}

else Consume the message.

When a message is generated, the total number of negative hops taken is set to
zero, and the current host is set to the source node. The pseudo-code given above
describes how a message is routed as per the negative-hop scheme. A message. when
it moves from a node of color 0 to a node of color 1. reserves a virtual channel of the
same class it reserved in the previous hop; otherwise, it reserves a virtual channel
on a class higher than that it reserved in the previous hop. The class of a message is
also incremented if it takes a hop between nodes of the same color. For the partition

that is described, this can happen only for hops on the wraparound links in odd

radix (k,n)-tori.

The NHop is illustrated in Figure 2.14 for a message from (2,2) to (0,0) in a
4 x 4 uni-directional link tori. The second and fourth hops are negative hops. but

the message class is incremented before making those hops.

2.7.4 NHop with class ranges

The NHop algorithm can be improved by giving more choice of virtual channels for

messages in higher classes (INHop). For example, a message with virtual channel
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Figure 2.14: Example of the Nhop routing in a 4-mesh

class ¢ > 0 may use any virtual channel of classes 0,...,¢&. The actual implementation
is as follows. If a message of class 2 does not find a virtual channel of class 2 in the
path to its next host, the message selects any free virtual channel in classes 0 and
1 that is in its path, relabels it as 2 and uses it. A virtual channel relabeled by a
message of higher class number returns to its original class after the message has
relinquished it. A blocked message, however, can only wait for a virtual channel of

its class.

Deadlocks cannot occur, since each blocked message waits for virtual channels
as per the original algorithm. Starvation may be avoided by ensuring that a virtual
channel is relabeled to a higher class only when there are no messages of its class
waiting for it. For example if a message is eligible for class ¢ virtual channel and
there is no virtual channel of that class available then the message can take any
virtual channel of class 0 to it i. The precondition to acquire such lower class (say
p) is possible only if there is no other message waiting for the virtual channel of class
p. Using ranges of classes to select virtual channels gives priority to messages that
have already used many virtual channels. In the remaining part of the thesis where

ever NHop is referred, it should be interpreted as the improved NHop, INHop.
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Figure 2.15: The architecture of the nCUBE 2S processor [20]

2.8 nCUBE 2S: An example system

The nCUBE a processor, designed specifically for parallel processing. balances com-
putation with communication. The nCUBE’s custom VLSI processor, the nCUBE
2S processor, realizes integrates communication channels with its processing facili-

ties [20].

The processor design is shown in Figure 2.15. Each processor includes 14 bidi-
rectional communication channels: 13 for the interprocessor network - and one for
[/O. When multiple nCUBE 2S processors are configured in a hypercube network,
the processor architecture provides unmatched communication bandwidth. And be-
cause each processor includes its own communication facilities, adding processors
to a system increases computational speed, communication bandwidth, and I/O

bandwidth.
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2.8.1 Hardware implementation

The nCUBE 2S processor’s Network Communication Unit (NCU) has been designed
to provide full communication support for hypercube parallel processing systems.
Communication between processors is accomplished via messages. The messages are
switched between processors using wormhole routing. The transmission of a mes-
sage consists of three stages: Path Creation, Data Transmission. and Path Removal.

Each stage is performed in turn by each processor in the message path.

Messages travel though message buffers in each of the three states of transmis-
sion. First, the message is copied to the message buffer, which is defined as part
of the memory when the program is started. Second, the message is transferred
though the network with a speed of 2.75 MB/s. While the message is transferred
the sending processor continues its work: sending of the message is asynchronous.
Third, the message arrives in the destination's message buffer; from here it can be
copied to the processor’'s memory with the nread command. The nread is blocking.
After calling nread, the destination processor waits until the message arrives. By
allowing processors to send or receive a message and then immediately return to
computation, the nCUBE processor design allows communication and computation
to occur simultaneously. In effect, an algorithm can hide its communication. Inter-

processor communication is illustration in Figure 2.16.

A message can be visualized as a chain of packets (or flits) being relayed from
processor to processor. The first packet (or header) contains an address that the
Routing Layer uses to determine which port or ports to use in creating the next link
or links in the path. The Routing Layer also uses the address to determine whether
to notify the CPU of a message arrival. Complex tree-structured and multi-node

paths can be created using broadcasting and forwarding techniques.

The channels the address packet passes through as it moves from processor to

processor are automatically reserved for the data packets that follow the address
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Figure 2.16: The nCUBE communication is characterized by an asynchronous

write and blocking read [20]

packet. The NCU is able to buffer up to two packets (buffer depth) on each in-
coming channel. The NCU will request another packet as soon as it has space for
it, until an End of Transmission (EOT) packet {or tail) passes through the chan-
nel. The EOT packet causes the processor to release the channel for use by other
messages. A short message of a few packets could be stored entirely within channel
buffers of intermediate processors in the path, prior to the address packet reaching

the destination processor.

Any transmission errors detected by the intermediate processors are encoded in
the packets as they pass through. The transmission errors are then detected by the

destination processor.

The architecture of the NCU has three layers: the Interconnect Layer, the Rout-
ing Layer, and the Message layer. The Interconnect Layer provides the hardware

required for establishing physical communication links. The Routing Layer provides
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the arbitration and switching logic for creating, maintaining. and removing commu-
nication paths between processors in the network. The Message Layer provides the

services for reliable and efficient point-to-point data transfer between processors.

2.8.2 Software implementation

The application algorithms that run on each nCUBE processing node are identical
to those that run on sequential machines. To achieve efficiency, however, some parts
of the programs that implement these algorithms need adaptation to the parallel
environment. Typically, it takes care of two steps:

-partitioning the data and/or code among the nCUBE processors:

-communication between nCUBE processors and with the host.

Before processing begins, code and data need to be down-loaded to the local
memory in the processing nodes. During processing, partial results obtained at the
boundaries of the partitioned data or code in each node may need to be communi-

cated to neighboring nodes.

In summary, the nCUBE massively parallel computers can include up to 8192
nCUBE 2S processors. The nCUBE’s communication software takes advantage of
the integrated design, by supporting asynchrouns reads and writes and allowing
communication and computation to overlap. nCUBE software also includes powerful
tools to profile communication and detect any load imbalances. The ability of this
hardware and software system to achieve high performance has been demonstrated

at various nCUBE installations [21].

2.8.3 Applications

nCUBE’s parallelization tools save programmers the trouble of studying network

topologies, calculating data distribution schemes, and working with long procedures



Chapter 2. Background 41

of low-level routines. A program can simply call nCUBE parallelization or decom-
position routine, and routine automates grid decomposition and data distribution
and ensures that the program will be executable on hypercubes of varying sizes.
The port of important applications are Discover, Fire, LS-DYNA3D and Oracle
database - already in use at major banks [22] - to the nCUBE platform reflects the
success of nCUBE’s communication model, and demonstrates the adaptability of
nCUBE hardware and software to a wide range of applications, from computational

chemistry codes to commercial databases.
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Buffer Management

In multicomputer networks, each node in the network communicates with other node
in the network using messages. Due to conflicts that arise when several messages
simultaneously require the use of the same link, buffering is required in each node.
The strategy for managing usage of these buffers can have a significant effect on

performance [1].

A scheme is necessary to allocate a node’s buffers among the virtual circuits us-
ing the node. One simple solution gives each channel on each link a separate buffer.
This is inefficient, however, because much of the buffer space will be unused most
of the time. By allowing several channels to share buffers, fluctuations in the need

for buffer space can be averaged over a large number of communication paths.

There are three common solutions to this situation [1]: 1) direct (dedicated), 2)
set-associative and 3) fully associative (centralized). These three schemes offer an
increased degree of buffer sharing and increased channel utilization but at the cost of
increased complexity in the control circuitry. They are distinguished by restrictions
on the placement of each channel’s messages. In direct {or dedicated) scheme there
is minimal sharing of buffers and each channel has a set of dedicated buffers. i.e., its
own FIFO queue. The set-associative scheme has moderate sharing of buffers, and

allows each channel to use a larger set of buffers, but the channel is no longer given
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the sole access to them. This scheme could be implemented by letting all channels
of a single port share a pool of buffers dedicated to this port. In fully-associative
(or centralized) scheme there is maximal sharing of buffers and each node has a

centralized pool of buffers that all channels share.

The full associative or centralized scheme offers the most sharing at the cost
of additional control circuitry. However. this scheme could also suffer from buffer
hogging. Buffer hogging occurs when one output port becomes congested and
uses a disproportionately large portion of the buffer pool, impeding traffic on other
ports. Under these circumstances, better performance is obtained if the degree of

buffer sharing is limited, and each port is limited to some maximum number buffers.

3.1 Dynamic Assignment of Buffers

Buffer assignment problem does not exists in dedicated buffers scheme, it is only
in the case of centralized organizations that it comes into picture. Unlike in the
dedicated buffers organization, in the centralized organization buffers are dynami-
cally assigned to virtual channels on demand. So, a mechanism is required to keep
track of the buffer assignment. In this section a solution for this management is
discussed. This strategy assumes that number of messages waiting to use a given

output channel can be larger than one.

The buffers waiting to be forwarded on an output channel are “chained” into a
linked list for that channel. Buffer chaining may also be used to implement variable
buffers in datagram networks. When a message (or flit) arrives, it is placed at the
end of the linked list corresponding to the output channel on which the message has
to be forwarded. It is removed from the list after it has been successfully transmit-
ted to the next node. The linked lists are managed as FIFO queue to ensure that

messages are forwarded in the same order in which they arrived.
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Figure 3.1: Buffer management circuitry [1j

A simple design where an output channel can use at most one buffer at a time is
shown in Figure 3.1. The ¢x p-word RAM maps output channels to buffer addresses.
Word ¢ holds the address of the buffer containing a message for channel 7. The list
of free buffers is maintained by a b -bit latch, called the “free buffer latch”. The free
buffer latch is implemented as a bit-addressable latch, i.e., a memory device that is
written as a RAM (one bit at a time), but read as latch (all bits in parallel). Each

bit indicates the status of a buffer: free (1) or in use (0).

When a new message arrives, the buffer management circuitry must perform two
operations, assuming the flow control circuitry has first established that the message
can be accepted:

1. find and allocate a free buffer, and
2. record the location of the buffer so that the message can be found when it is time

to forward it.
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The address of a free buffer is determined by a priority encoder attached to the
free buffer latch. The resulting address is sent to the memory module. buffer pool.
This address is also used to clear the corresponding bit in the buffer latch, effectively
allocating the buffer and completing the first operation. The second operation is
accomplished by writing the address of the selected buffer into the channel-to-buffer
RAM at the memory location corresponding to the output channel responsible for

forwarding the message. The latter is obtained from translation table.

Sending a message on output channel 7 also requires two operation:
1. locate the buffer holding the message for channel Z, and

2. release the buffer.

The first task is accomplished by reading address i of channel-to-buffer RAM.
The resulting address is used to set the corresponding bit in the free buffer latch,
marking the buffer free to be used by other message. thus accomplishing the second

task.

3.2 Amount of Buffer Space

Buffers increase the total bandwidth provided by the network through pipelining
and by “softening” the impact of statistical fluctuations in the traffic distribution.
However, a successively smaller improvement in performance is obtained with each
additional buffer that is added. Intuitively, the node need not provide buffer space
beyond that which is necessary to keep output links busy when there is traffic re-

quiring use of the link.

In extreme cases, buffer deadlock will result. Buffer deadlock occurs when mes-
sage traffic halts because two or more nodes have exhausted all available buffer space.
A cycle is formed where each node in the cycle cannot forward a message because

no buffers are available to receive the message, and no buffers can be freed because



Chapter 3. Buffer Management 46

message cannot be forwarded. Thus, sufficient buffer space must be provided to:

reduce the probability of buffer deadlock. and ensure good performance.

3.2.1 Deadlock considerations

Buffer deadlock can be prevented if enough buffer space is provided in each node. A
brute force solution is to provide each virtual channel with its own buffer (dedicated
buffers). Because each circuit is allocated a buffer in each node it passes through,
traffic on a circuit cannot be blocked by traffic on other circuits, and buffer dead-
lock cannot occur. Providing a separate buffer on each chanrel is wasteful, however,

because each component must provide as many buffers as there are channels.

Similar performance can be achieved if many channels share a much smaller pool
of buffers. Several approaches have been proposed that avoid deadlocks in store-
and-forward networks. For example, assuming each node has at least LV},,, buffers,
where LV/,,,; is the maximum number of hops traversed by any virtual circuit. The
node’s buffer pool is partitioned into LV,,,. disjoint pools or levels. A register is
associated with each circuit passing through the node indicating the number with
7 hops remaining before the final destination is reached. A message arriving on a

circuit with ¢ hops remaining can only be placed in a level ¢ buffer.

Deadlock is avoided because all messages in the network can be delivered to their
respective destinations, and all buffers holding messages can therefore be released.
All level 1 buffers can be released because the messages they hold can immediately
be forwarded to their final destinations. Because level 1 buffers are released, level 2
buffers can also be released by first emptying the level 1 buffers and forwarding the
level 2 messages to these level 1 buffers, when the message may leave the network.
Applying this argument recursively, it is easy to see that all messages in the network

can be forwarded to their respective destinations.
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The central disadvantage of this scheme is that large networks require more
buffers than smaller ones, so the switch must provide enough buffers to accommodate
the largest possible network. This may require an excessively large amount of buffer
space. In addition, if traffic is highly localized, many buffers are wasted because

those reserved for higher hop counts are never used.

3.2.2 Performance considerations

Each switching node must provide sufficient buffer space to maintain a steady flow
of traffic. Otherwise, communication bandwidth will be wasted. Studies of multi
stage switching network indicate that little performance improvement arises beyond
three buffers per node [23]. However . as the studies of the previous section indicate,
three buffers are not sufficient to avoid many deadlock scenarios in the single stage
networks discussed here. Now, the main questions are: how many buffers should
each component provide to achieve good performance, and how many buffers should

each virtual circuit be allowed to use at one time.

The appropriate amount of buffer space depends on characteristics of the traffic
distribution. Buffering and flow control are of little consequence when the network
is lightly loaded. In most heavily loaded network, a few heavily loaded links become
saturated. These links will limit the overall performance of the system. Under these
circumstances, traffic will back up on circuits “upstream,” i.e., leading up to the
bottleneck area, which circuits “downstream” will be starved waiting for messages

to get past the bottleneck.

Studies have indicated that [1] network with a certain buffers per node (for
example 16) yield same performance as networks with an infinite amount of buffer
space. Restricting virtual circuits to using at most one buffer at a time results in

no significant degradation in performance.
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3.3 Buffer Requirements of WH algorithms for

Tor1

3.3.1 e-cube and *-channel

The e-Cube routing algorithm requires two classes of virtual channels one for upper
class and another for lower class. With dedicated buffer organization this algorithm
requires 4n buffers for nD torus (8 for (16,2) torus i.e., 16 nodes in each of the 2
dimensions). The *-channel algorithm requires three classes of virtual channels and
is based on the e-cube algorithm: two virtual charnels are used to avoid deadlocks
and an extra class is used to provide adaptive routing. With dedicated buffers.
this algorithm requires a minimum of 6n buffers for nD torus (12 for (16.2)-torus).
It is possible to reduce the requirement, by providing dedicated flit buffers for the
e-cube channels and centralized flit buffers for adaptive channels. \With as few as
4n+1 buffers (9 for (16,2)-torus), fully-adaptive routing can be provided by this

algorithm.

3.3.2 NHop

A (k,n)-torus, n dimensional torus with & nodes in each dimension, has a maximum
of n[k/2] hops. Since the graph of (k,n)-mesh is bipartite, for both odd and even
k, the total hops is r(k-1). Using C=2 and depending on the type of the network,
we obtain that the number of virtual channels needed is at most 1 + |n{k/2]/2],
for a (k,n)-torus (7 for (8,3)-torus), and 1 + [n(k — 1)/2] for a (k,n)-mesh (12 for
(8,3)-mesh).

For k-ary n-cubes, NHhop scheme requires more virtual channels than the e-
cube and *-channel. But hop schemes provide a deadlock free routing even when
flit buffers are shared among multiple channels. This ability of hop schemes make
them competitive for many practical network sizes. It has been shown that NHop

performs better than e-cube and *-channel schemes for tori.
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3.4 Relative Performance of WH algorithms for

Tori

With centralized buffer organization, NHop provides, for many configurations of k-
ary n-cube networks, fully-adaptive routing while requiring fewer buffers than the
e-cube. For example, for (8,3)-torus used in a 512 node Cray T3D, the Nhop re-
quires seven flit buffers for fully adaptive routing, while the e-cube requires 12 flit
buffers. For 8 x 16 x 8 torus (the maximum configuration for Cray T3D). the NHop
requires nine buffers, while e-cube requires 12 buffers. Because of longer diameters
and simpler routing with e-cube meshes, the NHop requires more buffers than the

e-cube in meshes, the NHop requires more buffers than the e-cube, unless & < 3.

The performance evaluation given in paper [14] for three algorithms, NHop,
e-cube, and *-channel indicates that the NHop performs better than the e-cube and
*_channel schemes for tori. Based on the buffer cost and throughput evaluations,
the NHop has advantage over previously proposed wormhole routing algorithms for
torus networks. This is the main reason why the NHop was selected for doing further

research in the buffer management in this thesis.

3.5 Buffer Organizations

The main focus of this thesis is to study the performance of the network using
different buffer organization. Three buffer organizations are chosen for conducting

this study. These three buffer organizations are described in detail in this section.

3.5.1 Dedicated buffer organization

In this organization (shown in Figure 3.2) if m is the number of flit buffers used, p
the number of incoming physical channels to a router, and v the number of virtual

channels per physical channel then m = pv. In other words, each virtual channel



Chapter 3. Buffer Management 50

From Injection To Consumption

P [n Physical

e O
Channels .

Out Physical
Channels

il

—1__| MUX

m Flit buffers

Figure 3.2: Dedicated buffers organization

leading into a router has its own flit buffer. No delay is suffered by the message in

order to acquire the buffer.

Router Delay

For dedicated buffers organization, the major components of delay are flow control
from incoming physical channels to flit buffers, crossbar delay from flit buffers to
the outputs of central crossbar, and the virtual channel controller delay from the
outputs of the crossbar to outgoing physical channels. For header flit, header decode

and update and channel selection are the additional costs.

3.5.2 Centralized buffer organization

In this organization (shown in Fig.3.3)all the buffers are shared by all the virtual
channels. Each buffer is assigned a class. The virtual channel goes through a cross-
bar before accessing its exclusive buffer. Once a flit buffer is allocated to a virtual

channel, it remains associated with that virtual channel until it is released.
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The assignment of buffers to a particular class can be done in two different ways:

1. Uniform: all the classes are assigned equal number of buffers i.e., all the buffers

of a node are divided equally among the classes used.

N

such as locality of the messages.

Router Delay

Non-Uniform: Buffers are assigned to a particular class based on some criteria,

The header decode and update and channel selection are similar for both dedicated

and centralized organizations. The flow control in the centralized organization is

done in Crossbar 1. So, when a header flit arrives, say from Node A to Node B, it is

allocated a central buffer by establishing a connection through Crossbar 1 of Node

B or is refused connection. The header is retained by Node A for a few cycles, by

which time rejection of the header, if occurred, will be knowz.
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Once the connection is established, the allocated central flit buffer acts as a dedi-
cated flit buffer to that virtual channel, and the transit of data flits is similar to that
of dedicated flit buffer implementation. Therefore, a multiplexer between the inputs
and buffers in the logical organization is set once at the time of setting up the path.
An input channel may be allocated multiple flit buffers, one for each active virtual
channel on the input channel. Since a cross bar naturally provides the multi-cast
communication, this can be accomplished easily by request accepted and removing

one such connection for each request completed.

The amount of switching done by Crossbar 2 is same as the amount of switching
done by the multiplexers at the output physical channels shown dedicated buffers
organization Figure 3.2. This crossbar changes its settings on flit-by-flit basis, much

the same way the multiplexer in Figure 3.2 change their settings.

Dedicated verses centralized. A connection from an input virtual chan-
nel to an output virtual channel takes more time, and data flits go through two
smaller crossbars instead of one large crossbar with centralized organization. But
the centralized organization with buffers between the crossbars lends itself easily to
pipelining, thereby avoiding increase in clock cycle time. Since centralized organi-
zation has longer data path, the router delay for a message increases compared to

dedicated organization, when the number of buffers is kept the same.

3.5.3 Hybrid buffer organization

The dedicated and centralized buffer organizations have their advantages and dis-
advantages. The hybrid buffer organization proposed here inherits the merits of the
two organizations and it is described next.

In this organization (shown in Figure 3.4) each channel is assigned a particular
number of dedicated buffers. So, in order to use these buffers the virtual channels
need not go through the crossbar. The remaining buffers are organized centrally . If

p is the number of physical channels per node, [ is the number of dedicated buffers
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assigned to each physical channel then the remaining (b — pl) buffers are maintained

as a central pool of buffers.

Router Delay

The header decode and update and channel section are same as other two organi-

zations. The flow control is done partly as in the dedicated buffer organization and

partly as in the centralized buffer organization, depending on the nature of the vir-

tual channel (dedicated or centralized). Messages which could get a dedicated buffer

virtual channel suffer no extra delay at the router. If message is taking centralized

buffer virtual channel, it suffers more delay as explained in the centralized buffer

organization.
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3.6 Summary

In summary, dedicated, hybrid, and centralized schemes offer an increased degree
of buffer sharing and increased channel utilization but at the cost of increased com-
plexity in the control circuitry. The results presented in chapter 5 indicate that
dedicated buffer organization has a better performance over centralized in uniform
traffic pattern. On the other hand, centralized out performs dedicated in hot-spot
traffic. In reality the traffic in a network dynamically changes from uniform to oc-
casional hot-spots. The intuition is that the hybrid buffer organization can handle
this kind of traffic more efficiently by shifting itself to centralized in hot-spot traffic
and towards dedicated in uniform traffic. The following chapters give the experi-

mental results of the study conducted to analyze the performance of hybrid buffer

organization.
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System Model

To compare the performance of three different buffer organizations: Centralized,
Dedicated and Hybrid for NHop routing algorithm an experimental system is sim-

ulated with following features:

4.1 Simulator

A continuous time and discrete event simulator has been developed to perform the
desired study on the interconnection network. In this system the time parameter is
continuous and events occur at discrete points in time t,. ts, ... where (t;.1 — ¢;)
is not a constant. The simulator has the flexibility to support various topologies.

routing algorithms and traffic patterns.

Some of the system variables that describe the state of the system: network size,
network topology, number of virtual channels per physical channel, number classes
of virtual channels, total number of buffers per router, type of the buffer organiza-

tion, average path length, average latency, and average utilization.

Some of the events that change the state of the system are: initializing the
system, injection and consumption of messages, scheduling messages for the trans-

mission on flit by flit basis, transmitting the flits. avoiding starvation of the worms.
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incrementing the clock and system variables, gathering statistics, and at the end of

the simulation period analvzing the collected data and producing the report.

A singly linked list of events is maintained. The events are kept in this list in the
increasing order of their time. The clock cycle time is same for all the routers. The
clock is incremented from one event time to the next event time. If the header flit
is accessing a centralized buffer for the transmission then it takes one clock cycle to
setup the connection and one clock cycle for the transmission. all other flits (body)

take only one clock cycle for transmission.

4.2 Network Topology

The simulations are run on a (16,2)-torus. Torus is a special case k-arv n-cube family
with n = 2. This is a symmetric network in that there exists a homomorphism that
maps anyv node of the graph representing the network graph into any other node. It
has A" nodes with a diameter of 2" — 1. Torus is commonly used in multicomputer
systems (ex: Cray T3D. T3E). Because it is symmetric network as hypercube, and
it supports wider channels as mesh. And, most multicomputer network topologies

used in wormhole-routed systems are low-dimensional meshes and hypercubes.

Each channel is represented by a pair of (uni-directional) physical channels. The
number of virtual channels per physical channel for Nhop centralized and hybrid
versions is 18. In the case of Nhop dedicated version 9 virtual channels are mapped
onto a physical link. The virtual channels of Nhop algorithm are divided uniformly
among 9 different classes. Multiple virtual channels mapped to a physical channel

share its bandwidth in time-multiplexed manner.
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4.3 Workloads Model

In this section the message generation and traffic patters used in the system are

described.

4.3.1 Message generation

A processor generates messages with a mean message generation rate of A. For most
experiments, the message inter-arrival times are exponentialiy distributed. However,
we have also ued a hyper-exponential distributed inter-message generation time in
order to study its impact on the performance. The messages have fixed length of
20 flits. For example, 20 flit messages could be used for transmitting four 64-bit
words together with header, checksum and other information on 16-bits wide phys-
ical channels such as the ones used in Cray T3D. However. performance results for
workload that consists of both long and short messages are also given in the next

chapter.

Hyper-exponential message generation and message length. For a given
mean message generation rate or mean message length i.e., A or L. the nodes can
generate messages in hyper-exponential distribution. In hyper-exponential distribu-
tion nodes can chose to generate messages in any one of the two different stages (5,
or S2). Where S, is the mean A or L of stage 1, a is the selection probability of
this stage, and S» is the mean A or L of state 2. The values of S; and S» can be

computed as follows:

Si=S5—-S01-a) (/o)

S = S+ Sa (\/5=%)

where Sis the mean Aor L and Cis the desired coefficient of variation. The value
of o should satisfy the following relationship: =2 > C*

In the simulations experiments conducted for this study a = 0.95 and C=4.
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4.3.2 'Traffic patterns
Uniform

Uniform traffic is widely used in simulation studies and serves as a benchmark
traffic pattern. In this traffic pattern a node sends messages to any other node
in the network with an equal probability. Uniform traffic could be representative
of the traffic generated in massively parallel computations in which array data are

distributed among the nodes using hashing techniques.

Hot-spot

More realistically, the traffic pattern tends to be random coupled with some hot-spot
type traffic. In hot-spot traffic a single node (hot node) receives a specified fraction

of the total messages generated in the network.

More specifically, given that N is the total number of nodes in the network, m is
the number of messages generated per node per a clock cycle (0 < m <1), his the
fraction of messages directed at the hot-spot, each node generates messages directed

to hot-spot at the total rate of mh. The effective number of messages to hot-spot

are m(l — h) + mhn.

4.4 Traffic Sampling

For better randomness separate sequence of random numbers per node have been

maintained for the distribution of message interval time, selection of destination, etc.

For each simulation, sufficient warm-up time is provided to allow the network
to reach steady state. After the warm-up time, the network traffic is sampled at
periodic intervals. The counters used for statistics gathering are reset at the be-
ginning of each sampling period. Statistics are gathered during sampling time and

analyzed for convergence. Thirty one samples of 2000 worms have been taken during
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a simulation. First sample has been discarded to allow the network to reach steady

state. It was observed that the network reached steady state after the first sample.

4.5 Some Parameters of Interest

4.5.1 Buffer size

Ir wormhole routing, bubbles could be introduced, especially at low traffic, in trans-
mission of consecutive flits of message because of asynchronous pipelining. To reduce
these bubbles, the depth of buffers is fixed to 4, i.e., each buffer can hold four flits
of the same message. Whenever, a buffer has space for one or more flits. next data

flit is sent from the previous router in the path.

4.5.2 Average number of hops

For uniform traffic, the average number of hops is the average path length of the
networks. For a k-ary n-cube, it is approximately % for (16,2) - tori the average
path length is 8. As a part of validatiion of the simulation, we have collected
information on the average path length for all the simulations for uniform traffic

and it was found to be around 8 hops.

4.5.3 Performance metrics

Average response time, /, and average channel utilization, p have been considered
to study the performance of the network generating messages at a mean message

generation rate of A.

Average response time

The average response time of a message is w + (m; +d — 1) x f,, [12] where w,
my, d, f, are the average wait time, average length of the message in flits, average

number of hops taken by a message. and the time to transfer a flit between neighbors,
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respectively. In some of the experiments conducted in this study, m; = 20, d=38
for uniform traffic and f; = 1 for the transmission of body flits and it could be two

for the header flit depending on the type of buffer it is accessing.

Average utilization

The average channel utilization refers to the fraction of the physical channel band-
width utilized in any time interval when the network is in steady state. It is also
called the network utilization factor or normalized throughput of the network. The
average channel utilization, denoted p. is computed as the ratio of network band-

width utilized to the raw bandwidth available.

Numberof nodes
Numberofchannels’

where 31‘- is the average message interval time. For k-ary n-cube, this can be simplified

p=Amd x

top = ‘\%L‘i (12] ,the numerator computes the average traffic generated by a node.

and the denominator gives the available bandwidth due to the physical channels

originating from a node. In our simulation with m; = 20 d = 8 for uniform traffic,

n = 2 it becomes p = 40A.



Chapter 5

Simulation Results

This chapter presents the results of the simulation experiments carried out to eval-
uate the performance of the centralized, dedicated and hybrid buffer organizations
using NHop routing algorithm. For each experiment two sets of results are pre-

sented: one for the uniform traffic and the other for the hot-spot traffic.

The first experiment was to test the correctness of the results produced by the
simulator. The goal of the second experiment was to establish a base results set
for the research. The third experiment studies the impact of the clusters. In the
fourth experiment the message length was varied to study the effect long and short
messages on the performance of the three buffer organizations. The fifth experiment
was aimed at studying the effect of the percentage of hot-spot messages. The final
experiment was run to find the best combination of dedicated and central buffers for

the hybrid buffer organization for a given number of total buffers per node (router).

In all the experiments the response of the system for the given mean message
generation rate (\) was used as parameter for performance comparison. NHop
algorithm is chosen to perform this study because of its better performance over e-
cube and *-channel (described in Chapter 3).The default parameters were as given

in the system model and some of them are listed below:
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Variable Name

Defauit Value

Network topology

No. of nodes in the network
Message generation
Message length

Routing algorithm

Hot-spot percentage (h%)
No. of classes

No. of virtual channels per physical channel:

Dedicated

Centralized

Hybrid
Total number of buffers per node
No. dedicated buffers in hybrid org.
Buffer depth
Body flit transmission time
Header flit transmission time:

using Dedicated buffer

using Centralized buffer

Torus
256
Exponential
20
NHop
10
9

p—
w m @

N —

Table 5.1: Default parameter values
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Figure 5.1: Validation: Performance of NHop under uniform traffic on (16,2)-torus

5.1 Validation

The first experiment on the simulator was to validate it. Results are captured and
compared with the results given in [14].

The results given in the Figure 5.1 are very close to results presented in [14].
The average message latency as given in Chapter 4, is w + (m; +d — 1) x f,, [12]
where w, my, d, f, are the average wait time, average length of the message in flits,
average number of hops taken by a message, and the time to transfer a flit between
neighbors, respectively. In this experiment m; = 20, d = 8, traffic pattern is uniform.
The buffer organization is centralized with f, = 1 for the transmission of body flits
and 2 for header flit. The total number of buffers is 16. In a contention free network
when X is very high w = 0, then it was observed that NHop took 45 clock cycles to
transmit a single message. It is easy to see that the result obtained satisfy the given
equation for average message latency.

The results given in Figure 5.2 are also very close to those given in [14]. Note
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Figure 5.2: Validation: Performance of NHop under uniform traffic on (16,2)-torus.

that the average channel utilization for a k-ary n-cube is given as p = "—’2’;‘3, where
my = 20 d = 8 for uniform traffic, n = 2. Now, p = 40A. We have observed that the

results obtained from the simulation experiment satisfy this equation too.

5.2 Base Class Results

This experiment is aimed at establishing a base set of results for this research work.
Each node in the network generates messages in the exponential distribution for a

given mean message generation rate (A). The message length was fixed to 20 flits.

5.2.1 Uniform traffic

From Figure 5.3, it is clear that the dedicated buffer organization has a much better

performance than the centralized buffer organization and the hybrid organization
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Figure 5.3: Uniform traffic: exponential message generation

closely follows the dedicated organization. The better performance of dedicated
organization could be because of not having any delay in acquiring a buffer for

transmission.

In uniform traffic pattern all the links are utilized in an uniform way and the ne-
cessity to increase the number of active virtual channels in one direction, by shifting
the buffers of under utilized links does not arise. If centralized buffer organization is
used in this scepario, there will be a overhead in acquiring buffers from the central
pool. It is also clear from the graph that message delay in centralized buffer orga-
nization is approximately equal to the message delay in dedicated organization plus
the average path length. The extra time can be attributed to the extra one clock

cycle spent by the header flit to acquire a buffer at each node of its path.

The hybrid buffer organization is almost like dedicated buffer organization for
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Figure 5.4: Hot-spot traffic: Total delay, Exponential message generation

A > 200 and it is at the mid point of centralized and dedicated at lower A. This be-
havior is expected because of the combination of buffers used for hybrid was almost

half dedicated and half centralized (to be specific 16 dedicated and 20 centralized).

5.2.2 Hot-spot traffic

To have a better picture of the behavior of the response time for the messages gen-
erated in the network, the results for hot-spot traffic are divided into three different
categories. In the first category the average response time of the system for all
messages (both regular and hot-spot) is given. In the second category the results
are given only for the regular messages i.e., only non-hot-spot messages. The third

category gives the results for the hot-spot messages only.
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Total delay

From the Figure 3.4 for total delay shows that the centralized buffer organization
is very much suitable for hot-spot traffic and as the A decreases the performance of
the dedicated organization deteriorates rapidly. The hybrid organization is again in

the middle of the other two.

This behavior of dedicated buffer organization could be because of the fixed
number of virtual channels per link and its in-capability to dynamically increase the
capacity of some links which have more demand. In contrast the asset of centralized
buffer organization is-the capability to increase number of active virtual channels for
links with high demand. This is possible, as explained in previous section. because

of its capability to shift the buffers of under utilized links to the links in high demand.

At A > 250, the hybrid organization is even better than the centralized and the
dedicated. This is because it uses 16 dedicated buffers and there is no additional
clock cycle delay in allocating these buffers. In contrast, in the centralized organi-

zation all buffers are in the central buffer pool.

Regular delay

This set of results consider only the regular messages (messages whose destination
is not the hot-spot node). Figure 3.5 shows very interesting results for this category.
For higher A the centralized organization is taking more time than the dedicated
buffer organization and the hybrid is slightly better than the dedicated. But, as the
X decreases the behavior of dedicated is not stable and its performance deteriorates

rapidly. On the other hand, the response time for the centralized organization is

fairly robust.

Initially, when the message generation rate is low the network is almost utilized

uniformly. As the A decreases more messages acquire the resources and hold them
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Figure 5.5: Hot-spot traffic: regular messages delay, exponential message genera-

tion
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Figure 5.6: Hot-spot traffic: hot messages delay, exponential message generation

until they reach the destination. Because the links towards the hot-spot node be-
come very busy and that in turn slows down the delivery of even regular messages in
dedicated organization. Again. the centralized paying its initial overhead, responds
to this condition in the network by increasing the buffer capacity of the highly de-

manded links and keeps latency robust.

The behavior of hybrid could be again because of its partial centralized and
partial dedicated behavior. At higher A the messages reach faster than dedicated
because of the dynamic behavior of its router. But as it is limited it behaves worse

than dedicated at higher A.

Hot delay

In this set of results the delay suffered by the hot-messages (messages whose des-

tination is hot-spot node) in the network are given. It is very clear from Figure
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5.6 that the advantage of centralized buffer organization is fully exploited in this
category. The centralized buffer organization delivers the hot-messages much faster
and is stable when compared to the dedicated organization. Again the performance

of the hybrid organization is intermediate between the other two.

In summary, for uniform traffic with exponential message generation and fixed
message length, dedicated buffer organization is more suitable than the centralized

buffer organization. The hybrid closely follows the dedicated buffers.

The centralized buffer organization is better than dedicated for hot-spot traf-
fic. The centralized organization takes more time to deliver the regular messages
at higher A when compared to the dedicated and hybrid organizations. But, its
very good behavior towards hot-spot messages and total messages generated in the

network puts it in the first place.

5.3 Hyper-Exponential Message Generation

In this experiment each node in the network generates messages in hy per-exponential
distribution. The message length is fixed 20 flits. This scenario is similar to a node
communicating with other nodes in the network in clusters of time. For example,
when a processor is synchronizing with other processors in the network by sending
messages to all the nodes and once it gets synchronized, it starts executing instruc-
tions locally. And, after the local processing is done (i.e., after a gap) it might again

try to communicate with all other nodes.

5.3.1 Uniform traffic

It can be seen from Figure 5.7 that the hybrid buffer organization has a better
performance than other two organizations for A > 220. For A < 220 it has slightly
worse performance than the dedicated buffer organization. This could be attributed

to its partial capability of responding to the dynamic conditions in the network. As
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Figure 5.7: Uniform traffic: hyper-exponential message generation

in previous set of results centralized has the worst behavior. And. every organization

has higher latency when compared to previous set of results.

5.3.2 Hot-spot traffic

Total delay

The Figure 5.8 indicates that the results for hyper-exponential message generation
and exponential message generation. This set of results exhibit the same trend as
in base class, with a slight increase in the latency. In this case too, the centralized
has the best behavior, dedicated has the worst behavior, and the performance of the

hybrid is intermediate between that of the other two.
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Figure 5.8: Hot-spot traffic: total delay, hyper-exponential message generation

Regular delay

The results given in Figure 5.9 for regular messages are similar to those for the
regular messages in the previous set of resuits. But, the break point where the
performance of dedicated and hybrid is worse than the centralized occurs at a much

earlier stage (higher A = 230).

Hot delay

The results given Figure 5.10 for hot-messages are almost similar to the results in
Figure 5.6. But, the messages suffer slightly more delay when compared to the mes-

sages generated in exponential distribution.

In summary, for uniform traffic hybrid has much better performance than the
other at low message generation rate and it is slightly worse than the dedicated at

higher message generation rate. Centralized has the worst behavior. Therefore for
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Figure 5.9: Hot-spot traffic: regular messages delay, hyper-exponential message
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uniform traffic, with hyper-exponential message generation, hybrid organization is

preferred .

For hot-spot traffic, as in the previous section, centralized buffer organization
is more suitable for this kind of message generation too. Dedicated has the worst

performance and hybrid falls in between the other two.

5.4 Variable Message Length

In this experiment the length of the messages generated by each node in the net-
work is varied. To be specific, for a given mean message length (20 flits) the node
generate messages in hyper-exponential distribution. Therefore, a node generates
several short messages and few very long messages. This scenario is similar to video
transmission applications, where several short messages are exchanged by the nodes

before actual long video data is transmitted.

5.4.1 Uniform traffic

The results of the experiments for the uniform traffic are given in Figure 5.11. In
contrast to the previous results for the uniform traffic, this set of results indicate
that centralized has a much better performance than the dedicated organization and
hybrid is slightly better than dedicated and worse than the centralized organization.
The main reason for this behavior is that the long messages holding the resources
for long time and leading to conditions in the network somewhat similar to hot-spot
behavior. The centralized could respond to dynamic conditions in a better way as

it has a central buffer pool.
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Figure 5.11: Uniform traffic: hyper-exponential message length

5.4.2 Hot-spot traffic

Total delay

The results given in Figure 53.12 for total message delay for hot-spot traffic. The
results of this experiment are similar to the results obtained in the previous sections.
The centralized organization is much better than the other two. The centralized
organization takes less time to transmit messages in this scenario than the base

class results. The other two have worse performance than the base class.

Regular delay

The results for regular messages for this scenario are given in Figure 5.13. The trend
of the results obtained are similar to the base class results. But, the centralized
is always performing better than dedicated, and hybrid is performing better than

centralized until A > 230 and after that the performance deteriorates rapidly.
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Figure 5.12: Hot-spot traffic: total delay, hyper-exponential message length

Hot delay

The results given in Figure 5.14 for this category indicate that the centralized buffer
organization has a very good performance for hot-messages when compared to the
dedicated and the hybrid is almost in the middle of the other two. The performance
of centralized is better than base class results for this category. The other two have

slightly worse than the base class results for this category.

In summary. for this scenario, the centralized outperforms the dedicated not
only for the hot-spot traffic but also for the uniform traffic. The performance of the

hybrid buffer organization is intermediate between that of the other two.
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Figure 5.13: Hot-spot traffic: regular messages delay, hyper-exponential message

length
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Figure 5.15: Hot-spot traffic: total delay, mean 200

5.5 Impact of Percentage of Hot-Spot Messages

In all the previous sections the results for hot-spot traffic are given for h=10%. The
percentage of hot-spot messages indicate the fraction of messages going to the hot-
node from a node. The h has been varied from 0 to 10. At h = 0, the traffic is
uniform and as the h increases the number of hot-messages generated per unit time

by each node also increases.

5.5.1 Total delay

The total delay suffered by the messages in three different organizations is given in
Figure 5.15. The figure indicates that until 2 < 7% the dedicated has a better per-
formance than the centralized and beyond that its performance deteriorates rapidly.
The hybrid buffer organization closely follows dedicated at lower 2 (h < 7) and has

a better performance at higher h than the dedicated. The behavior of centralized is
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Figure 5.16: Hot-spot traffic: regular messages delay, mean 200

more stable after the initial overhead.

5.5.2 Regular delay

The set of results for this experiment for regular messages is given in Figure 5.16.
The trend of the results is similar to the results obtained in this experiment for the

total delay category. The hybrid is slightly worse than the dedicated at higher A.

5.5.3 Hot delay

The delay suffered by the hot-messages with varying percentage of A are given in
Figure 5.17. The data presented in this figure are particularly interesting. Until
h < T the three buffer organizations deliver the hot-messages with similar delay.
After that the centralized has a much better performance than the dedicated and

the performance of the hybrid is intermediate to that of the other two.
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In summary, the percentage of hot-spot messages has a significance impact on
the performance of the network. Until 2 < 7 dedicated and hybrid have similar
behavior for all the categories. The centralized takes more time (total and regular)
intially but its behavior is more robust. The centralized has a similar delay as
the dedicated until h = 7 for hot-messages. For A > 7, the centralized is much
better than dedicated. The hybrid is in the middle of the other two. Therefore,

depending upon the percentage of hot-spot messages switching between centralized

and dedicated is beneficial.
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Figure 5.18: Hybrid dedicated buffers: uniform Traffic A = 200

5.6 Right Combination of Buffers for Hybrid Or-
ganization

The final experiment is to find the right combination of dedicated and centralized
buffers for hybrid buffer organization. In all the experiments conducted before the
number of dedicated buffers is fixed at 16 and the centralized buffers are fixed at 20
(with a total of 36 buffers per node). In this experiment the number of dedicated
buffers is changed from 0 to 36. For these experiments the messages are generated
using the exponential distribution, the message length is fixed at 20 flits, and the

mean message generation rate (A) is 200.

5.6.1 Uniform traffic

The results of this experiment for the uniform traffic are given in Figure 5.18. The

results indicate that when the number of dedicated buffers is zero, the hybrid buffer
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Figure 5.19: Hybrid dedicated buffers: hot-spot traffic (Total delay) A = 200

organization is similar to centralized buffer organization, and when it is 36 the hybrid
is similar to dedicated. The performance of the hybrid improves with increase in
dedicated buffers. But, the degree of improvement is low after 15 dedicated buffers.
The performance is almost stable until the number of dedicated buffers increases to

more than 25.

5.6.2 Hot-spot traffic

The results of this experiment for hot-spot traffic are given in three different figures
for total, regular and hot delays. Figure 5.19, figure 5.20, figure 5.21 present the
results for this case for total, regular, and hot delays respectively. The results
indicate that the performance of hybrid buffer organization is similar centralized
when all the buffers are centralized . Hybrid performs like dedicated when all the
buffers are dedicated. The performance of hybrid is decreasing with increase in the

number of dedicated buffers under hot-spot traffic.
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Figure 5.20: Hybrid dedicated buffers: hot-spot traffic (Regular delay) A = 200

5.7 Conclusions

The dedicated buffer organization is better for uniform traffic in all scenarios except
the one in which many short massages are transmitted after a very long message.
The centralized buffer organization has very poor performance for uniform traffic
in comparison to dedicated. The centralized is better than the dedicated in the
workload that consists of several short messages and few very long messages (ex.

video transmission).

The centralized buffer organization has a better performance and more robust
under hot-spot traffic. It is extremely good in transmitting hot-messages when com-
pared to the dedicated organization. The regular messages take little more time at
lower A when compared dedicated, but with the initial overhead, the centralized

buffer organization gives a stable performance.
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Figure 5.21: Hybrid dedicated buffers: hot-spot traffic (Hot delay}A = 200

Hybrid buffer organization closely follows dedicated buffer organization in uni-
form traffic and its performance is intermediate to that of the other two organizations

in hot-spot traffic.

The experiments conducted to study performance sensitivity to A indicate that
at lower h (say h < 7), the dedicated has a better performance than the centralized
organization and after that point centralized outperforms the dedicated organiza-
tion. Hybrid follows the dedicated at lower h and after that it provides intermediate
performance between that of the centralized and dedicated organizations. Therefore.
depending upon the dynamic traffic conditions the hybrid organization can configure

itself from dedicated to centralized. which could result in a good performance.
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Conclusions and Future Work

6.1 Summary

This section provides a summary of the thesis. Chapter 1 introduced several basic
concepts of multicomputers. The important issues covered were: parallel architec-

tures, multicomputer networks and the goal of this thesis.

Chapter 2 provided a detail description and discussion of the various issues in
wormhole routed multicomputer networks. The main topics covered were: dead-
locks, virtual channels, deterministic and adaptive routing, and NHop routing al-
gorithm. nCUBE system, an example multicomputer system that uses wormhole

switching was also described.

Chapter 3 presented a close look at the buffer management issues in wormhole
routed multicomputer networks. The focus of this chapter had been on dynamic

assignment of buffers, amount of buffer space and buffer organizations.

Chapter 4 described the system model used in the simulation experiments. Chap-
ter 5 presented the results of the simulations experiments. Each experiment was run

for both uniform and hot-spot traffics.



Chapter 6. Conclusions and Future Work 88

6.2 Contributions of the thesis

The commonly used buffer organizations for recent multicomputers are centralized
and dedicated buffer organizations. The results presented in this thesis indicate that
the dedicated buffer organization has a better performance than the centralized un-
der the uniform traffic in all scenarios except one when the nodes are generating

messages in clusters of message length.

The centralized buffer organization has a better performance and more robust
under the hot-spot traffic. It is extremely good in transmitting hot-messages when
compared to the dedicated organization. The regular messages take little more time
at lower message generation rates when compared the dedicated. but the centralized
buffer organization gives a stable performance.

The hybrid buffer organization proposed in this thesis inherits the merits of
the centralized and dedicated organizations. Hybrid buffer organization performs
similar to the dedicated buffer organization under uniform traffic and its performance
is intermediate to that of the other two organizations for hot-spot traffic. The
hybrid buffer organization can be designed to configure itself dynamically from the
dedicated to centralized depending on the traffic conditions.

In practice, the traffic is bounded between the hot-spot and uniform traffic.
Therefore. it is necessary to handle these two cases in an efficient way. Hybrid
buffer organization can act as the centralized organization for the hot-spot traffic
and it can work like the dedicated organization for the uniform traffic. Thus, this

new organization is beneficial for the wormhole routed multicomputer systems.

6.3 Future Work

There are several aspects of the hybrid buffer organization that need to be studied

or expanded in the future. Performance of hybrid buffer organizations needs to be



Chapter 6. Conclusions and Future Work 89

analyzed with more realistic workloads.

One area that requires study is in the design of a programmable router that uses
the hybrid buffer organization which could respond to the dynamic conditions in

the network.

Another area is to study the performance of *-channel algorithm with these three
different buffer organizations. Also, a comparison of NHop and *-channel is inter-

esting.
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