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Abstract—We investigate the problem of downlink power con-
trol for streaming multiple variable bit rate (VBR) videos in a
multicell wireless network, where downlink capacities are limited
by inter-cell interference. We adopt a deterministic model for
VBR video traffic that considers video frame sizes and playout
buffers at the mobile users. The problem is to find the optimal
transmit powers for the base stations, such that VBR video data
can be delivered to mobile users without causing playout buffer
underflow or overflow. We formulate a nonlinear nonconvex
optimization problem and prove the condition for the existence of
feasible solutions. A centralized branch-and-bound algorithm is
then developed, which incorporates the Reformulation-Lineariza-
tion Technique and can produce (1 — €)-optimal solutions. We
also propose a low-complexity distributed algorithm with fast con-
vergence as an alternative to the centralized algorithm. Through
simulations with VBR video traces under fading channels, we find
the distributed algorithm can achieve a performance very close to
that of the centralized algorithm.

Index Terms—Cross-layer optimization, downlink power con-
trol, variable-bit-rate video, video streaming.

I. INTRODUCTION

A. Motivation

ITH the dramatic advances in wireless networking tech-

nology and wireless communication devices, there is
an exponentially increasing demand for wireless video service.
This trend is driven by the compelling need for ubiquitous ac-
cess to video content over wireless access networks, and will
significantly stress the capacity of existing wireless networks
and strongly influence the design of future wireless networks.
Tremendous effort is needed in wireless video research to meet
this demand. Researchers have explored new wireless technolo-
gies to enable high quality video services. For example, video
transmission over cognitive radio networks is an emerging area
in video communications, where secondary users sense licensed
channels and aim to exploit the transmission opportunities in the
spectrum holes [2], [3].
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While it is important to develop new wireless architectures
and technologies for higher spectral efficiency, it is equally im-
portant to investigate how to support video in existing wire-
less networks, since the infrastructure will still last for a con-
siderable period of time. In this paper, we consider multi-user
video streaming over a multicell wireless network, a wireless
network architecture widely deployed all over the world. We
consider the typical case of downlink video transmissions. For
the multicell system, generally intra-cell interference can be ef-
fectively controlled with precise synchronization or the use of
guard times. The capacities of the downlinks are mainly limited
by the inter-cell interference due to simultaneous base station
(BS) transmissions using the same channel. With power con-
trol, the Signal to Interference plus Noise Ratio (SINR) of the
interfering downlinks can be tuned to combat fading channels
and to accommodate video traffic variations. Therefore, effec-
tive downlink power control is necessary to support concurrent
wireless videos.

We consider the problem of streaming multi-user variable-
bit-rate (VBR) videos in the multicell wireless network. This
is motivated by the superior perceived quality of VBR videos
over constant-bit-rate (CBR) videos. VBR video has stable vi-
sual quality for the frames, but at the cost of large variations in
the bit rate, while CBR video maintains a stable bit rate, but the
frames have large variations in visual quality. We aim to inves-
tigate how to provide ubiquitous access to stored VBR videos
through existing cellular networks.

It is a challenging problem to support VBR video traffic,
which exhibits both strong long-range and short-range depen-
dence. Stochastic models have been developed to capture the
burstiness in VBR video traffic. In [4], [5], the authors observed
the long-range-dependence in VBR video traffic and modeled
the autocorrelation with self-similar processes. The stochastic
models can be incorporated in QoS mechanisms for VBR videos,
and for traffic synthesizing in simulations [6]. Traffic models for
MPEG-4 and H.264 are investigated in [7]-[9]. In particular,
[7] studied the autocorrelation function (ACF) of frame sizes
in MPEG-4 and H.264 VBR video traces. The authors showed
that MEPEG-4 and H.264 VBR traces exhibit complex statistic
characters, including both long-range dependent and short-range
dependent properties. Ref. [8] demonstrated nonstationary
statistics of MPEG2 and MPEG4 VBR traffic and developed
a bandwidth prediction scheme based on Kalman filter. Ref.
[9] provided a survey of VBR traffic models. It was shown that
different videos may have quit different characteristics and
marginal distributions of frame sizes. Thus it is difficult to find
a common statistic model for various VBR videos.

Since it is nontrivial to develop parsimonious traffic models
that can accurately capture the auto-correlation structure, and
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the large frame size variations may cause frequent playout
buffer underflow or overflow, we address this issue by a deter-
ministic traffic model for stored VBR video, which considers
frame size, frame rate, and playout buffers [10]-[13]. Unlike
prior work that is focused on a single video session over a
given CBR or VBR channel, we exploit power control, a
unique capability in wireless networks, to adjust the downlink
capacities based on prior knowledge of frame sizes and playout
schedules. Usually large frames are rarely transmitted simulta-
neously. Jointly optimizing the BS transmit powers is, to some
extend, analogous to statistically multiplexing VBR videos in
the downlink of the cellular network.

B. Related Work

Due to the difficulty in general statistical models for VBR
videos, the deterministic model is used to provide a common
way to characterize VBR videos, where the varying frame sizes
can be represented by the cumulative curves and the frame size
variation can be accurately captured. A deterministic model for
MPEG4 based neural networks was introduced in [14]. With
this approach, the piecewise-constant-rate transmission and
transport (PCRTT) method was used, aiming to optimize one
or more objectives while preserving continuous video playout.
In [10], the authors proposed bandwidth allocation schemes
for dynamically sharing a CBR channel among multiple VBR
video streams. In [11], Salehi et al. considered smoothing VBR
video over a CBR link and developed an effective algorithm to
achieve the greatest rate smoothness. In [15], McManus and
Ross introduced a dynamic programming framework to set
PCRTT rates and intervals to optimize different objective func-
tions. These techniques do not directly apply to our problem of
VBR over multicell wireless networks, due to the fundamental
difference between wireless channels and wired CBR links.

In several recent papers [13], [16]-[18], the authors studied
the problem of transmitting one VBR video over wireless net-
works. In [16], it was shown that the separation between a delay
jitter buffer and a decoder buffer is in general suboptimal, and
several critical parameters are derived for the system. In [13],
the authors studied the frequency of jitters under both network
and video system constraint and provided a framework for quan-
tifying the trade-offs among several system parameters. Refs.
[17], [18] investigated effective admission control schemes for
VBR videos over wireless networks in terms of bandwidth and
QoS requirements.

Power control is an important mechanism for interference-
limited wireless networks. Most prior work focused on maxi-
mizing network utility in the forms of SINR or bit rate [19]-[23].
In [19], the authors presented centralized and distributed power
control algorithms for achieving target SINRs. In [20], Chiang
studied the problem of joint power control and congestion con-
trol, aiming to maximize the throughput of TCP-Vegas over an
ad hoc network. Gjendems;j ef al. [21] presented centralized bi-
nary power control algorithms for maximizing the sum rate over
multiple interfering links. In [22], the feasibility of distributed
target-SIR-tracking power control algorithm was studied and a
gradual soft removal method to was proposed to achieve min-
imum outage. Ref. [23] jointly optimized admission control and
power control in cognitive networks. Although laid out the the-
oretical foundation and developed effective algorithms, these
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techniques cannot be directly applied for VBR video over mul-
ticell wireless networks with buffer and delay constraints.

C. Approach

In this paper, we first present a formulation of multi-user
VBR streaming in cellular networks that considers downlink
power control, inter-cell interference, VBR video character-
istics, and playout buffer requirements. The objective is to
achieve high playout buffer utilization, under playout buffer
underflow and overflow constraints and peak power constraint.
This is a nonlinear nonconvex problem to which traditional
convex optimization techniques [20] and low- or high-SINR
approximations [20], [21] cannot be directly applied.

We then derive the condition of the existence of feasible
power assignments, which can achieve downlink capacities
to guarantee no buffer underflow and overflow. We develop a
centralized algorithm that can produce solutions with bounded
optimality gap. Specifically, we use the Linearization-Refor-
mulation Technique (RLT) to obtain a linear programming (LP)
relaxation of the original problem. Solving this LP relaxation
yields a lower bound to the original problem. Interestingly,
since the constraints are preserved in the relaxation procedure,
the lower-bounding solution is also feasible to the original
problem; the corresponding objective value with this solution
provides a lower bound to the global optimum. The LP relax-
ation is then incorporated into the branch-and-bound framework
to obtain a centralized algorithm, which can produce a solution
within the (1-¢) range of the global optimal.

To simplify computation and control, we develop a dis-
tributed algorithm based on distributed constrained power
control (DCPC) [19], where each BS iteratively updates
transmit power based on feedback of measured SINR at the
target receiver. It is shown that with DCPC, the power vector
converges to a unique power vector that can achieve the goal
of maximizing playout buffer utilization and avoiding playout
buffer underflow and overflow. We evaluate the proposed
algorithms with simulations using VBR video traces [24] and
fading channels. The distributed algorithm is shown to achieve
a performance very close to that of the centralized algorithm.
Both algorithms are demonstrated to be highly effective for
streaming VBR videos over multicell wireless networks.

In the remainder of this paper, we present the problem for-
mulation in Section II. We describe the centralized algorithm in
Section III and the distributed algorithm in Section IV. Simu-
lation results are presented in Section V and related work dis-
cussed in Section I-B. Section VI concludes this paper.

II. PROBLEM STATEMENT

A. Network and Video System Model

We consider the downlinks of an M -cell wireless network.
In each cell, a BS streams video to mobile users in the cell,
each allocated with a downlink channel. A channel is a spec-
tral resource slot, the nature of which depends on the specific
multiple access technique adopted for the multicell network.
Without loss of generality, we assume that the downlink chan-
nels within a cell are orthogonal (e.g., due to perfect synchro-
nization of spreading codes or use of guard times). The main
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Fig. 1. Feasible and infeasible transmission schedules for video session i.

interference at a user stems from the concurrent downlink trans-
missions in neighboring cells that use the same channel. There
is a need for the BS’s to adopt power control to mitigate such
inter-cell interference.

We consider the problem of streaming multi-user VBR videos
in the multicell network. We assume the wired segment of a
video session path is reliable with sufficient bandwidth, while
the last-hop wireless link is the bottleneck of the end-to-end path
[25]. Thus the corresponding video data is always available at
the BS before the scheduled transmission time.

As discussed, it is non-trivial to accurately model VBR video
traffic, which exhibits both strong asymptotic self-similarity and
short-range correlation [4]. To this end, we adopt a deterministic
model that considers frame sizes and playout buffers [11]. Let
D, (t) be the cumulative consumption curve of user m, rep-
resenting the cumulative amount of bits consumed by the de-
coder at time #. The cumulative consumption curve is deter-
mined by video characteristics such as frame sizes and rates,
and playout schedule. Assume user :’s playout buffer is b,
bits and its video has L,,, frames. We can derive a cumulative
overflow curve for user m as

Bm(t> = nlill{D'rrn(t_1)+l)'rrL7 Dm(L7n)}7 0 S t S Lm~ (1)

B, () is the maximum number of cumulative received bits at
time ¢ without overflowing user m’s playout buffer. Finally, we
define cumulative transmission curve X, (t) as the cumulative
amount of bits transmitted to user 2 at time . To simplify no-
tation, we assume the video sessions have identical frame rate
and the frame intervals are synchronized. Thus a time slot ¢ is
equal to the ¢-th frame interval, denoted as 7, for 0 < ¢ <
maXy, { Ly, }.!

Since D,,,(t), B, (1) and X,,(t) are cumulative curves, they
are all nondecreasing functions, as illustrated in Fig. 1. A fea-
sible transmission schedule will produce a cumulative trans-
mission curve X,,(t) that lies within D, () and B,,(¥), i.e.,
causing neither underflow nor overflow at the playout buffer. In
practice, D, (t)’s are known for stored videos and are delivered
to the BS’s (or a centralized video scheduler that manages the

IThis assumption can be relaxed for more general cases. The time slot dura-
tion could be arbitrary as in [26] (i.e., equal to multiple frame intervals).
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transmission of multiple BS’s) during the session setup phase,
and the B,,(t)’s are then derived as given in (1).

B. Problem Formation

For the multicell wireless video network, consider a
specific channel and let &4 = {1,2,...,M} denote the
set of users sharing the channel, where user m 1is lo-
cated in cell m.2 Let the BS transmit power vector be
P(t) = [Pi(t),Py(t),..., Py(t)]" in time slot ¢. The ca-
pacity of the downlink from BS m to user m, denoted as
C,(t), depends on the SINR at user m, which can be written as

) D _ G;;{ P (f)

Wm(P(t)) Zk;ém G;Z]Pk (f) + Tim ' (2)
where G} is the path gain from BS % to user m and n,, is the
noise power at m. We assume slow block fading channels such
that the path gains do not change within each time slot [26],
but vary over different time slots following a certain distribu-
tion. The downlink capacity C,,,(¥) also depends on the channel
bandwidth B,, and the transceiver design, such as modulation
and channel coding. Without loss of generality, we use the upper
bound as predicted by the Shannon capacity.

Con(P(1)) = Bulog (1+7(P(1))) . 3)

The impact of fading channels is incorporated in the SINR in (3).
For practical systems, the achievable capacity may be a fraction
of C,,(P()), but this part is omitted for brevity.

Once the link capacity is determined, C, (#)7 video bits will
be delivered to user m in that time slot. The cumulative trans-
mission curve X,,(#) can be written as

Xm(o) =0; X'm(t) = Xm(t - l) + Gm(t)7—~ (4)

Assume peak power constraint 0 < P,,, < P, for all m. The
problem is to determine the transmit power vector P (1), for
0 < t < max,, { L., }, such that the resulting cumulative trans-
mission curves satisfy

D, (1) € X, (t) < Bpy(t), for all m,t, (5)

i.e., without causing playout buffer underflow or overflow.
Since the video frames have variable sizes and the video ses-
sions have random phases, large frames from different sessions
are less likely to occur in the same time slot. Power control
for the downlinks is, in some sense, analogous to exploiting
statistical multiplexing gain for VBR video flows.

From (3)—(5), the feasible SINR range at user m is

emax{O,Dm O —Xn(t-1)}/BuT _ 1

I e e I ()

In (6), the lower bound is the SINR that just empties the buffer
without causing underflow. The upper bound is the SINR that
just fills up the buffer without causing overflow.

Generally, the feasible transmit power vector ]3(7‘) is not
unique for a given set of VBR video sessions. Among the set of
feasible solutions, a schedule that transmits more data is more
desirable since it provides a larger search space for optimizing

20—1 index variables can be used to model the case where no user uses the
channel in some cells, but are omitted for brevity.
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transmit power vectors for future time slots. The main idea is to
exploit playout buffers as an effective means to combat fading
channels. When the channel is good, the scheme attempts to
transmit as much data as possible; when the channel is bad,
the video bits stored in the buffer can sustain the playout for
some time, thus reducing the buffer underflow rate. The more
data transmitted, the bigger the chance to overcome a future
underflow event when the channel is bad. This motivation will
be verified by the simulation results presented in Section V.

The main idea is illustrated in Fig. 2. The amount of feasible
solutions (or, the search space for the optimal solution), depends
on the starting point of the transmission scheme in the current
time slot (i.e., the buffer occupancy at the beginning of the time
slot). Assume that the maximum available power allows a max-
imum transmission rate as the slope of green line segment A-B
in time slot #. If the buffer is full at the beginning of time slot
t, the starting point for the transmission schedule is point A.
The feasible region for this time slot, under the current power
constraint, is in the range between lines A-B and A-D. Alterna-
tively, if the buffer is almost empty at the beginning of time slot
t, the starting point of the transmission schedule will be point
C. For the given power constraint, the feasible region is in the
rage between lines C-D and C-E (note that C-E is parallel to
A-B, indicating the same maximum power constraint). Clearly,
the feasible region of the latter is much smaller. In the case of
starting from point C, if in time slot £ there is a deep channel
fading, a very large power may be required to achieve the rate
indicated by C-D. If this required power is larger than the power
constraint, there will be buffer underflow in this time slot. In the
case of starting from point A, for the same deep fading channel,
a much smaller power can be used to achieve the minimum rate
given by A-D, and buffer underflow can be avoided.

Omitting constant [3,,, we formulate the optimal power con-
trol problem for VBR videos, termed Problem OPT-VBR.

maximize Z log(1 + v () @)
meld
G P (1)
subject to v, (1) = e ,VYm (8)
( Zk;ﬁm Gk: Pk(f) + N
Y1) € (1) <A (1), ¥ om )
0< P, <P, Vm, (10)

where ~/**(t) is the upper bound in (6) and fy,’;ji"'(t) is the

larger one between the lower bound in (6) and 7%*, a minimum
SINR requirement imposed by the transceiver design.
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In Problem OPT-VBR, the optimization variable are the
powers P,,(t). The amount of video data delivered in time slot
t is maximized, under playout buffer underflow and overflow
constraints and peak transmit power constraints. This is a
nonlinear nonconvex problem, to which traditional convex
optimization techniques do not directly apply. Furthermore, to
achieve the objective of avoiding playout buffer underflow and
overflow, the SINRs may assume values ranging from very low
to very high. Thus the existing high SINR approximation [20]
and low SINR approximation [21] techniques cannot be used.
In the following, we first investigate the existence of feasible
solutions. We then derive effective centralized and distributed
algorithms to solve Problem OPT-VBR in Sections Sections III
and IV.

C. Existence of Feasible Solutions

Due to the wide range of VBR video frame sizes, the cor-
responding SINR requirements also assume a wide range of
values. Under conditions where many video sessions coinci-
dently transmit their large frames in the same time slot, Problem
OPT-VBR may not have a feasible power assignment to deliver
all the frames. In this section, we derive the conditions for the
existence of feasible power assignments. We assume a central-
ized scheduler in the multicell network, which has prior knowl-
edge of all the channel gains and the cumulative consumption
and overflow curves.

We define the minimum required rate for user m in time slot
t, denoted as C™""(t), as the bit rate such that the playout buffer
is just emptied, but without underflow, at the end of time slot £.
We have the following result for CT7"(¢).

Lemma 1: The largest value for the minimum required rate
Cmin(t) is G (t) = [Dyn(£) — Dot — 1)] /7.

Proof: According to the definition of X,,(¢) in (4), we
have C,,(t) = [Xm(t) — X (t — 1)] /7. From the definition
of C™in(#), the playout buffer is emptied at the end of time slot
t,1.e., X () = Dy (t). Therefore, we can derive the minimum
required rate as

. 0,D,,t) - X,,t—-1
gmingyy — B A0 D) = Xt =1}
T
From the feasibility condition (5), we have X,,(t — 1) >
D, (t — 1). Substituting it into (11), we have
; Dmt _Dm t_l ~mi
T

Rate C™*"(t) occurs when the playout buffer is empty at both
the beginning and end of time slot #, but without buffer overflow
during the entire time slot. [ |

We have the following condition for the existence of a fea-
sible power assignment for Problem OPT-VBR.

Theorem 1: There exits a feasible power assignment for
Problem OPT-VBR for time slot ¢, if there exits a feasible
power assignment that can achieve the rate vector [C{*"(¢),
C_’énin(t), e (_}K}Ln(f)] .

Proof- Recall that v™" is the SINR corresponding to the
minimum required rate """ (#). Let 57" (#) be the SINR cor-
responding to C"*(¢). Since (3) is a monotonically increasing
function, we have 0 < ™" () < ymin(t),

m m
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We now consider the power assignment that achieves rates
Crmin(t), or, the corresponding SINRs 4™ (¢). From (8) and

m
(9), the minimum SINR constraint is

G P, (1) o
mlt - > (), Y om.
Ym(t) = S oo GIPL(1) + i T " ()

(13)

Equation (13) is a system of linear equations of the power vector
P(#), which can be written in the matrix form as

(I rm”’A) Bty =T, (14)

where I is the identity matrix, A is an M X M matrix with

0,
Am,k = Gy
Gn

m==k
mat k. (15)
r" = dldg{v”“”( ), AT (#), ... AT (t)} is a diagonal
matrix, and 7 = [ /G}, m2/G3, .. onar /GREIT.
Define T = diag{y7""(¢), fyé"’"(t), ce AT (4} and
A=T™" _pmin = 0. Assume P is a power assignment that
achieves 477" (t) for all m, which satisfies (14). Substituting

szn - A + I\min into (14)’ we have <I _ FminA) P' -
ming LA (ﬁ—l— Aﬁ) Since A, 7, A and P all have non-
negative elements, we have A <D' +AP ) > 0, and therefore,

(I - F"”"A) BT, (16)
That is, P can also achieve ~Am™in (L) for all m and it satisfies the
minimum SINR constraint in (9).

Once the minimum SINR constraint in (9) (i.e., no buffer un-
derflow) is satisfied, the maximum SINR constraint in (9) (i.e.,
no buffer overflow) can be satisfied since BS m can stop trans-
mission when the playout buffer at user  is full. [ |

Theorem 1 allows us to evaluate, for given videos and channel
gains, if there is a feasible power assignment for each time slot.
There is no need to consider the transmission schedules and
playout buffer occupancies in previous time slots. At the be-
ginning of time slot ¢, we obtain 77" (¢) from the cumulative
consumption curve D( ) and channel gains. If the linear system
(14) is solvable and the resulting P satisfies constraint (10), then
there is a feasible power assignment for Problem OPT-VBR for
this time slot. The following fact from [27] can be used for the
feasibility test.

Fact 1: The following statements are equivalent: (i) there
exits a feasible power assignment satisfying (14); (ii) the max-

imum modulus eigenvalue of (I‘"“"A) is less than 1; (iii) the

=y, (T7A) exiss

min

reciprocal matrix (I — """ A)~*
and is positive component-wise.

D. Comparison With a Lazy Scheme

A “lazy” scheme is proposed in [12] for VBR video trans-
mission over a wired network. This is an ON-OFF scheme and
it transmits a video frame as late as possible before its playout
deadline at the maximum link speed, which minimizes the re-
quired client buffer size. In multicell multi-user wireless VBR
video streaming, the maximum link speed varies from time to
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time due to interference and channel fading. Thus, the original
lazy scheme cannot be applied directly.

We enhance the lazy scheme to support multicell multi-user
VBR video streaming, termed W-Lazy, where every BS trans-
mits a frame that is needed for playout in the next time slot. Then
we can determine the rate vector (and the transmit powers) as
given in Theorem 1. We use W-Lazy as a benchmark for com-
parison and evaluation of the proposed algorithms. We have the
following results for W-Lazy.

Corollary 1.1: Problem OPT-VBR has a larger solution
space than that of the W-Lazy scheme.

Proof: This result directly follows Theorem 1. ]

Corollary 1.2: 1f C*(t) = [C3 (), ..., Cx(t )] is the solution
to Problem VBR-OPT, then any other vector c (t) that is ele-
ment-wise smaller than C*(¢) has a smaller solution space.

Proof: This result also follows a similar process as in the
proof of Theorem 1. ]

III. CENTRALIZED ALGORITHM

In this section, we present a centralized algorithm to pro-
vide solutions with bounded optimality gap. We first use RLT
to obtain a linear programming (LP) relaxation of Problem
OPT-VBR [28]. We then incorporate the linear relaxation into
a branch-and-bound framework, which can produce (1-¢)-op-
timal solutions.

A. Reformulation and Linearization

We first apply polyhedral outer approximation for the loga-
rithm functions in Problem OPT-VBR to obtain a Polynomial
Programming Problem OPT-VBR(p) [28]. We then use RLT
bound-factor product constraints to relax the quadratic terms
to obtain an LP relaxation OPT-VBR(!). The time slot index (%)
is dropped in the following to simplify notation.

For the logarithm functions in the objective function, let
Uy = log (14 ). We obtain a linear objective function
> e Um and new constraints u,, = log (1 + v, ). We deal
with the new constraints using polyhedral outer approximation.
Since 7}}2”7" < Ym < %", we choose H points, denoted as

m
{+% 1, within this range as

h/H-1
) 1+,yvnar
h X m
b= () -t
a7
min H-1

where 72, = 4" and v 1 = 4% 'We can obtain a convex
envelop for the logarithm function in [y, 4], which con-
sists of H tangent lines at the H points given in (17) and the line
segment connecting the two end points. We relax the logarithm
constraint by using its convex envelop, represented by the fol-
lowing new linear constraints:

Uy > log (1+‘V77;:m) ( max _’Y'm) + log (1++,,/*")

e (v —rer i (Ym —
T Ym Yo

iy < log(1 +vm)+ T h=01,...,H-1.

WLLYL)

q/"L

The first line is for the segment connecting the two end points,
and the second line is for the tangent lines at the H points.
Thus we obtain a polynomial programming problem OPT-
VBR(p), as given in (18)~(25). We can rewrite the last con-
straint (25) as ), £m G YmPr — G2 Py 4 1 ym = 0, which
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contains quadratic terms in the form of y,,, P.. We next introduce
RLT bound-factor product constraints to remove such terms and
to obtain an LP relaxation.

maximize ), ., Un (18)
subject to:
m m min
GrmPrn - Z Gk Pk + N | Vi 2 0/ VY m (19)
k#m
G — Z G Pr+ M | 7 <0, Vm (20)
k#m
0< P, <P, ¥Ym 2D
lo 1 + "min v
Um 2 %(7 P = ym)+
IOg (1 + 71,:1““[) / min
W(%L — "), Ym (22)
_ AR
i < log(14+~%) + % v m, h (23)
h/H—1
. 1 + ,.\/.TTI,(I.’IJ
h min m
=(1 —_— —1,Ym,h 24
G P
= - . Vm. 25
o Zk:;ﬁm GZLPIT + N 23)
Define substitution variables v,,x, = ~Vm P, for all m, k.

Since v, and Py are bounded by their respective lower and
upper bounds as ¥ < vy, < A and 0 < P, < P, we
obtain the following RLT bound-factor product constraints.

Vmk — ’Y;,rllinpk 2 0

rY::Za%Pk — VUmk 2 0

fY'mP — Uk — rY;:lenP + ’Y;’Zlnpk 2 0
,_Y::Llamp - '.Y;’Zawpk - fY'mP + Uik 2 0.

The quadratic terms Py, are thus replaced with v,,,; with
the above linear RLT bound-factor constraints, and an LP relax-
ation OPT-VBR (I) is obtained as given in (26)~(37).

maximize Z Uy (26)
melU
subject to:
GuPo— | Y GiPetnn | 7™ >0.¥m (27
k#£m
GrPo = | Y GR'Prt i | 7 <0, ¥m (28
k#m
0<P,<P, Vm (29)
log (1L 4+9m")  ae
Um Z mer _ ,-;Zzin,) (PY'”L - ’Vm)"’
1Og (1 + ﬁY:EGT) l min
~maz _ ,ymin (,7"’ ~Tm )’ vom (30)
h
y N h Y — VYm
U, < 10g,(1—|—'ym)+ W, VTTL,h (31)
maz\ h/H-1
. 1 + ,Y”I’L(L.L
h min m
=(1 / _— —1L,Vm,h (32
= ) () S ()
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Uk — Y Py > 0, Vo, k £ m (33)
(Y =™ VP = Va9 " P 2 0, Y k£ m (34)
TPy — Ve 20, VI, k #m (35)
(Yn ™™ = Y )P = v P + Wi > 0, ¥V m, k # m. (36)

> vk Gy = G P+ Ty = 0, ¥ m. (37)
k#m

The LP relaxation OPT-VBR(!) can be effectively solved
with an LP solver in polynomial time. The optimal solution to
the LP relaxation consists of {]3*, @*, 5", v*}. During the re-
formulation and linearization procedure, we mainly relax the
logarithm function in the objective function of OPT-VBR. The
original constraints of OPT-VBR are preserved in OPT-VBR
(). Therefore, we have the following theorem regarding the fea-
sibility of the solution, which greatly simplifies the local search
procedure of the branch-and-bound algorithm to be presented in
Section I1I-B.

Theorem 2: The optimal transmit power vector P* to the LP
relaxation OPT-VBR (/) is a feasible solution to the original
problem OPT-VBR.

Proof: The optimal transmit power vector P* of problem
OPT-VBR (!) satisfies the power constraint (28), which is iden-
tical to the power constraint (10) in problem OPT-VBR. Since
the solution P* also satisfies SINR constraints (26) and (27), it
can be easily shown to satisfy the SINR constraints (8) and (9)
in problem OPT-VBR. Thus the optimal transmit power vector
P* of the relaxed problem OPT-VBR (!) is also feasible to the
original problem OPT-VBR. ]

B. Branch-and-Bound Algorithm

According to Theorem 2, we can substitute the optimal power
assignment P* for the LP relaxation into Problem OPT-VBR
to obtain a lower bound, while the LP solution itself provides
an upper bound. We next incorporate the LP relaxation into a
branch-and-bound framework to obtain an algorithm that can
produce (1-¢)-optimal solutions.

Branch-and-bound is an iterative method for solving opti-
mization problems, especially for discrete and combinatorial
problems. A branch-and-bound procedure has two key compo-
nents. The first one, called branching, is to partition a problem
into subproblems. The procedure is repeated recursively to each
of the subproblems and all produced subproblems naturally
form a tree structure, i.e., the branch-and-bound tree. Its nodes
are the constructed subproblems. The leaves of the tree is also
call the Problem List. The other component is bounding, which
is a fast way of finding upper and lower bounds for the optimal
solution for each subproblem. For a maximization problem, an
infeasible upper bound (UB) can be found by solving a relaxed
problem. A local search algorithm is then used to explore the
neighborhood, to find a feasible lower-bounding solution (LB).
As discussed, we can easily derive upper and lower bounds by
solving the LP relaxation (no need for local search). The core
of the approach is an observation that, for a maximization task,
if the upper bound for a subproblem /; is smaller than the lower
bound for any other subproblem ls, then I; and the branch
rooted at /; can be safely discarded from the tree, such that the
computational complexity can be reduced. This procedure is
called pruning.
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The algorithm terminates when the upper bound reaches (1 +

e) of the lower bound. Let the optimal object valuebe O < UB,

we have LB > 1/1+EUB > 1/1—}—5()2 (1—€+62 — 3+

-)O0 = (1 — ¢)O, for 0 < ¢ < 1. The pseudo code for the
branch-and-bound algorithm is given in Algorithm 1.

Algorithm 1 Branch-and-Bound Algorithm

1 Initialization
2 Obtain LP relaxation OPT-VBR (/) as Prob 1;

3 Set optimal solution sol = ¢, Problem list S = {Prob 1},
UB = o0,and LB = 0;

4 Solve Prob 1 for solution {ﬁ’ , % ,4', 7'} and upper bound
UBy;

5Use P, (7), and (8) to get lower bound .3 ;

6SetUB = UBy and LB = LBy;

7 Iteration & pruning

8 Select Prob ! with the largest UB; in S and set UB = U By;
9If L3; > LD then

10 Setsol = P/ and LB = LB;;

11 IfUB < (1+ ¢)LB then

12 stop with solution sol;

13 else

14 remove all probs k in S with UB;, < (1 + €)LB;
15 end

16 end

17 Partition

18 For Prob /, find the maximum relaxation error among all
RLT variables, e.g., maxy, k{|¥mPs — Vms|};

min . max

19 0f (3" — ™) - min{y, — 7™ 1 = Y }
> (Ppes — Prin) - min{ P, — Ppin, Prer — P} then

min min

m Wf,’f“‘m] into ["y,m mam].

20 partition ["Y 77:n] and [fY:n? Y >
21 else

22 partition [P, Pmas] into [Pt P! | and

(Pl P
23 end
24 Bounding

25 Solve the partitioned probs /; and /2 to get solutions sol;, ,
soly, and bounds UDB,;,,UD,,, LDB;,, LDy,;

26 Remove Prob [ from S;

271f (1 + ¢)LB < U By, then
28 add Prob [y into S;

29 end

30if (1 + €)LB < UB,,then ;
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31 add Prob/s into &
32 end

33if S = ¢then

34 stop;

35 else

36  go to Step 6;

37 end

C. Enhancement

We further introduce a heuristic to accelerate the convergence
of the branch-and-bound algorithm. At the beginning of time
slot £, if the playout buffer level is above a threshold, say, 80%,
and X,,,(t — 1) > D,,(t) at user m, we set P,,(£) = 0 and
remove the link from the optimization process.

Generally the playout buffer size should be at least greater
than the largest frame size. Given the large variations in VBR
frame sizes, there could be multiple frames stored when the
buffer is close to full. When the above conditions are satisfied,
there is little chance of buffer underflow at the end of time slot
¢t even if we do not transmit anything to user . On the other
hand, if we schedule a non-zero power P, (t) for this link, only
a small amount of bits can be transmitted due to the buffer over-
flow constraint, but at the cost of reduced SINRs at all other
links. Excluding such links from transmission not only greatly
speeds up the convergence of the branch-and-bound algorithm,
but also increases the SINR and capacity of other active links.

IV. DISTRIBUTED ALGORITHM

A. Develop a Distributed Algorithm

Although the RLT-based branch-and-bound algorithm can
provide a (1 — ¢)-optimal solution, it requires a centralized
implementation. A centralized controller is needed to collect
network, link and video related information, and to update
transmit power for each downlink. In this section, we develop
a distributed algorithm for Problem OPT-VBR that can be
implemented in each BS and operate with local information.

We assume each BS obtains video cumulative consumption
curves and playout buffer sizes for its users during the video
session initiation phase. At the beginning of time slot £, each BS
m computes for user m the minimum rate as [D,,, () — X, (# —
1)]/7, i.e., the data rate that empties the playout buffer at the end
of time slot ¢ but without underflow, and the maximum rate as
[Bi (1) — X, (t—1)]/7, 1.e., the data rate that makes the playout
buffer full at the end of time slot ¢ but without overflow. BS m
then translates the minimum and maximum rates to minimum
and maximum SINRs, i.e., 7™ (¢) and v/%*(t) as given in
(6). In the following, we again drop the time slot index (%) to
simplify notation.

To maximize objective function (7), BS m sets a target SINR
as yiar = ~mez and tries to achieve the target SINR by ad-
justing its transmit power. The problem then becomes a Dis-
tributed Constrained Power Control (DCPC) problem [19]. BS

m first randomly sets its initial transmit power as 0 < P9 < P.
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Let ! be the i-th SINR measurement at user 77, which is car-
ried in the feedback to BS m. BS m then uses the following
DCPC algorithm to update its power after receiving the i-th
SINR feedback.

tar
P —mm{P 7"’ P‘ 1}

‘"L

(3%)

If the fy“” ’s are feasible (see Section II-C ), the power vector
series {P°, PL, ... P ...} is proved to converge to a unique
positive power vector satisfying the following equation [19].

P = min {P_,I‘ta"’(AP’ + ﬁ)} , (39)
where T**" = diag{7**"} = diag{7{*", 75", ..., ¥4 }. Fur-
thermore, the converged power vector P*(t) also achieves the
target SINR ~!¢"(¢) for each BS m. The convergence result is
summarized in the following fact from [19].

Fact 2: With the DCPC algorithm (38), the transmit power
vector converges to a unique positive power vector P* satis-
fying (39). After convergence, either P* achieves FHT or at
least one of the elements in P* is equal to P.

The pseudo code for the distributed DCPC algorithm is given
in Algorithm 2, where « is a fraction in (0,1) and 5 is a posi-
tive integer.If BS s transmit power remains at the maximum
power P for 3 iterations, while the target SINR ~227" is still
not achieved, we reset the target SINR as v/%" = ™ 4

o - (74 — ™M"Y and restart the iterative update process. We
choose a = 0.618, the reciprocal of the golden ratio, and (3
from 2 to 5 in our simulations.

Algorithm 2: DCPC Algorithm 2

1 BS m obtains b,,,, D,,, and B,,, for user m;

2 BS m computes SINR bounds %* and ~v/7*";
3 BS m sets y/¢" = 4™ and P,,(0) € (0, P];

T

4 While TRUE do

5  BSmn receives SINR feedback ’y,'n and updates its power
as: P}, = min { P, (y%er /i) Pit

(L3

6 If (P! = P for 3 iterations ) & (v}, # %) then

7 reset the target SINR as: y/0" = ymin 4 o . (ylor —
i =i

8 end

9 1=1+1;

10 end

In practice, the path gains vary over time due to channel
fading. It is possible that during some time slot, the transmis-
sion is not feasible even for the minimum required rate. It is
nontrivial to test the feasibility of the target SINR vector 44"
in a distributed manner with only local information. In fact, if
the target SINR vector is infeasible, the problem of finding the

largest set of links that can be supported at the given SINRs is
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proved to be NP-Complete [29]. Therefore, we adopt the fol-
lowing heuristic strategies to handle the case when the target
SINR vector cannot be achieved by a feasible power assignment
due to deep fading channels.

i) In the first time slot, if the DCPC algorithm does not con-
verge in a certain number of steps, suspend the transmis-
sion of the video with the largest frame size for sometime
and retry the algorithm.

ii) Adopt the acceleration enhancement as in the centralized

algorithm, which is described in Section I1I-C .
If the DCPC algorithm does not converge for the reduced
vie" (see Lines 6-8 in Algorithm 2), further reduce the
target SINR as 2% = y™min 4. (ylem —yminy Ifstill no
convergence when 72" = (1+¢)- ,’,’LL”‘, for0 <e<x 1,
all the links whose buffer will not be empty in the next
time slot will pause their transmissions. Since the algo-
rithm always tries to transmit as more data as possible
(i.e., by setting a high target SINR whenever possible), it
is highly likely that such links won’t have buffer under-
flow in the following time slots.
iv) Ifall the above steps fail, the BS suspends its transmission

and the user freezes the playout precess until the next time

slot.

iii)

B. Discussions

Channel Estimation: In a real deployment, some effective
channel estimation schemes should be adopted to obtain the
channel gains. Based on the channel gains, the schedules can
be computed and the transmit powers determined.

Scalability Issue: The algorithm is focused on intercell in-
terference in a multi-cell wireless network, while assuming or-
thogonal channels for users in the same cell. The major inter-
ference comes from users in neighboring cells using the same
channel. Since in each cell each video session is allocated with
one channel, given the hexagon design of cellular networks,
there may be at most seven users (six in the six neighboring
cells, and one in the center cell) that share the same channel. So,
for seven video sessions, the computation complexity should
be small. Scalability may become an issue when there are a
large number of channels, and the controller needs to solve one
problem for each channel. We conjecture that the distributed/
heuristic algorithm can handle a considerable large number of
concurrent problems due to its low computational complexity.
An admission control mechanism may also be necessary to limit
the number of concurrent video sessions.

Long Videos: The proposed algorithms do not require a spe-
cific video length. If the video length is much longer, we can cut
the video to several shorter segments and the proposed sched-
uling algorithms can be executed for each segment of the video
stream.

VCR Control: For VCR control functions, a similar strategy
can be adopted that was used in our prior work [30]. For ex-
ample, if the user would like to fast forward or rewind the video,
the commands are then sent to the controller. The controller will
locate the rewound or fast forwarded location and shift the un-
derflow and overflow curves to that point. Then, based on the
new frame size information and the shifted underflow and over-
flow curves, a new transmission schedule will be computed. See
[30] for details.
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Fig. 3. The cumulative overflow, transmission, and consumption curves when transmitting Star Wars at link 1 in the seven-cell network. The three curves in
each lower figure are the cumulative overflow, transmission, and consumption curves from top to bottom. (a) Centralized algorithm. (b) Accelerated centralized

algorithm. (¢) DCPC.

V. SIMULATION RESULTS

To evaluate the performance of the proposed algorithms, we
simulate VBR video streaming in a 7-cell wireless network. We
assume the channels within a cell are orthogonal and inter-cell
interference is the major limiting factor. The channel bandwidth
is B,, = 1 MHz. The path gain averages are set to G} = d,;j;,
where d}.,,, is the physical distance from BS k to user .. We as-
sume Rayleigh fading channels in all the simulations, where the
normalized path gain is exponentially distributed as f(G}*) =
exp{ =G /GP} for G > 0. The distance from a user to its
corresponding BS is uniformly distributed from 100 m to 1000
m and the inter-cell BS distance is from 1600 m to 2000 m. The
temperature is Ty = 290 Kelvin and the equivalent noise band-
width is also 1 MHz. The peak power constraint is P = 1 Watt.

In each cell, the channel is dedicated to one mobile user for
VBR video streaming. We assume BS’s 1, 4 and 7 are streaming
movie Star Wars, BS’s 2 and 5 are streaming NBC News, and the
remaining links 3 and 6 are transmitting Tokyo Olympics. We
use the VBR video traces from the Video Trace Library hosted at
Arizona State University [24] in all the simulations. The playout
buffer size is set to be 1.5 times of the largest frame size in the
requested VBR video.

A. Centralized Algorithm

We implement the branch-and-bound centralized algorithm
using MATLAB. We choose ¢ = 10% for the simulations.
From the VBR video traces, we derive the cumulative con-
sumption and overflow curves. The centralized algorithm com-
putes the optimized power assignment for the BS’s at begin-
ning of each time slot. In Fig. 3(a), we plot the cumulative
consumption, overflow and transmission curves for Star Wars
transmitted on link 1. The top subfigure is for 10000 frames.
We also plot the curves from frame 1960 to frame 1980 in the
bottom subfigure, while frame 1969 has the largest size among
the 10000 frames. We observe that the cumulative transmis-
sion curve X (¢) is very close to the cumulative overflow curve
B (1), indicating that the centralized algorithm always aims to
maximize the transmission rate as allowed by the buffer and
power constraints, and the playout buffer is fully utilized for
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Fig. 4. Convergence of the branch-and-bound algorithm in time slot 1 when
all the I-frames are transmitted and all the buffers are empty (i.e., the worst case
scenario).

most of the time. There is no playout buffer overflow or under-
flow for the entire range of the movies.

In Fig. 4, we plot the upper and lower bounds for objective
function (7) for time slot 1. This is the hardest time slot with
respect to power control, since all the sessions are transmitting
I-frames and all the playout buffers are empty in this time slot
in our simulations. We observe the optimality gap between UB
and LB is continuously decreased until the ¢ = 0.1 threshold
is reached. In other time slots where the frame sizes are not
consistently large and the playout buffers are close to full, it
usually takes only a few (e.g., 5 or 6) iterations to reach the
optimality gap threshold.

The average computation time are recorded for the default
scenario, for a PC with Intel 1.83 GHz CPU and 3.00 G RAM.
We find most of the computation time is consumed in the first
time slot, because the first frame is the [-frame that usually has
the largest size in the sequence. The computation time varied
with the channel fading condition and decreases as the opti-
mality tolerance ¢ increases, in the range of 1.5 s to 480 s. The
smaller the interference, the smaller the computation time. The
performance also significantly depends on the linear solver of
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Fig. 5. Simulation results with a seven-link network. (a) Rate sums with the algorithms. (b) Convergence of transmit powers with DCPC. (c) Convergence of bit

rates with DCPC.

Matlab. There is a tradeoff between computation time and opti-
mality. The larger the ¢, the smaller the computation time. Since
the branch and bound framework is computation intensive, it is
mainly used as a benchmark for performance evaluation.

We also evaluate the accelerated scheme under the same
video and network conditions. The curves for link 1 are plotted
in Fig. 3(b). It can be seen that during time slots 1963, 1967, and
1971, there is no transmission on link 1 since the playout buffer
is over 80% full. Pausing transmission in these time slots makes
it easier for other links to transmit large frames and speeds
up the convergence of the algorithm, while causing no buffer
underflow at link 1. Since large frames rarely occur in the same
time slot (except for time slot 1), this is analogous to statistical
multiplexing of VBR videos. We find in the simulation, a link
can pause in over 60% of the time slots with the acceleration
heuristic, resulting in significant reduction in computation time.

B. Distributed Algorithm

We next examine the performance of DCPC. The network
and video setups are the same as those in the centralized algo-
rithm simulations. The cumulative overflow, transmission, and
consumption curves obtained by DCPC are plotted in Fig. 3(c)
for Star Wars transmitted on link 1. We observe very similar
performance as in the case of the centralized algorithm shown
in Fig. 3(a). The cumulative transmission curve is again very
close to B, (t), and there is neither buffer overflow nor under-
flow during the transmission of 10000 frames.

To compare the distributed and centralized algorithms, we
compute the sum of the bit rates of all the links in each time
slot. The acceleration scheme is not used for both algorithms in
this simulation. The rate sums are plotted in Fig. 5(a) from time
slot 6800 to 6840. We observe that the sum rates achieved by the
centralized algorithm and that by the distributed algorithm are
identical for most part of this interval. Examining the rate sums
for the entire 10000 time slots, we find that the rate sum achieved
by the DCPC algorithm is within 99% of the corresponding rate
sum achieved by the centralized algorithm in over 97% of the
time slots.

The convergence of the distributed DCPC algorithm is
plotted in Figs. 5(b) and 5(c) for one of the time slots. The
accelerated scheme is incorporated with DCPC, such that a link
m may pause its transmission if its buffer is over 80% full and
Xm(t—1) > D,,(1). The evolution of the BS transmit powers
are plotted in Fig. 5, where after 23 steps, all the transmit powers

=}
c
i2
©
N
5
£
=]
e}
o
(2]
o
(]
>
< : ! : !
L i it o —RLT I
i | | ——DCPC
0.1 rommmmmoes prTTmeeees § T Fos —e— Round-Robin(]
! ; : ——W-Lazy
1600 1620 1640 1660 1680 1700
Frame-Time
Fig. 6. Average buffer utilization of the four schemes.

converges to a value between 0 and P = 1 Watt. The converged
power vector is P = [0.0023,0.208, 0.185, 0.0013, 0.163,
7.1 x 107%4,0.188] Watt. The evolution of the bit rates are
plotted in Fig. 5(c). It is interesting to see the data rates con-
verge faster than the transmit powers in this case. All the data
rates reach stable values after a few steps.

C. Empirical Performance Evaluation

We evaluate the performance of the proposed schemes by
comparing them with the following two schemes.

* A round-robin scheme where the BS allocates power in

a QoS based round-robin fashion, which favors the ses-
sion that would suffer buffer starvation if no transmission
is scheduled. When a specific BS is selected for transmis-
sion, it transmits the video with maximum power without
overflowing the client buffer, and all its neighbors remain
silent in the same frame-time slot.

* W-Lazy, as described in Section II-D.

First, we investigate the average buffer utilization at end of
each time slot. When underflow happens, the missing frame is
discarded, and the next frame will be scheduled for the transmis-
sion in the next time slot. We observe that the proposed RLT and
DCPC schemes achieve higher average buffer utilization than the
other two schemes. Fig. 6 shows the average buffer utilization
from frame-time slot 1600 to 1700. We find that the buffer uti-
lization of RLT and DCPC fluctuate around 90% mostly, while
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Fig. 7. Illustration of underflow events. As in Fig. 3, the three curves in each
figure are the cumulative overflow, transmission, and consumption curves from
top to bottom.

TABLE I
NUMBER OF UNDERFLOW EVENTS AND AVERAGE POWER CONSUMPTION

RLT DCPC Round-robin ~ W-Lazy
Mean 0 0.2 516 1076
Conf. Int. [0,0] [—0.355,0.755]  [442,591] [514, 1637]
Avg. Power 0.012  0.0078 0.0161 0.0039
Cons. (W)

the utilization of the Round-robin scheme is in the range of 50%
to 80%. We also find that the W-Lazy scheme always achieves a
zero buffer utilization, since it only transmits each frame as late
as possible in each time slot. At the end of a time slot, all the
data will be consumed by the user and the buffer is left empty.

We then compare the average number of underflow events
in Table 1. we find RLT achieves underflow free transmission,
while the number of underflow events for DCPC is negligible in
the simulations. This is because both schemes aim to transmit
as much video data as possible under the feasible condition in
each frame-time slot. The extra video data transmitted will be
in the playout buffer to provide a cushion to future large frames
or network dynamics. On the other hand, both Round-robin and
W-Lazy suffers a large number of underflow events. We also
illustrate the buffer underflow events in the period from 1680
to 1700 in Fig. 7. The red dot circles indicate the buffer un-
derflow. It can be seen that the cumulative transmission curve
lies below the cumulative consumption curve when buffer un-
derflow events occur. This results in an infeasible transmission
schedule, which causes frozen playout.

The average power consumption of the schemes are also
shown in Table I. W-Lazy consumes the least power. Due to the
variation of frame size and network condition, the transmission
of W-Lazy are infeasible in many time slots. To prevent the
divergence of power allocation, some video sessions should
be paused and the power savings of W-Lazy are achieved by
pausing video transmissions. However, this is at the cost of sig-
nificantly more buffer underflow events, which are undesirable
for user experience. The Round-robin scheme tries to transmit
as much video data as possible. However, it chooses a session
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Fig. 8. Perceived quality of decoded videos: Football video frame 14. (a) RLT.
(b) DCPC. (c) Round-robin. (d) W-Lazy.

TABLE II
STATISTICS OF THE QUALITY OF THE DECODED VIDEOS: FOOTBALL

No. underflow events  Average SNR over all frames

(No. Lost frames) (Y dB)
RLT 0 34.39
DCPC 0 34.39
Round-robin  3(14, 21, 28) 30.56
W-Lazy 2(11,81) 34.14

greedily and pauses other unselected video sessions. This also
causes many underflow events for the unselected sessions.
Also, due to the round robin fashion and limited buffer size,
when the unselected session become selected, its low buffer
utilization will lead to a larger power consumption in order
to fill the buffer, especially when it misses the previous good
channel condition and the channel condition is worse at the
current time slot.

The visual quality of the decoded QCIF VBR Football video
under different schemes are presented in Fig. 8. The 128-frame
video is encoded in VBR with fixed quantization parameters.
We present the perceived quality of the decoded video frames
by RLT, DCPC, Round-robin and W-Lazy in the figure. The
numbers of underflow events and average SNRs of the decoded
videos are presented in Table II.3 A larger buffer size can
achieve a better performance, but it will cause extra cost of
the node design in practice. We find that the proposed schemes
are free of underflow events and produce the best perceived
quality than both the W-Lazy and Round-robin schemes. Lost
frames also affect frame decoding with error propagations. For
example, frame 11 is lost during W-Lazy transmission, the
decoded frame 14 also suffers from the loss.

VI. CONCLUSION

We studied downlink power control for multi-user VBR
video streaming in multicell networks. The problem formula-
tion considers downlink power control, inter-cell interference,
VBR video characteristics, and playout buffer requirements.

3The Round-robin scheme uses a larger buffer than the other schemes in this
simulation, otherwise the decode will crash if the same small buffer size as in
the other schemes is used for Round-robin.
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We developed a centralized algorithm that can provide (1-¢)-op-
timal solutions, and a fast distributed algorithm that only needs
local information. The algorithms are evaluated with extensive
simulations with VBR video traces and fading channels, and
are demonstrated to be effective for streaming VBR videos
over multicell wireless networks.

REFERENCES

[1] Y. Huang and S. Mao, “Downlink power control for variable bit rate
video over multicell wireless networks,” in Proc. IEEE INFOCOM'11,
Shanghai, China, Apr. 2011, pp. 2561-2569.

[2] D. Hu, S. Mao, Y. T. Hou, and J. H. Reed, “Fine grained scalability
video multicast in cognitive radio networks,” IEEE J. Sel. Areas
Commun., vol. 28, no. 3, Apr. 2010.

[3] D. Hu and S. Mao, “On medium grain scalable video streaming over
cognitive radio femtocell networks,” IEEE J. Sel. Areas Commun., vol.
30, no. 3, pp. 641-651, Apr. 2012.

[4] M. W. Garrett and W. Willinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” ACM SIGCOMM Comput. Commun.
Rev., vol. 24, no. 4, pp. 269-280, 1994.

[5] J. Beran, R. Sherman, M. Taqqu, and W. Willinger, “Long-range de-
pendence in variable-bit-rate video traffic,” IEEE Trans. Commun., vol.
43, no. 2/3/4, pp. 1566-1579, Feb./Mar./Apr. 1995.

[6] D. P. Heyman and T. V. Lakshmanr, “What are the implications
of long-range dependence for VBR-video traffic engineering?,”
IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 301-317, Jun. 1996.

[7] M. Dai, Y. Zhang, and D. Loguinov, “A unified traffic model for
MPEG-4 and H.264 video traces,” IEEE Trans. Multimedia, vol. 11,
no. 7, pp. 1010-1023, Aug. 2009.

[8] S. Kang and S. L. Y. Won, “On-line prediction of nonstationary vari-
able-bit-rate video traffic,” IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1219-1237, Mar. 2010.

[9] S.Tanwirand H. Perros, “A survey of VBR video traffic models,” IJEEE
Commun. Surveys & Tutorials, pp. 1-25.

[10] S. Liew and H. Chan, “Lossless aggregation: a scheme for transmit-
ting multiple stored VBR video streams over a shared communications
channel without loss of image quality,” IEEE J. Sel. Areas Commun.,
vol. 15, no. 6, pp. 1181-1189, Aug. 1997.

[11] J. Salehi, Z.-L. Zhang, J. Kurose, and D. Towsley, “Supporting stored
video: reducing rate variability and end-to-end resource requirements
through optimal smoothing,” IEEE/ACM Trans. Netw., vol. 6, no. 4,
pp. 397410, Aug. 1998.

[12] S. Sen, D. Towsley, Z. Zhang, and J. K. Dey, “Optimal multicast
smoothing of streaming video over the internet,” /EEE J. Sel. Areas
Commun., vol. 20, no. 7, pp. 1345-1359, Sep. 2002.

[13] G. Liang and B. Liang, “Balancing interruption frequency and
buffering penalties in VBR video streaming,” in Proc. IEEE IN-
FOCOM’07, Anchorage, AK, USA, May 2007, pp. 1406-1414.

[14] E. A. Gharavol, M. Khademi, and M. R. T Akbarzadeh, “A new vari-
able bit rate (VBR) video traffic model based on fuzzy systems im-
plemented using generalized regression neural networks (GRNN),” in
Proc. IEEE Fuzzy Systems’06, Vancouver, BC, Canada, Jul. 2006, pp.
2142-2148.

[15] J. M. Mcmanus and K. W. Ross, “A dynamic programming method-
ology for managing prerecorded VBR sources in packet-switched net-
works,” Proc. SPIE, Performance and Control of Network Syst., pp.
140-154, 1997.

[16] T. Stockhammer, H. Jenkac, and G. Kuhn, “Streaming video over vari-
able-bit-rate wireless channels,” IEEE Trans. Multimedia, vol. 6, no.
2, pp. 268-277, Apr. 2004.

[17] S. Chatziperis, P. Koutsakis, and M. Paterakis, “A new call admission
control mechanism for multimedia traffic over next-generation wire-
less cellular networks,” IEEE Trans. Mobile Comput., vol. 7, no. 1, pp.
95-112, Jan. 2008.

[18] F. D. Rango, M. Tropea, P. Fazio, and S. Marano, “Call admission
control for aggregate MPEG-2 traffic over multimedia geo-satellite
networks,” IEEE Trans. Broadcast., vol. 54, no. 3, pp. 612-622, Sep.
2008.

[19] S. Grandhi, J. Zander, and R. Yates, “Constrained power control,” Int.
J. Wireless Personal Commun., vol. 1, no. 4, pp. 257-270, Apr. 1995.

[20] M. Chiang, “Balancing transport and physical layers in wireless mul-
tihop networks: jointly optimal congestion control and power control,”
IEEE J. Sel. Areas Commun., vol. 23, no. 1, pp. 104-116, Jan. 2005.

[21] A. Gjendemsj, D. Gesbert, G. Oien, and S. Kiani, “Binary power con-
trol for sum rate maximization over multiple interfering links,” IEEE
Trans. Wireless Commun., vol. 7, no. 8, pp. 3164-3173, Aug. 2008.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 8, DECEMBER 2013

[22] M. Rasti and A. R. Sharafat, “Distributed uplink power control with
soft removal for wireless networks,” IEEE Trans. Commun., vol. 59,
no. 3, pp. 833843, Mar. 2011.

[23] I Mitliagkas, N. D. Sidiropoulos, and A. Swami, “Joint power and
admission control for ad-hoc and cognitive underlay networks: Convex
approximation and distributed implementation,” IEEE Trans. Wireless
Commun., vol. 10, no. 12, pp. 41104121, Dec. 2011.

[24] M. Reisslein, Video Trace Library, Arizona State Univ. [Online]. Avail-
able: http://trace.eas.asu.edu/.

[25] M. Chen and A. Zakhor, “Multiple TFRC connections based rate con-
trol for wireless networks,” IEEE Trans. Multimedia, vol. 8, no. 5, pp.
1045-1062, Oct. 2006.

[26] J. Lee, R. Mazumdar, and N. Shroff, “Downlink power allocation for
multi-class wireless systems,” IEEE/ACM Trans. Netw., vol. 13, no. 4,
pp. 854-867, Aug. 2005.

[27] N. Bambos, S. C. Chen, and G. J. Pottie, “Radio link admission algo-
rithm for wireless networks with power control and active link quality
protection,” in Proc. IEEE INFOCOM 95, Boston, MA, USA, Apr.
1995, pp. 97-104.

[28] S. Kompella, S. Mao, Y. Hou, and H. Sherali, “On path selection and
rate allocation for video in wireless mesh networks,” IEEE/ACM Trans.
Netw., vol. 17, no. 1, pp. 212-224, Feb. 2009.

[29] M. Andersin, Z. Rosberg, and J. Zander, “Gradual removals in cel-
lular PCS with constrained power control and noise,” in Proc. [EEE
PIMRC"95, Toronto, ON, Canada, Sep. 1995, pp. 56—60.

[30] Y. Huang, S. Mao, and Y. Li, “A majorization approach to downlink
multiuser VBR video streaming,” Elsevier Comput. Commun., vol. 35,
no. 15, pp. 1828-1837, Sep. 2012.

Yingsong Huang (S’12) received the M.S. degree
in control theory and control engineering and the
B.S. degree in Automation, both from Chongqing
University, Chongqing, China. Since 2007, he has
been pursuing the Ph.D. degree in the Department of
Electrical and Computer Engineering, Auburn Uni-
versity, Auburn, AL. His research interests include
modeling, control and optimization in microgrids,
smart grid and computer networks.

Shiwen Mao (S°99-M’04-SM’09) received Ph.D.
in electrical and computer engineering from Poly-
technic University, Brooklyn, NY, USA (now
Polytechnic Institute of New York University) in
2004. He was a research staff member with IBM
China Research Lab from 1997 to 1998. He was a
Postdoctoral Research Fellow/Research Scientist at
Virginia Tech, Blacksburg, VA, USA from 2003 to
2006. Currently, he is the McWane Associate Pro-
fessor in the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL, USA.

His research interests include cross-layer optimization of wireless networks
and multimedia communications, with current focus on cognitive radios, femto-
cells, 60 GHz mmWave networks, free space optical networks, and smart grid.
He is on the Editorial Board of IEEE Transactions on Wireless Communications,
IEEE Internet of Things Journal, IEEE Communications Surveys and Tutorials,
Elsevier Ad Hoc Networks Journal, and Wiley International Journal of Com-
munication Systems. He is the Director of E-Letter of the Multimedia Commu-
nications Technical Committee (MMTC), IEEE Communications Society for
2012-2014.

Dr. Mao is a coauthor of TCP/IP Essentials: A Lab-Based Approach (Cam-
bridge University Press, 2004). He was awarded McWane Endowed Professor-
ship in the Samuel Ginn College of Engineering for the Department of Electrical
and Computer Engineering, Auburn University in August 2012. He received
the NSF Faculty Early Career Development Award (CAREER) in 2010. He is
a co-recipient of IEEE ICC 2013 Best Paper Award, The 2004 IEEE Commu-
nications Society Leonard G. Abraham Prize in the Field of Communications
Systems and The Best Paper Runner-up Award at ICST QShine 2008. He was
named 2012 Exemplary Editor of IEEE Communications Surveys & Tutorials.
He also received Auburn Alumni Council Research Awards for Excellence-Ju-
nior Award in 2011 and two Auburn Author Awards in 2011. Dr. Mao holds one
US patent.



