
F
m

E
É

A
R
R
A
A

K
D
(
M
D
I
G

1

i
p
w
t
m
i
r
o
o
i
t
m

r

1
h

Applied Soft Computing 13 (2013) 3130–3148

Contents lists available at SciVerse ScienceDirect

Applied  Soft  Computing

j ourna l ho me  page: www.elsev ier .com/ locate /asoc

ast  intelligent  watermarking  of  heterogeneous  image  streams  through
ixture  modeling  of  PSO  populations

duardo  Vellasques ∗, Robert  Sabourin,  Eric  Granger
cole de Technologie Supérieure, Université du Québec, Montreal, Canada

a  r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 31 December 2011
eceived in revised form 2 May  2012
ccepted 14 August 2012
vailable online 8 September 2012

eywords:
ynamic particle swarm optimization

DPSO)
emory-based optimization
igital watermarking

ntelligent watermarking
aussian mixture modeling (GMM)

a  b  s  t  r  a  c  t

In intelligent  watermarking  (IW),  evolutionary  computing  (EC)  is employed  in  order  to  automatically  set
the embedding  parameters  of  digital  watermarking  systems  for  each  image.  However,  the  computational
complexity  of  EC  techniques  makes  IW unfeasible  for large  scale  applications  involving  heterogeneous
images.  In this  paper,  we  propose  a  dynamic  particle  swarm  optimization  (DPSO)  technique  which  relies
on  a memory  of  Gaussian  mixture  models  (GMMs)  of  solutions  in  the  optimization  space.  This  technique  is
employed  in  the  optimization  of  embedding  parameters  of  a  multi-level  (robust/fragile)  bi-tonal  water-
marking  system  in high  data  rate applications.  A  compact  density  representation  of previously-found
DPSO solutions  is created  through  GMM  in  the  optimization  space,  and  stored  in memory.  Solutions  are
re-sampled  from  this  memory,  re-evaluated  for new  images  and  have  their  distribution  of fitness  values
compared  with  that  stored  in the memory.  When  the  distributions  are  similar,  memory  solutions  are
employed  in  a straightforward  manner,  avoiding  costly  re-optimization  operations.  A specialized  mem-
ory  management  mechanism  allows  to  maintain  and  adapt  GMM  distributions  over  time,  as  the  image
stream  changes.  This  memory  of  GMMs  allows  an accurate  representation  of  the  topology  of  a  stream  of

optimization  problems.  Consequently,  new  cases  of  optimization  can  be matched  against  previous  cases
more precisely  (when  compared  with  a memory  of  static solutions),  leading  to considerable  decrease
in  computational  burden.  Simulation  results  on  heterogeneous  streams  of images  indicate  that  com-
pared  to  full  re-optimization  for  each  document  image,  the  proposed  approach  allows  to decrease  the
computational  requirement  linked  to EC by  up  to 97.7%  with  little  impact  on the  accuracy  for  detecting
watermarks.  Comparable  results  were  obtained  for  homogeneous  streams  of document  images.
. Introduction

Enforcing the security of digital images has become a critical
ssue over the last decade. Advances in communications and com-
uting allow easy transmission and manipulation of digital images
hich limits the efficiency of traditional security methods like cryp-

ography since when the image has been decrypted there is no
ean of enforcing its integrity and authenticity. Digital watermark-

ng [1] allows an additional level of security by embedding image
elated information in a covert manner through a manipulation
f pixel values. The embedding process is subject to a trade-
ff between the robustness against intentional and unintentional
mage processing operations (attacks) and the imperceptibility of

he embedded watermark (image quality) [2]. The embedding of

ultiple watermarks with different levels of robustness [3] allows
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enforcing image authenticity and integrity at the same time, which
is a crucial issue in applications involving document images.

The trade-off between robustness and quality can be adjusted
through manipulation of embedding parameters. In intelligent
watermarking (IW), evolutionary computing (EC) algorithms such
as genetic algorithms (GA) [4], particle swarm optimization (PSO)
[5] are employed in order to automatically find the embedding
parameters that result in an optimal trade-off for a given image
[6]. A population of candidate embedding parameters is evolved
through time using a combination of robustness and quality metrics
as objective function [7–20]. But this process is not feasible in a large
scale scenario due to the high computational cost of EC [10].

In [21,22], the IW of homogeneous streams of bi-tonal doc-
ument images was formulated as a special case of dynamic

optimization problem (DOP1), where a stream of images corre-
sponds to a stream of optimization problems (states) and some
states may  occur repeatedly [24]. Then, selected solutions found

1 In a DOP the optima change over time and might be followed by a period of
stasis [23].
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t the end of optimization were stored in an archive and recalled
or similar problems. One limitation with such approach is that it
ssumes an homogeneous stream of document images, which is not
lways the case with real world applications. Selected solutions do
rovide an accurate representation of such stream of optimization
roblems, which makes it unfit for applications involving hetero-
eneous streams of document images. In this paper, a novel IW
echnique is proposed for the fast intelligent watermarking of het-
rogeneous streams of document images. A memory consisting
f Gaussian mixture models (GMMs) of all solutions in the opti-
ization space (optimization history) plus their respective global

ests is incrementally built, and for every image, solutions are sam-
led from this memory and re-evaluated for the new image. If both
istributions of fitness values are similar, memory solutions are
mployed directly. Otherwise, the respective optimization problem
s considered to be novel and a costlier DPSO operation is per-
ormed. After that, the memory is updated with the GMM  of the
ptimization history of the new problem. Such approach results
n a more precise representation of the topology of the stream of
ptimization problems. For this reason, it allows better recalling
reviously seen problems and is preferred in a scenario involving
eterogeneous streams of document images. The research problem
ddressed in this paper is how to use knowledge of past opti-
ization problems in order to obtain a precise representation of

 stream of optimization problems. The hypothesis on which this
pproach is based is that through time, density estimates of solu-
ions found during optimization provide a compact but yet precise
epresentation of the optimization problems presented to the intel-
igent watermarking system up to that point. The two  main research
uestions addressed in this paper are (1) how to build a compact
epresentation of a stream of optimization problems in an incre-
ental manner and (2) how to employ such representation in order

o detect new cases of optimization.
The idea of using density estimates of solutions in the optimiza-

ion space is not new. Estimation of Density Algorithms (EDA) [25]
ely on iteratively estimating density of genotypic data of high
valuating solutions. Differently than in EDA, our approach relies
n both, genotypic and phenotypic data of all solutions from the
ptimization history in order to build a more general represen-
ation of the optimization problem. Moreover, in our approach the

odel is employed in order to match new problems with previously
een problems and to provide ready-to-use solutions. The research
resented in this paper follows the research presented in a previous
aper [22]. However, in the previous research we formulated IW of
omogeneous streams of document images as the optimization of

 stream of recurring problems and proposed a DPSO technique
ased on a memory of static solution. It was observed that such
emory lacked precision to tackle IW of heterogeneous streams

f document images which led to a degradation in computational
urden of that approach in such scenario. In this paper, we focused
n obtaining a precise representation of the underlying optimiza-
ion problems in order to allow a better match between new and
revious cases of optimization. Memory precision is an important
lement in our initial formulation of intelligent watermarking and
as been neglected in our first paper. Therefore, this strategy of

ncrementally building a compact yet precise model of a stream
f optimization problems is the main contribution of this research
nd is to the best of our knowledge, novel.

The proposed approach is evaluated in the optimization of
he embedding parameters of a multi-level (robust/fragile) bi-
onal watermarking system [3,26] for both heterogeneous and
omogeneous image streams, with and without cropping and

alt & pepper (which are removal attacks [27]). The standard
pproach in the bi-tonal watermarking literature is to test water-
ark robustness against tampering attacks like cropping, manual

emoval/modification of connected components like characters
Fig. 1. Fitness evaluation module.

[28–30,26,31,3,32]. Other removal attacks like Stirmark [33], image
enhancement, JPEG compression, noise filtering either require
gray-scale images or knowledge about the features present in the
bi-tonal image [34] and were not considered in our research. Resis-
tance against geometric attacks can be easily tackled with the use
of reference marks [3] and is also outside the scope of this paper.
Experimental results demonstrate that the proposed approach has
a good memorization capability but at the same time, is flexible
enough to adapt to variations in the stream of optimization prob-
lems.

Our optimization problem formulation of intelligent water-
marking is presented in Section 2. A brief literature review of
related techniques is presented in Section 3. The new approach
proposed in this paper, based on Gaussian mixture modeling for
density estimation of solutions in the optimization space, and on
adaptive memory management mechanisms is described in Sec-
tion 4. Finally, Section 5 provides simulation results and discussion.

2. Optimization problem formulation of intelligent
watermarking

The problem addressed in this article is the optimization of
embedding parameters of a bi-tonal watermarking system, aimed
at a high throughput adaptive watermarking of heterogeneous
streams of document images. In this formulation, a stream of
images is seen as a stream of optimization problems. Two possi-
ble actions can occur when an image from that stream is to be
watermarked: (1) an existing solution (set of embedding param-
eters) is recalled from the memory; (2) optimization is triggered in
order to find a new solution. If optimization is triggered, a popula-
tion (swarm) of candidate solutions (particles) is evolved through
several generations using Dynamic PSO (DPSO). At each generation,
each solution has its fitness evaluated in a given watermarking task.
The fitness function of the proposed technique is depicted in Fig. 1.

The PSO algorithm employed on full optimization is the same
described in [22]. The fitness function was  slightly modified. Firstly,
the Conventional Weighted Aggregation (CWA) mechanism was
replaced by Chebyshev Weighted Aggregation which is more robust
to anomalies in the trade-off between the various fitness func-
tions in a multi-objective optimization problem. In the Chebyshev
approach, fitness values are aggregated according to their distances
from reference points, under which the values of these fitnesses are

considered good [35]. Secondly, the robustness of the fragile water-
mark was  added to the aggregated function in order to minimize
interference of the robust watermark as observed in [22]. Thirdly,
BCR−1 was replaced by 1 − BCR. Therefore, the fitness function will
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Table 1
Range of embedding parameter values considered for PSO algorithm in this paper.

Embedding parameter Particle encoding

Block size (B): {2, 3, 4, . . .,  BB} xi,1 : {1, 3, 4, . . .,  BB − 1}
Difference between Q for the robust (QR) and

fragile (QF) watermarks (�Q): {2, 4, 6, . . .,
150}

xi,2 : {1, 2, . . .,  75}
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SNDM  window size (W): {3, 5, 7, 9} xi,3 : {1, 2, 3, 4}
Shuffling seed index (S): {0, 1, 2, . . .,  15}  xi,4 : {0, 1, 2, . . .,  15}

e defined as:

(x) = max
i=1,...,3

{(1 − ω1)(˛sDRDM − r1), (1 − ω2)(1 − BCRR − r2),

(1 − ω3)(1 − BCRF − r3)} (1)

here ˛s is the scaling factor of the quality measurement DRDM
Distance Reciprocal Distortion Measure [36]), BCRR (Bit Correct
atio [7,17] between embedded and detected watermark) is the
obustness measurement of the robust watermark, BCRF is the
obustness measurement of the fragile watermark, ωi is the weight
f the ith objective with ωi = 1/3, ∀ i, ri is the reference point of
bjective i. The fitness function is depicted in Fig. 1 where Co is
he cover image, mR and mF are the robust and fragile watermarks,
espectively, Cr is the robust watermarked image, Crf is the image
hat has been watermarked with both, the robust and the fragile
atermarks (multi-level watermarked image), Crf′ is the multi-

evel watermarked/attacked image, mRAD is the robust watermark
hat has been detected from the multi-level watermarked/attacked
mage, mFD is the fragile watermark that has been detected from
he multi-level watermarked image.

The bi-tonal method of Wu  and Liu [3] (relying on the pixel flip-
ability analysis technique of Muharemagic [26]) is employed as
he baseline watermarking method in exactly the same manner
s in [22]. This method allows the embedding of multiple water-
arks in a same image with different levels of robustness where

obustness is defined by a quantization step size parameter Q.
The particle encoding employed in this system can be seen in

able 1. Basically, the block size has lower bound of 2 × 2 and upper
ound of BB× BB with BB = maxB{B2× max{|mR|, |mF|} ≤ |Co|} pix-
ls where B is the block width in pixels, |mR|, |mF| and |Co| is the
ize of the robust watermark, fragile watermark and cover images,
espectively. The remaining bounds, �Q, SNDM (Structural Neigh-
orhood Distortion Measure [26]) window size and number of
huffling seeds were defined based on the literature [26]. Finally,
i,j is the jth parameter encoded in the ith particle.

. Related work

.1. Dynamic particle swarm optimization (DPSO) of recurrent
roblems

Particle swarm optimization (PSO) [5] relies on heuristics found
n bird flocks and fish schooling in order to tackle the optimization
f non-linear, noisy optimization problems. The underlying princi-
le is that a population (swarm) of candidate solutions (particles)
an tackle such type of optimization problem in a parallel man-
er with each particle performing its search guided by the best
osition found by itself and its best neighbor. The canonical PSO
annot tackle dynamic optimization when the optima changes due
o issues like outdated memory, lack of a change detection mecha-
ism and diversity loss [37,38]. One possible strategy to tackle this

roblem is to restart optimization whenever a change has been

dentified. However, the computational burden of such approach is
rohibitive, specially in practical applications. But numerous prac-
ical applications, including intelligent watermarking of stream
puting 13 (2013) 3130–3148

of document images, involve recurrent problems, that reappear
through time, in a cyclical manner. It has been demonstrated in
the literature that the best strategy to tackle such time of problem
is to keep a memory of previous solutions to be recalled for future
similar problems, in an approach named memory-based optimiza-
tion [24]. It has also been demonstrated that depending on the level
of similarity between previous and new problems, it is possible to
employ the solutions directly in the new problem, without any need
of re-optimization [22].

According to Yang and Yao [24], solutions can be stored in
a memory either by an implicit or an explicit memory mech-
anism. In an implicit memory mechanism, redundant genotype
representation (i.e. diploidy-based GA) is employed in order to
preserve knowledge about the environment for future similar
problems. In an explicit mechanism, precise representation of
solutions is employed but an extra storage space is necessary to
preserve these solutions for future similar problems. There are
three major concerns in memory-based optimization systems that
rely on an explicit mechanism: (1) what to store in the mem-
ory; (2) how to organize and update the memory; (3) how to
retrieve solutions from the memory. Regarding what to store, there
are two  known approaches: direct memory scheme, where good
solutions are stored and reused when the environment changes;
associative memory scheme, where what is stored is information
that associates good solutions with their environment (in most
cases, a density estimate of the parameter space). The memory
organization, by its way, can be based on a local mechanism (indi-
vidual oriented) or on a global mechanism (population oriented).
Regarding the memory update, since most real world applications
assume limited memory, the basic approach is to select a solution
stored in the memory to be removed (a review of removal strategies
can be found in [39]) or updated by the newest solution.

An external memory requires an appropriate memory retrieval
mechanism. There are two main memory retrieval strategies [40]
– memory-based resetting and memory-based immigrants. In the
first strategy, when a change is detected (change detection is
usually achieved by re-evaluating memory solutions on the new
environment), all solutions in the memory are re-evaluated and
the best one is chosen as the new global best solution if it is bet-
ter than the old one. In the memory-based immigrants strategy, all
the solutions in the memory are re-evaluated and injected into the
population.

The approach proposed in this paper is based on an associative
memory. Since it has been already demonstrated in the literature
that an associative memory allows associating previous solutions
with corresponding new cases of optimization, we  evolve this idea
a little further and employ the associative memory as a mean of
modeling an stream of optimization problems. That is, more than
associating solutions with new cases of optimization, the proposed
approach allows classifying new cases of optimization based on
previously learned problems.

3.2. Pattern classification

Pattern classification [41] deals with assigning category labels
to new patterns based on previously learned pattern/label
assignments. Novelty detection (or one-class classification [42])
comprises the identification of patterns that were not available
during a training (learning) phase. The main objective of a nov-
elty detection system is to detect whether a new pattern is part
of the data that the classifier was  trained on or not [43]. A novelty
detection system can be either off-line [44] (when the model is cre-

ated once and not updated at all) or on-line [45] (when the model
is updated as new data arrives). In the proposed scenario, a cyclic
DOP also requires detecting if a new problem corresponds to a pre-
vious (training) problem. And as in novelty detection, the complete
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ig. 2. Two possible scenarios involving memory update (existing probe is represen
imilar  to existing probe (new concept). (b) New probe is similar to existing probe (

epresentation of a problem is not available due to computational
onstraints. That is, a memory must provide means of storing and
ecalling optimization problem concepts in an incremental manner
ather than simply associating stored solutions with new prob-
ems (as in the memory-based optimization approaches found in
he literature).

Markou and Singh [43] pointed the main issues related to nov-
lty detection. Five of these issues are crucial in the envisioned
cenario. The first is the principle of robustness and trade-off which
eans that the novelty detection approach must maximize the

xclusion of novel patterns while minimizing the exclusion of
nown patterns. The second is the principle of parameter mini-
ization which means that a novelty detection method must
inimize the number of user-set parameters (mainly when we

onsider that in the envisioned application the data modeling tech-
ique must be closely integrated with the DPSO approach with
inimal human intervention). The third is the principle of general-

zation which implies that the system should be able to generalize
ithout confusing generalized information as novel. The fourth

s the principle of adaptability which means that knowledge of
ovel samples must be integrated into the model. The fifth is the
rinciple of computational complexity, which means that the com-
utational complexity of a novelty detection should be as less as
ossible (also a very important issue in the given application, spe-
ially regarding detection, which should not be more expensive
han re-optimizing).

It can be said that in the proposed application, the fourth
nd fifth principles are closely related. Retraining the model
rom scratch when novel optimization problem is detected would
equire storing all patterns (optimization history) seen so far,
esulting in an ever increasing memory cost. Therefore, in the given
cenario the model must be updated using only solutions from
he new problem which can be seen as an incremental learning
trategy. As defined by Jain et al. [46], in incremental learning, the
earner has access only to a limited number of examples (patterns).
n each step, an hypothesis can be built upon these examples and

 former hypothesis in a way that (1) none of the intermediate
ypotheses a learner explicates contradicts the data processed so

ar and (2) each intermediate hypothesis is maintained as long as it
s consistent with the data seen. Gennari et al. [47] studied the use
f incremental learning in building hierarchical models of concepts
concept formation). They observed that initial non-representative
ata may  lead a learning system astray. The use of GMM  in such case

s very common [48,49] specially because it allows adaptability at
 low computational cost when compared with other approaches

uch as neural networks [50].

From a memory-based optimization point of view, a new con-
ept must (1) represent novelty when compared with existing
oncepts; (2) provide a precise manner of probing the fitness
 solid circle while new probe is represented by dashed circle). (a) New probe is not
ng concept).

landscape. The basic memory unit in the proposed approach is a
probe and it contains a density estimate of solutions plus the global
best solution, both created after the optimization of a single image.
When a new probe is created after a round of optimization, it should
only be inserted if there is no similar probe in the memory. Oth-
erwise it should be merged with the most similar probe in order
to enforce (1). That is, a good memory management mechanism
should keep the dissimilarity between new probes and probes in
the memory consistently high. Put differently, inserts should occur
when a new probe provides new information about the stream of
optimization problems. Fig. 2 illustrates the two  possible scenarios
concerning a memory update.

By enforcing (1), memory redundancy is expected to be miti-
gated since the insert of new probes is constrained by a dissimilarity
measure. In such case, memory elements are expected to resemble
more Fig. 2a than Fig. 2b. That is, the memory is expected to be more
diverse. This leads to a better usage of computational resources
since the number of memory elements (probes) necessary to rep-
resent a given concept is minimized. Moreover, since the main
objective of memory in the proposed system is to provide means of
sampling the fitness landscape of unseen optimization problems,
this increase in memory diversity should lead to an increased cov-
erage of the sampled space (greater sampling diversity), enforcing
(2). This means that during the optimization of a stream of images,
as images are fed into the system, the amount of new information
should decrease gradually as memorization takes place. Conse-
quently the number of re-optimizations should gradually decrease
after this memorization phase is complete. This allows for example,
creating a memory on a laboratory environment (training mode)
and then deliver this memory in a production environment.

4. Fast intelligent watermarking using Gaussian modeling
of PSO populations

Fig. 3 depicts a new memory-based IW system that integrates
density estimation in order to minimize memory size. Given an
image Coi picked from a stream of | Co| images (see 1 in Fig. 3),
an attempt to recall the Short Term Memory (STM) – represented
as SM and comprising a mixture model of solutions �S obtained
during the optimization of a single image CoS and the global best
solution for that image pg,S – is performed first (see 2 in Fig. 3).
During a STM recall, a set of solutions (defined as XS,S) and their
respective fitness values are sampled from �S (including the global
best, pg,S stored in the STM). It is important to note that apart from
pg,S, the position ( XS,S) and fitness values ( F( XS,S, CoS)) of sentry

solutions are an approximation of the positions and fitness values
obtained during the optimization of CoS. The sentry solutions are
re-evaluated for Coi resulting in another set of fitness values F( XS,S,
Coi). The Kolmogorov–Smirnov (KS) statistical test [51] is employed
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ig. 3. Flowchart diagram representing the proposed method for fast intelligent w
f  PSO populations (anchor points are employed in order to guide the reader).

n order to measure the similarity between the distribution of F(
S,S, CoS) and F( XS,S, Coi). If KS(  F( XS,S, CoS), F( XS,S, Coi)) is smaller

han a critical value D˛ for a confidence level ˛, the watermarking
arameters corresponding to the solution which resulted in the
mallest F( XS,S, Coi) are employed right away for Coi, avoiding a
ostly optimization operation.

Otherwise (see 3 in Fig. 3), the same process is repeated for each
ixture model �j and global best pg,j in the Long Term Mem-

ry (LTM) – represented as M and comprising |M| mixture models
f solutions ({�1, . . . , �|M|}) obtained during the optimization of
everal different images and their respective global best solutions
{pg,1, . . . , pg,|M|}) – being the LTM probes sorted in reverse order
f their number of successful recalls.

If a LTM probe Mj results in a successful recall, the watermark-
ng parameters corresponding to the solution which resulted in the
mallest fitness value in Coi are employed right away for that
mage. If no probe in the LTM resulted in successful recall, the
ynamic PSO (DPSO) technique described in [22] is employed in
rder optimize the embedding parameters for Coi (see 4 in Fig. 3).

 certain number of solutions re-sampled from the STM plus its
espective global best are injected into the swarm, providing a start-
ng point for optimization. After that, in the memory update (see

 in Fig. 3), the optimization history (position and fitness of all

olutions during all iterations) is employed in order to estimate a
ixture model (�) of the fitness landscape. This mixture model

lus the global best solution ( pg) obtained during optimization
ill form a probe to be added to the STM replacing previous probe.
arking of heterogeneous bi-tonal image streams using Gaussian mixture modeling

This probe is also either merged or inserted into the LTM based on
the similarity between its mixture model and the mixture mod-
els of LTM probes. In the case of an insert, an older probe might
be deleted to give room for the new one if memory limit has been
reached.

The first level of memory allows for a fast recall in situations
where a block of similar images (e. g. pages of a same document)
appears. The second level allows for recall of solutions in situations
where the fitness landscape associated with the image being water-
marked is not similar to that of the last optimized image but still
is similar to that of an image that had been processed before. Re-
sampling of GMMs  is expected to result in more diverse solutions
which can cover a more significant region of the fitness landscape
than would be possible with static solutions as the later tend to
be concentrated in narrow regions of the fitness landscape (in the
surroundings of previous optima). The rest of this section describes
how the memory management approach addresses the three major
concerns in memory-based optimization systems: (1) what to store
in the memory; (2) how to organize and update the memory; (3)
how to retrieve solutions from the memory. The memory update
and retrieval algorithms are explained with details later in this
section.
4.1. What to store?

In the proposed approach, a model of an optimization problem
(which provides a more compact and precise representation than
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elected individual solutions) is estimated through unsupervised
earning techniques [52] based on the positions and fitness values
f solutions in the optimization space. Because of the stream of
ptimization problems formulation of dynamic optimization, the
istribution of these solutions is expected to be multi-modal. In
uch case, a finite mixture model is a powerful tool for estimating
he distribution of these solutions. A mixture model consists of a
inear combination of a limited (finite) number of models

(x|�) =
K∑

j=1

˛jp(x|�j) (2)

here p( x|�)  is the probability density function (pdf) of a contin-
ous random vector x given a mixture model �,  K is the number
f mixtures, ˛j and �j are the mixing weights and parameters of

he jth model (with 0 < ˛j ≤ 1 and
∑K

j=1˛j = 1). The mixture model
arameters � = {(˛1, �1), . . .,  (˛K, �K)} are estimated using observed
raining data. The common approach is to employ a Gaussian dis-
ribution to represent each element (�j = {�j, ˙j}) where �j is the

ean vector and ˙j is the covariance matrix. A mixture containing
aussian elements is known as a Gaussian mixture model (GMM).

The approach proposed in this paper builds a mixture model
omprising both, the parameter and fitness space. Since it was
bserved that local best data results in density estimates that are
ver-fit to a specific problem, the approach employs current par-
icle’s position instead of local best data. We  propose employing
article positions and fitness values rather than local best positions
nd fitness values in order to estimate the model as they provide

 more general model of a given optimization problem. Every time
e-optimization is triggered, historical particle position data (all
enerations of an optimization task) will be employed as a train-
ng dataset. Since the problem itself is dynamic, during an update,
he LTM needs to adapt to new changes in the data but as well be
apable of “forgetting” or pruning unnecessary information.

.2. How to organize and update?

In the proposed memory scheme there are two  levels of update
 STM and LTM. After re-optimization, position and fitness data of
ll particles for all iterations is employed in order to estimate a mix-
ure model � (Eq. (2)) of the fitness landscape. This model plus the
lobal best will comprise a new probe to be added to the STM and
TM. The standard approach in the literature to estimate mixture
arameters is to employ Expectation-Maximization (EM). In EM,  �

s estimated by gradually applying the E-step followed by the M-
tep until convergence is met. Convergence is attained when the log
ikelihood has stabilized over some dataset. A limitation regarding
he use of standard EM in practical applications is the initializa-
ion of mixture components [53]. The main problem is that EM is
nable to move components across low likelihood regions. EM is
lso unable to escape from situations where two or more compo-
ents are similar, sharing the same data points. Another limitation

s defining the appropriate number of components in a mixture.
sually when there are much more components than the neces-

ary and the covariance matrices are unconstrained, some of the
j’s may  approach zero and the corresponding covariance matrix
ay  become arbitrarily close to singular.
Figueiredo and Jain [53] initialize the mixture with a large
umber of components, where each component is centered at a
andomly picked data point. As the parameters are updated (1)
omponents lacking enough data points to estimate their covari-
nce matrices have their corresponding ˛’s set to zero (component

C2(�,  �′) = − log

[
2∑

i,j˛i˛j

√
|˚i,j|/(
puting 13 (2013) 3130–3148 3135

annihilation); (2) the number of components is gradually decreased
until a lower boundary is achieved and then, the number that
resulted in the best performance is chosen. They also proposed the
following (log-likelihood) convergence criterion based on the Min-
imum Message Length (MML)  which avoids local minima when two
or more components are similar:

L(�,  x) = N

2

∑
˛j>0

log
(n˛j

12

)
+ knz

2
log

n

12
+ knz(N + 1)

2

− log p(x|�) (3)

where knz is the number of components with ˛j > 0, n is the number
of data points and N is the number of parameters (variables) in a
given mixture (which is a function of d, the number of dimensions
of X):

N = d + d(d + 1)
2

(4)

Then, the E-step and M-step are applied iteratively. In the E-step,
the posterior probability is computed [54]:

w(t)
ij
= ˛jp(xi|�j)∑K

k=1˛kp(xi|�k)
(5)

In the M-step the model parameters are updated. The following
 ̨ update annihilates components lacking enough data points:

˛(t+1)
j

= max{0, (
∑n

i=1wi,j) − N/2}∑K
k=1max{0, (

∑n
i=1wi,k) − N/2}

(6)

The remaining mixture parameters are updated as:

�(t+1)
j

=
∑n

i=1w(t)
i,j

xi

w(t)
i,j

(7)

˙(t+1)
j

=
∑n

i=1w(t)
i,j

(xi − �(t+1)
j

)(xi − �(t+1)
j

)T

w(t)
i,j

(8)

where d is the number of dimensions of x.

4.2.1. Memory management operators – insert, merge and delete
In the given scenario, a memory update mechanism must

address two fundamental issues of memory management. The first
is what to do when a new probe is created. More specifically in
which conditions should a new probe be merged with an exist-
ing probe and in which conditions should it be plainly inserted?
The second is, in such situation, what to do when the memory is
full? Should the new probe be merged with an existing probe even
though they are not similar? Should an existing probe be deleted
to make room for the new probe?

In order to mitigate these issues, we propose a selective mem-
ory update mechanism. In this mechanism, when the memory is
due to be updated with a new probe, the C2 distance metric [55]
(which provides a good trade-off between computational burden
and precision) will determine if the new probe will be either added
to the LTM (insert operation) or merged with an existing probe. The
distance between two  mixtures � and �′ (or C2(�,  �′)) is defined
as:

˚i,j = (˙−1
i + ˙′−1

j )−1 (9)
�i,j = �T
i ˙−1

i (�i − �′j) + �T
j ˙′−1

j (�′j − �′i) (10)∑
i,j˛i˛

′
j

√
|˚i,j|/(e�i,j |˙i||˙′j|)

e�i,j |˙i||˙j|) +
∑

i,j˛
′
i˛′j
√
|˚i,j|/(e�i,j |˙′i||˙′j|)

]
(11)
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If the distance is smaller than a given threshold, the new probe
s merged with the closest probe in LTM. Otherwise an insert oper-
tion is performed. In such case, whenever the memory is full the
robe with smallest number of successful recalls is deleted in order
o give room for the new probe. Instead of using a fixed threshold we
ropose using an adaptive threshold, computed based on the min-

mum distance between new probes and probes on the LTM for the
 previous updates (�t

ı
). An insert occurs if C2 − �t

ı
is greater than

he standard deviation for the same time-frame (�t
ı
). Otherwise a

erge operation is performed.
In what regards merging two mixtures, the basic approach

onsists of considering both mixtures as one (p(x|�) ∪ p(x|�′))
nd then merge their components iteratively. A survey of tech-
iques to merge components in a mixture of Gaussians can be

ound in [56]. Basically there are two main families of techniques:
odality-based and those based on misclassification probability.

n modality-based clustering, the components are assumed to be
nimodal and then merging is performed until all mixture com-
onents are unimodal but any further merging would result in a
omponent that is no longer unimodal. In misclassification proba-
ility approach, the notion of a cluster is not based on gaps between
he densities but on how well two components (despite not being
learly separated) classify a sample generated from one of them.
plit of mixture components [54,57] can also be employed in order
o avoid situations where a single component is fit over multi-

odal data. However, it has been demonstrated in [56] that a series
f distance-based merge operations is already enough in tackling
ulti-modality of mixture components.
We propose the use of Hennig [56] technique which is based

n misclassification probability and resorts to the use of a Bhat-
acharyya distance. Differently than other techniques based on

isclassification probability, Hennig’s approach does not require
he use of historical data. The Bhattacharyya distance is defined as:

 = 1
2

(˙1 + ˙2) (12)

B(�1, �2) = (�1 − �2)T ˙
−1

(�1 − �2)

+ 1
2

log

(
|(1/2)(˙1 + ˙2)|√

|˙1||˙2|

)
(13)

This method works as follows. Given a tuning constant d∗ < 1,
ompute the Bhattacharyya distance between all pairs of compo-
ents (dB). If e−dB < d∗ for all components stop merging and let
he mixture as is. Otherwise, merge the two components with

aximum distance and repeat the whole process. The merged com-
onent parameters {˛M, �M, ˙M} = {˛1, �1, ˙1} + {˛2, �2, ˙2} are
efined as [57,54]:

M = ˛1 + ˛2 (14)

M =
˛1�1 + ˛2�2

˛1 + ˛2
(15)

M =
˛1˙1 + ˛2˙2

˛1 + ˛2
(16)

e propose merging the two components with minimum distance
nstead as it should result in smaller (more incremental) variations
n the mixture components.

After the merge, if the number of mixture components is
till higher than a given limit, unmerged components from the
lder mixture are deleted (purge). We  propose the following

urge approach: (1) compute Bhattacharyya distance between
ew/merged and old unmerged components; (2) delete the old
nmerged component with the highest distance; (3) go to 1 until
emory limit has been achieved.
puting 13 (2013) 3130–3148

The memory update mechanism is summarized in Algorithm 1.
After optimization is over, the parameters of the new mixture (�N)
are estimated using position and fitness values of all particles found
during the whole optimization process (step 1). This mixture along
with the global best solution ( pg) form a probe, to be added to the
STM, replacing previous STM probe (step 2). After that, if the length
of ı (which contains the last n minimum C2 distances between new
probes and probes in the LTM) is smaller than T (step 3), its mean
and standard deviation (�t

ı
and �t

ı
) are set to user defined values

(�0
ı

and �0
ı

, steps 4 and 5). Otherwise, they are computed based
on ı (steps 7 and 8). Then, the minimum C2 distance between new
probe and probes in the LTM is added to ı (steps 10 and 11). If
the difference between the minimum C2 distance and �t

ı
is greater

than �t
ı

(step 12), the new probe is added to the LTM, noticing that
the LTM probe with smallest number of recalls must be deleted if
memory limit has been reached (steps 13–16). Otherwise the new
probe is merged with the most similar probe in the LTM and mixture
elements are purged if mixture size limit has been reached (steps
18 and 19). Finally, if the limit of vector ı has been reached, its first
(oldest) element is deleted (steps 21–23).

Algorithm 1. Memory update mechanism.

Inputs:
kmax – maximum number of components with ˛j > 0.
MS – Short Term Memory.
M = {M1, . . . , M|M|} – Long Term Memory.
D – optimization history (set of all particle positions and fitness values for

new image).
LM – maximum number of probes in LTM.
ı – last T minimum C2 distances between a new probe and probes in the

LTM.
|ı|  – number of elements in ı.
T – maximum size of ı.
�0

ı
, �0

ı
– initial mean and standard deviation of ı.

Output:
Updated memory.

1: Estimate �N using D [53].
2: Add �N and pg to MS .
3: if |ı| < T then
4: �t

ı
← �0

ı
5: �t

ı
← �0

ı
6: else

7: �t
ı
← 1

|ı|
∑|ı|

i=1
ıi

8: �t
ı
←
√∑n

i=1
(ıi−�t

ı
)2

|ı|
9: end if
10: i∗ ← argmin

i

{C2(�N , �i)}, ∀�i ∈ M

11: ı ← ı ∪ C2(�N , �i∗ )
12: ifC2(�N , �i∗ ) − �t

ı
> �t

ı
then

13: if |M| = LM then
14: Remove LTM probe with smallest number of successful recalls.
15: end if
16: Add �N and pg to M

17: else
18: Merge(�i∗ , �N ) (Section 4.2.1)
19: Purge merged mixture in case number of elements exceed kmax .
20:  end if
21: if |ı| > T then
22: Remove ı1.
23: end if

4.3. How to retrieve solutions?

In the proposed memory retrieval technique, an attempt to
recall the STM is first made. If it succeeds, the best solution is

employed immediately as the embedding parameter for that image.
Otherwise, recall of probes in the LTM is attempted. If no probe can
be successfully recalled, STM provides solutions to be injected into
the swarm for a new round of optimization.
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Since the proposed technique relies on the use of a GMM of
article positions (rather than selected particles as in the case-
ased technique [22]), recall requires sampling solutions from the
MM.  Sampling Ns solutions from a mixture of Gaussians can be
ttained through a linear combination between a random vector
nd the eigen-decomposition of the covariance matrix, centered at
he mean vector:

s = �j + �1/2
j

U jRs (17)

here Xs is a sampled solution, s is the index of a solution sam-
led for the component j in the mixture (	(Ns˛j)+ 0.5 
 solutions are
ampled per component), �j and U j are the eigen-decomposition
f ˙j (˙j = U j�jU

−1
j ) and Rs is a vector with the same length as

j whose elements are sampled from a normal distribution N(0, I),
eing I the identity matrix.

The memory retrieval mechanism will basically bind the whole
ystem together and is depicted in Algorithm 2. The best recalled
olution Xo is initialized with null (step 1). After that, a given
umber of solutions are sampled from the STM mixture and best
olution (steps 2 and 3). The fitness values of these sampled solu-
ions are re-evaluated for the new image and if the KS statistic
etween these values and the sampled fitness values is smaller
han a critical value (step 4), the best recalled solution is set with
he solution that resulted in the smallest fitness value for the new
mage (step 5). Otherwise, the LTM probes are sorted in reverse
rder of their success counter (step 7) and the same process (re-
ampling, followed by re-evaluation and KS test) is repeated for
ach probe in the LTM (steps 8–16). It is important to observe that
n the event of a successful LTM recall, the success counter of that
TM probe is incremented (step 12) and the best recalled solution
s set with the recalled solution that resulted in the smallest fit-
ess for the new image (step 13). If the best recalled solution is null
step 18), the top STM re-sampled solutions are injected into the
warm and re-optimization is triggered (step 19). Otherwise, the
mbedding parameters encoded by the best recalled solution are
mployed in the watermarking of the new image (step 21).

lgorithm 2. Memory retrieval mechanism.
Inputs:
Co – cover image.
MS – Short Term Memory.
M = {M1, . . . , M|M|} – Long Term Memory.
Ni – amount of injected solutions (%).
D˛ – critical value for KS-test.

Output:
Watermarked image (based on parameters encoded by optimal solution

Xo).

1: Xo← Ø
2: XS,S ← Sample(Ns, MS)
3: XS,S← XS ∪ pg,S

4: if KS( F( XS,S , CoS), F( XS,S , Co)) ≤ D˛ then
5: Set Xo with solution which resulted in smallest F( XS,S , Co).
6:  else
7: Sort M by Count (in reverse order).
8: for i ∈ [1,  |M|]do
9: XS,i ← Sample(Ns, Mi)
10: XS,i← XS,i ∪ pg,i

11: if KS(  F( XS,i , Coi), F( XS,i , Co)) ≤ D˛ then
12: Counti← Counti + 1
13: Set Xo with solution which resulted in smallest F( XS,i , Co).
14: Exit for.
15: end if
16: end for
17: end if
18: if Xo =Ø then
19: Inject the N best solutions in X into the swarm (replacing its N
i S,S i

worst solutions), re-optimize and update memory (Algorithm 1).
20: else
21: Use Xo as optimal embedding parameter.
22: end if
puting 13 (2013) 3130–3148 3137

The proposed memory management scheme (insert/update) is
illustrated using five different bi-modal sets of 2D Gaussian points.
For simplicity, all sets of points have the same covariance matrix
and only their mean vectors vary. Each bi-modal set of points will
simulate the behavior of particles positions during the optimization
of a 2D problem. In this example the memory size is limited to
three probes. Fig. 4a shows the five bi-modal sets of points. From
t = 0 to t = 2, memory update consists of insert operations (Fig. 4b).
Memory limit is reached at t = 3 leading to an insert followed by
a delete (Fig. 4c). At t = 4, one of the components appears close to
a previously seen component and both components are merged
(Fig. 4d). It is worth noticing that in all cases, the knowledge about a
new scenario is acquired without completely “forgetting” previous
knowledge.

5. Simulation results

5.1. Experimental protocol

5.1.1. Databases
The two watermarks to be employed in all experiments for all

databases are same defined in [22], namely, the 26 × 36 BancTec
logo (Fig. 5a) as robust watermark and the 36 × 26 Université du
Québec logo (Fig. 5b) as fragile watermark.

Since the main objective of the proposed method is to tackle
high throughput adaptive watermarking in heterogeneous streams
of document images, the database of document images of the Uni-
versity of Oulu’s MediaTeam [58] (OULU-1999) is employed in
order to validate the performance of the proposed technique in
such task (scenario A). This database is considerably heterogeneous,
scanned at 300 dpi with 24-bit color encoding. Since this database
is not bi-tonal, it was  binarized using the same protocol as in [22].
However, it was  observed that some of the images contained very
large uniform regions (with only white pixels). These images lack
the capacity necessary to embed the watermarks described above.
Thus, a reject rule was  applied: all images with less than 1872 flip-
pable pixels were discarded (pixels with SNDM equal to 0). This is
the minimum number of flippable pixels in order to embed the 936-
bit robust watermark presented above with a quantization step
size (Q = 4) which is the minimum level of robustness necessary for
multi-level embedding. With this rule, 15 of the 512 images from
the OULU-1999 database were excluded. The second objective of
the proposed method is to allow learning the different categories
of problems found throughout the stream of optimization prob-
lems. To validate this, two  separate sets of images – training and
testing – are required. For this reason, the OULU-1999 database
was split in two subsets. The training (memorization) subset con-
tains 100 images chosen randomly from OULU-1999 and is named
OULU-1999-TRAIN. The remaining 397 images compose the testing
(generalization) subset which is named OULU-1999-TEST. Since the
images on this database are from 19 different categories (Table 2),
there is a lot of variation in the size and number of flippable pixels
among these images.

Although the proposed technique was devised to tackle intel-
ligent watermarking of heterogeneous image streams, in a real
life scenario it needs to adapt to watermarking of homogeneous
image streams as well. To validate this, the proposed technique
will be also evaluated in two  different (training and testing) homo-
geneous image streams, namely TITI-61 and CVIU-113-3-4 [22]
(scenario B). Finally, the performance on an unconstrained (homo-
geneous/heterogeneous) stream (scenario C) will be validated. For

this purpose, the OULU-1999-TEST and CVIU-113-3-4 streams were
concatenated and the images were shuffled in order to create a
larger stream named SHUFFLE, to assess how does the proposed
approach scales as the length of the stream grows. A larger learning
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ig. 4. Illustration of memory update technique. (a) Bi-modal Gaussian points. (b) T
 = 0 is deleted. (d) Merging of probe obtained at t = 4 with that of t = 1. One of the co
ere  merged.

tream was also created by concatenating TITI-61 and OULU-1999-
RAIN streams.

.1.2. Methodology
The memory management mechanism should mitigate redun-

ancy in the LTM. Therefore, a sensitivity analysis will be conducted
n a first moment in order to find out how do the distance between
robes and sampled particles diversity relate. The current method
ill be applied to the OULU-1999-TRAIN database but forcing

e-optimization for each image and without using any memory
anagement technique. The purpose of this experiment is to build a

arge memory (containing 100 probes) and then assess the distance
etween these probes in order to set an initial distance threshold
or the proposed technique. As each probe is inserted in the LTM,
he C2 distance [55] between this probe and the probes already in
he memory will be computed. Then 2000 solutions will be sam-

led uniformly from all probes and the normalized mean of the

ig. 5. Bi-tonal logos used as watermarks. (a) 26 × 36 BancTec logo. (b) 36 × 26
niversité du Québec logo.
probes added between t = 0 and t = 2. (c) New probe at t = 3 is inserted while that of
ents of the new probe was overlapped with another one of the old probe and both

pairwise distance among individuals in the population DN
PW [59]

will be computed for the sampled solutions:

DN
PW =

(2/|X|(|X| − 1))
∑|X|

i=2

∑i−1
j=1

√∑d
k=1(xi,k − xj,k)2

NMDF
(18)

where |X| is the population size, xi,k is the kth parameter encoded
by the ith individual, d is the landscape dimensionality and NMDF
is the normalization (factor) with maximum diversity so far. This
metric reflects quite well the population diversity.

Considering the number of probes in LTM is |M|, this involves
sampling 2000/|M| from each probe. A plot of the minimum dis-
tance between the new probe and the probes already in the memory
(minC2) versus the diversity of the sampled population should show
how does limiting the number of insert operations based on a dis-
tance threshold impacts sampling diversity.

We propose a novel metric based on the same principle of DN
PW

but tailored to measure the diversity of the LTM, namely the nor-
malized pairwise distance between probes:

DN
PWM =

(2/|M|(|M| − 1))
∑|M|

i=2

∑i−1
j=1C2(�i, �j)

NMDFC2
(19)

where NMDFC2 is the normalization (factor) with maximum diver-
sity so far (applied to the C2 metric). This metric will show the
amount of inter-probe diversity while DN

PW will show the amount
of intra-probe diversity.

The proposed management strategy should allow the memory
to quickly adapt to an abrupt change in the stream of optimiza-
tion problems. First we  have to define what an abrupt change is.

In this specific scenario an abrupt change is a change in the stream
of optimization problems that requires re-optimization to be trig-
gered. Since defining when re-optimization should be triggered
is subjective, we  propose the use of Kullback–Leibler (KL) [60]
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Table  2
OULU-1999 database structure.

Category OULU-1999-TRAIN OULU-1999-TEST

# # Pixels # # Pixels

Regular Flippable Regular Flippable

Min  Max  Min  Max  Min Max  Min  Max

Addresslist 0 0 0 0 0 6 2.2 × 106 6.6 × 106 3.7 × 105 2 × 106

Advertisement 5 4.9 × 106 7.9 × 106 8.1 × 105 2.6 × 106 19 1.1 × 106 8.1 × 106 1.5 × 105 2.5 × 106

Article 51 1.8 × 106 7.9 × 106 2.5 × 105 3.0 × 106 180 2.0 × 106 15.7 × 106 2.4 × 105 3.0 × 106

Businesscards 1 6.2 × 105 6.2 × 105 9.8 × 104 9.8 × 104 10 5.3 × 105 1.1 × 106 7.8 × 104 3.4 × 105

Check 0 0 0 0 0 3 3.4 × 105 1.4 × 106 1.3 × 105 1.9 × 105

Color segmentation 1 2.5 × 106 2.5 × 106 7.9 × 105 7.9 × 105 7 1.5 × 106 7.3 × 106 4.5 × 105 3.3 × 106

Correspondence 6 2.0 × 106 5.2 × 106 2.1 × 105 1.1 × 106 18 1.1 × 106 4.9 × 106 1.4 × 105 8.2 × 105

Dictionary 1 2.8 × 106 2.8 × 106 3.3 × 105 3.3 × 105 9 1.6 × 106 3.3 × 106 2.3 × 105 6.6 × 105

Form 9 7.3 × 105 5.5 × 106 1.2 × 105 1.1 × 106 14 4.5 × 105 3.9 × 106 7.6 × 104 7.5 × 105

Line drawing 0 0 0 0 0 10 1.5 × 106 7.1 × 106 1.3 × 105 1.1 × 106

Manual 6 3.0 × 106 4.1 × 106 2.8 × 105 8.7 × 105 29 2.4 × 106 4.1 × 106 2.6 × 105 8.6 × 105

Math 4 3.2 × 106 3.9 × 106 2.0 × 105 3.1 × 105 13 3.2 × 106 3.9 × 106 1.8 × 105 3.8 × 105

Music 0 0 0 0 0 4 3.9 × 105 2.1 × 106 8.8 × 104 4.0 × 105

Newsletter 4 7.6 × 106 7.9 × 106 1.3 × 106 1.7 × 106 37 1.5 × 106 7.9 × 106 1.3 × 105 2.2 × 106

Outline 4 1.6 × 106 4.1 × 106 2.5 × 105 9.1 × 105 13 3.1 × 106 5.2 × 106 3.2 × 105 1.0 × 106

Phonebook 4 7.9 × 106 8.1 × 106 2.3 × 103 2.4 × 103 3 7.9 × 106 8.1 × 106 1.4 × 106 2.2 × 106

Program listing 2 3.8 × 106 7.0 × 106 6.6 × 105 1.3 × 106 10 3.6 × 106 7.3 × 106 3.9 × 105 2.0 × 106

Street map  0 0 0 0 0 5 1.8 × 106 1.1 × 107 3.5 × 105 6.2 × 106
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Terrainmap 2 7.0 × 106 1.0 × 107 2.6 × 106

Total 100 

ivergence measure between the cumulative sets of particles of
wo consequent optimization problems in order to precisely verify
his variation. The KL divergence is a measure of information gain
etween two distributions. A cumulative set of particles at instant

 (or XC,t) is the set of all particles seen in all generations of all
roblem instances up to t. The KL divergence between cumulative
ets of particles at instants t and t − 1 is defined as Dk( XC,t−1|| XC,t).
he method proposed in [60] is non-parametric and depends on a k-
earest neighborhood estimate (that is, depends on a neighborhood
ize parameter). This parameter was set to 10 in our experiments
s seen in [60].

The number of previous updates T employed to compute the
daptive threshold will be set to 10. The mean and standard devi-
tion of the minimum distance obtained in the memory fill up
xperiments with no attack (which are 361.7 and 172.3, respec-
ively) will be employed as an initial minimum distance threshold
n the memory update. These values were obtained by simply mea-
uring the minimum C2 distance during inserts for the memory fill
p experiments (which resulted in 99 C2 values) and then, com-
uting their mean and standard deviation.

In order to measure the impact in the computational cost we
ill analyze how does the number of fitness evaluations behave

n different scenarios. One of the metrics that will be employed to
his end is the average number of fitness evaluations per image
AFPI). A second metric to be employed is the cumulative number
f fitness evaluations (FEvals) which is the total number of fitness
valuations required to optimize the whole image stream. A third is
he decrease in the number of fitness evaluations (DFE), computed
s:

FE = 1 − FEvals,M

FEvals,F
(20)

here FEvals,M is the cumulative number of fitness evaluations for
he memory based approach and FEvals,F is the cumulative number
f fitness evaluations for full optimization. For each experiment,
he mean and standard variation of AFPI, the FEvals and the DFE is

resented.

The reference points for the Chebyshev Weighted Aggregation
ere set to r1 = r2 = r3 = 0.01 based on sensitivity analysis using the
ULU-1999-TRAIN dataset. The scaling factor of the DRDM (˛r) was
.0 × 106 7 2.9 × 106 1.1 × 107 1.2 × 106 6.2 × 106

397

set to 0.53 based on the largest DRDM value found for all fitness
evaluations during the full optimization of all images of the OULU-
1999-TRAIN dataset. These parameters have been used in the test
streams to validate their generalization performance.

The confidence level (˛) of the KS statistic will be set to 0.95,
which corresponds to a coefficient c˛ = 1.36 and a critical value (D˛)
of 0.43 in order to allow a comparison with the results reported in
[22]. The LTM size is limited to 20 probes. All the simulations were
performed first with no attack and then with cropping of 1%.

DPSO parameters are set as in [22]. Constants c1 and c2 are set
to 2.05 while 	 is set to 0.7298. Population size is set to 20 particles
and optimization halts if the global best has not improved for 20
iterations. The neighborhood size of the L-Best topology is set to 3.

5.2. Overview

In terms of computational burden, the GMM-based approach
outperformed the case-based approach for the heterogeneous
streams and underperformed for some of the homogeneous
streams (Table 3).

However, the watermarking performance of the GMM-based
approach is equivalent to that of the case-based approach for
the heterogeneous streams but at a smaller computational bur-
den (Table 4). Moreover, there was a significant improvement in
watermarking performance for the homogeneous streams (mainly
due to the modified fitness function). It is important to observe
that mainly for the cropping 1%, the worsening in computa-
tional cost is largely offset by the improvement in watermarking
performance.

Fig. 6 summarizes the computational and memory burden
results.

5.3. Scenario A – optimization of heterogeneous streams of
bi-tonal images using memory-based DPSO versus full PSO:

5.3.1. LTM fill up

In the first experiment, performed on the OULU-1999-TRAIN

stream, the memory limit was removed and re-optimization was
forced on each image transition. This led to the creation of 100
probes. Fig. 7 shows the normalized pairwise distance between
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Table 3
Computational cost performance. AFPI is the average number of fitness evaluations per image where the mean � and standard deviation � are presented as �(�). FEvals is the
cumulative number of fitness evaluations required to optimize the whole stream and DFE is the decrease in the number of fitness evaluations compared to full optimization.
An  asterisk (∗) indicates results extracted from [22].

Attack Database Learning Full PSO Case-based GMM-based

AFPI FEvals AFPI FEvals DFE (%) AFPI FEvals DFE (%)

No attack OULU-1999-TRAIN No 925 (286) 92,520 564 (630) 56,380 39.1 66 (194) 6580 92.9
No  attack OULU-1999-TEST No 1007 (341) 399,840 270 (551) 107,060 73.2 59 (188) 23,280 94.2
No  attack OULU-1999-TEST Yes 1007 (341) 399,840 464 (842) 184,180 53.9 42 (133) 16,700 95.8
No  attack TITI-61 No 844 (226)∗ 51,460∗ 46 (134)∗ 2760∗ 94.6∗ 84 (224) 5140 92.6
No  attack CVIU-113-3-4 No 882 (251)∗ 301,580∗ 32 (103)∗ 10,720∗ 96.4∗ 76 (233) 26,000 91.4
No  attack CVIU-113-3-4 Yes 882 (251)∗ 301,580∗ 31 (83)∗ 10,560∗ 96.5∗ 49 (157) 16,600 95.4
No  attack SHUFFLE No 1026 (345) 758,500 273 (571) 201,640 73.4 66 (189) 48,840 93.6
No  attack SHUFFLE Yes 1026 (345) 758,500 259 (613) 191,240 74.8 54 (179) 40,220 94.7

Cropping 1% OULU-1999-TRAIN No 887 (340) 88,740 351 (455) 35,100 60.5 179 (363) 17,860 79.9
Cropping 1% OULU-1999-TEST No 860 (310) 341,520 177 (351) 70,300 79.4 83 (212) 32,920 90.4
Cropping 1% OULU-1999-TEST Yes 860 (310) 341,520 148 (301) 58,940 82.7 67 (205) 26,760 92.2
Cropping 1% TITI-61 No 911 (237)∗ 55,580∗ 66 (200)∗ 3960∗ 92.9∗ 52 (178) 3200 94.8
Cropping 1% CVIU-113-3-4 No 872 (251)∗ 298,100∗ 26 (36)∗ 8740∗ 97.1∗ 50 (166) 16,980 94.5
Cropping 1% CVIU-113-3-4 Yes 872 (251)∗ 298,100∗ 25 (10)∗ 8480∗ 97.2∗ 21 (4) 7120 97.7
Cropping 1% SHUFFLE No 887 (320) 798,100 151 (292) 111,420 86 67 (194) 49,780 93.8
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Cropping 1% SHUFFLE Yes 887 (320) 798,10

robes (DN
PWM) for both, no attack and cropping 1%. It is possible to

bserve that in both cases, inter-probe diversity decreases steeply
ntil image 11 for the cropping 1% case and image 12 for the no
ttack case. After that, for the no attack case it rebounds sharply
ntil image 20 and then becomes stable. For the cropping 1% it
ebounds softly and becomes stable.

It is interesting to observe that the sampling diversity has a sim-
lar behavior (Fig. 8). If a probe brings new knowledge to the LTM,
he sampling diversity should increase. However, it follows a down-
ard trend as new probes are added indiscriminately which means

hat in most cases, the new probes do not imply in new knowledge
bout the fitness landscape (the sampled solutions are just probing
lready probed areas).

In Fig. 9 it is possible to observe that the minimum distance
etween new probes and probes already in the memory behaves

n a similar manner. Although the minimum distance itself is less
table than the LTM diversity, its moving average (mov avg(minC2))
ollows a steep downward trend for the first 11–12 images and then
ecomes stable. It is worth noticing that a steep variation in the
inimum distance is associated with a steep change in the LTM

iversity. For example, for the no attack case, the DN
PWM decreases

teeply between images 1 and 12 and then increases gradually until
mage 20. Nearly at the same time-frame, mov  avg(minC2) follows

 similar trend. It is slightly slower because of the window size
hosen. A smaller window size would give less importance to the
inC2 of previous probes and make it follow more rapidly the trend

f DN
PWM . The same phenomenon can be observed for the cropping

% case.
The Kullback–Leibler (KL) divergence [60] between the cumu-

ative sets of particles at instants t and t − 1 (Fig. 10) behaves
imilarly. It is possible to see here that from an information the-
retical standpoint, the particles of a given optimization problem
rovide new information about the stream of optimization prob-

ems until around image 30 (for both no attack and cropping 1%).
fter that, except for small disturbances like for image 60 in the no
ttack case, swarm solutions do not bring new knowledge about
he stream of optimization problems. Most importantly, the KL
ivergence follows a trend similar to that of the moving average of
he minimum C2 distances seen in Fig. 9. Therefore, the proposed

trategy of only performing an insert operation if distance between
he new probe and probes already in the memory is above a cer-
ain threshold should maximize the amount of new information
rought by each new probe.
128 (252) 94,780 88.1 49 (136) 36,300 95.5

5.3.2. Adaptive memory management
The GMM-based technique resulted in less re-optimizations

when compared with the case-based approach for all experiments
involving heterogeneous image streams which consequently led to
a bigger decrease in the number of fitness evaluations when com-
pared to full optimization. It is also important to mention that the
use of a training sequence resulted in a further decrease in compu-
tational burden for the OULU-1999-TEST stream in both cases (with
and without attack). Despite the decrease in computational bur-
den, the watermarking performance of the GMM-based technique
is comparable to that of the case-based technique. The reason is that
the solutions sampled from the GMM  are less biased to a particular
optimization problem than the case-based solutions.

The same was  observed for the cropping 1% case. The pro-
posed GMM-based memory scheme resulted in considerably less
re-optimizations than the case-based memory scheme for the three
heterogeneous streams with an equivalent watermarking perfor-
mance. For this reason, the number of fitness evaluations decreased
significantly when compared to full optimization.

An analysis of LTM dynamics for the OULU-1999-TRAIN stream
shows that the proposed memory management scheme resulted
in a more diverse memory than that obtained in the memory fill-
up experiment (Fig. 11). What is interesting here is that for the no
attack case, re-optimization was triggered 28 times. However, it
resulted in an insert for only 5 of these cases. For the remaining
23 cases, a merge took part. A similar situation occurred for the
cropping 1% case. Re-optimization was  triggered 21 times but the
number of inserts was 4 (with 17 merges).

At the same time, the sampled solutions have more diversity
than when insert is used indiscriminately (Fig. 12). It is possible
to observe also that the two plots in Fig. 12 are more stable than
those of Fig. 8. This means that the sampling obtained by the use
of the proposed memory scheme not only improves diversity but
is also more consistent. This shows that this strategy of limiting
insert operations to cases where the distance between new probes
and probes in the memory is above an historic average helps to
improve the diversity of the sampled solutions.

The plot of minimum C2 distance between new probes and
probes in the memory (Fig. 13) gives another perspective about the

memory dynamics. In this plot, a minC2 of zero means that the mem-
ory was  not updated (that is, re-optimization was not triggered).
It is possible to observe that insert operations have in general a
minC2 that is many times greater than that of merge operations. It
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becomes clear as well that in both cases, for the first 30 images, the
update frequency is high, which means that learning (memoriza-
tion) is taking place, and then updates become less frequent. When
we go back to the KL divergence plot in Fig. 10 it becomes clear
that this memorization phase occurs when there is novelty in the
stream of optimization problems.

5.3.3. Impact of choice of confidence level
In terms of memory size, the worst case scenario for the GMM-

based technique results in a memory that is a fraction of the size
obtained for the case-based approach (Fig. 14).

Fig. 15 shows the cumulative number of fitness evaluations for
the case-based and GMM-based approaches with a confidence level
of 0.8 (OULU-1999-TEST with learning, no attack). It is possible to
observe that between images 137 and 240 the computational cost
for the case-based memory approach is higher than that of full
optimization while for the GMM-based approach it is practically
stable after a learning phase that lasts until image 80. This illustrates
the main limitation of case-based memory management strategy
and the main advantage of GMM-based memory. It is important
to observe that this result was  obtained in a considerably small
database. In a real world scenario, involving thousands or even
millions of images, an ever growing memory would pose a serious
issue to the performance of the case-based intelligent watermark-
ing system.

The main reason for improved performance when compared
with the case-based approach is that probe solutions in the
case-based memory scheme are less diverse than those of the
GMM-based memory. That is, case-based solutions only cover the
near optimal region and for this reason are very sensitive to small
variations in fitness values caused by a change of type II (basically,
these solutions are over-fit to the images that generated them).
However, the solutions sampled from the GMM  have a more gen-
eral coverage of the fitness landscape, mainly because they are
generated from a density estimate of all solutions found during
optimization and consequently, perform better in avoiding unnec-
essary re-optimizations than the case-based approach.

5.3.4. Memorization performance
In the first memorization experiment we  picked a probe that

resulted in re-optimization followed by a merge for OULU-1999-
TRAIN with cropping of 1% (the probe of image 38) and performed
multiple attempts to recall the new and merged probes in three sit-
uations: (1) new probe before merge; (2) old probe before merge;
(3) merged probe. The first simulation should give an idea of the
true acceptance rate of the proposed technique while the second
simulation should give an idea of its true reject rate. The third simu-
lation by its way  should give an idea of at what point, incorporating
new knowledge will improve the recall rate of a previous probe
(adaptability).

In scenario (1), the newly created probe was  recalled in all cases,
which means a true acceptance rate of 100% (obviously, for this
sample size, or put differently, a false reject rate smaller than 1%).
In scenario (2), the old probe was  accepted only 30 times of the
cases, which means a true reject rate of 70%. Finally, in scenario
(3), the merged probe resulted in an accept rate of 73%. That is,
the merged probe has a better performance for image 38 than the
old unmerged probe. At the same time, it is not as fit to the new
image as the newly created (unmerged) probe which means it is
less biased to a specific image.

In the second memorization experiment, the same stream
(OULU-1999-TRAIN) with cropping of 1% was optimized twice, but

using the memory of the first run as a starting point for the sec-
ond run. The first run resulted in 17 re-optimizations while the
second run resulted only in 10. This demonstrates that the pro-
posed approach can memorize a stream of optimization problems
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ig. 6. Comparison of computational and memory burden for the different appro
ropping 1%. (c) Number of re-optimizations, no attack. (d) Number of re-optimizat

uite well. Then, the merge operator was de-activated and the same
xperiment was repeated. This time the second run resulted in

 re-optimizations. It can be said that such increase in the num-
er of re-optimizations for the merge operator was the result of
he smaller bias of that approach. That is, the merge operator, as
bserved in the first memorization experiments, results in probes
hat are less tuned to specific images (more general).

.3.5. Other attacks

It is possible to observe in Table 5 that the computational cost

roposed approach is not considerably affected by an increase in
he attack level or by a different removal attack such as salt & pepper
S&P).
. (a) Number of fitness evaluations, no attack. (b) Number of fitness evaluations,
ropping 1%. (d) Number of probes, no attack. (e) Number of probes, cropping 1%.

Regarding the watermarking performance (Table 6), the behav-
ior was  similar to the cases of no attack and cropping of 1%: a slight
variation when compared to full optimization, but largely offset by
gains in computational burden.

5.3.6. Adaptation performance
Memory adaptability is another important aspect in the given

scenario. It is reasonable to consider that in the course of its normal
operation, the set of attacks an intelligent watermarking system

must deal with is expected to change and that the memory should
be capable to adapt to such change. In such case, the system must
avoid recalling solutions that result in poor watermarking per-
formance. To validate this, we performed a memory adaptation
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experiment (Fig. 16). In this experiment, the GMM-based approach
was first applied to the OULU-1999-TRAIN stream with no attack.
Then, using the resulting memory as a starting point, the same
approach was applied to the same stream but with cropping of
2%. Next, the same procedure was repeated (also using the pre-
vious memory as a starting point) but now with salt & pepper 0.02.
Finally, the proposed approach was  applied to the OULU-1999-TEST
database in four different scenarios: using the memory of previous
case as a starting point but now with (I) no attack; (II) cropping 2%;
(III) salt & pepper 0.02; (IV) randomly chosen attacks (salt & pep-
per 0.02, no attack, cropping 2%) for each image; (IVa) not using
previous memory (no learning) with random attacks. In all cases

the confidence level was  set to 0.8, as adaptation requires a more
restrictive confidence level.

It is interesting to observe that the results obtained in
the adaptation experiments (Table 7) are similar to previously
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presented results. The slight degradation in computational burden
was mainly due to the more restrictive confidence level. For exam-
ple, OULU-1999-TRAIN with no attack resulted in 92.9% decrease
with confidence level 0.95 (Table 3) versus 84.8% with confidence
level 0.8 (Table 7). However watermarking performance of both
was very similar (Table 4). The same happened for the simulations
involving cropping 2% and salt & pepper 0.02 (Tables 5 and 6).
Regarding the OULU-1999-TEST stream, the computational per-
formance of cases I, II, III and IV was  close to that of no learning
for the previous simulations (Tables 3 and 5) with an equivalent

watermarking performance (Tables 4 and 6). It is worth notic-
ing that in Table 7, for the random attacks, the use of a training
sequence (IV) resulted in a considerable decrease in computa-
tional burden when compared to no training (IVa). It is also worth
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onfidence level of 0.8.

oticing that the OULU-1999-TEST simulations with learning
esulted few inserted probes when compared to OULU-1999-TRAIN
imulations. This demonstrates that even in such a challenging sce-
ario involving changes in the set of attacks, the proposed approach
an learn how to adapt to such changes.

.4. Scenario B – optimization of homogeneous streams of
i-tonal images using memory-based DPSO versus full PSO

In general, for the homogeneous image streams, the computa-
ional burden performance of the GMM-based approach is slightly
orse than what has been reported for the case-based approach

n [22] as it required more re-optimizations. Yet, adjusted for
he size of the image streams, the number of re-optimizations
or the GMM-based approach in this scenario is consistent with
hat obtained for the heterogeneous image streams while for the
ase-based approach, there is a huge discrepancy between the

erformances for the heterogeneous and homogeneous streams.
hat is, since a case-based probe is over-fit to a particular
ptimization problem, it tends to perform better than the GMM-
ased approach when the stream of optimization problems is

able 5
omputational cost performance. AFPI is the average number of fitness evaluations per im
umulative number of fitness evaluations required to optimize the whole stream and DFE

Attack Database Learning Full PSO 

AFPI FEvals

Cropping 2% OULU-1999-TRAIN No 860 (335) 86,040 

Cropping 2% OULU-1999-TEST No 828 (309) 328,900 

Cropping 2% OULU-1999-TEST Yes 828 (309) 328,900 

S&P  0.02 OULU-1999-TRAIN No 893 (354) 89,280 

S&P  0.02 OULU-1999-TEST No 978 (379) 388,220 

S&P  0.02 OULU-1999-TEST Yes 978 (379) 388,220 

able 6
atermarking performance. Here, †  is the DRDM,  ‡  is the BCR robust, § is the BCR fragile. F

ollowing form: �(�). DRDM is presented with two decimal points and BCR is presented i

Attack Database Learning Full PSO C

†  ‡  § †
Cropping 2% OULU-1999-TRAIN No 0.04 (0.05) 98.2 (2.7) 99.9 (0.4) 0
Cropping 2% OULU-1999-TEST No 0.04 (0.04) 98 (3) 99.8 (0.7) 0
Cropping 2% OULU-1999-TEST Yes 0.04 (0.04) 98 (3) 99.8 (0.7) 0

S&P  0.02 OULU-1999-TRAIN No 0.03 (0.03) 97.9 (2.6) 99.7 (0.5) 0
S&P  0.02 OULU-1999-TEST No 0.03 (0.04) 98 (2.4) 99.6 (0.6) 0
S&P  0.02 OULU-1999-TEST Yes 0.03 (0.04) 98 (2.4) 99.6 (0.6) 0
puting 13 (2013) 3130–3148 3145

homogeneous. In the GMM-based approach by its way, a probe is
less biased to a specific optimization problem and can cope bet-
ter with variations in a more heterogeneous image stream. The
watermarking performance (mainly watermark robustness) of the
GMM-based approach is considerably better than that of the case-
based approach.

5.5. Scenario C – optimization of unconstrained
(homogeneous/heterogeneous) streams of bi-tonal images using
memory-based DPSO versus full PSO

The behavior of the proposed technique when compared to case-
based for scenario C was  quite similar to that observed for scenario
A. The proposed technique resulted in a decrease in computational
burden at an equivalent watermarking performance. The use of a
training sequence of images allowed a further decrease also with
little impact on watermarking performance.

5.6. Discussion

The GMM-based approach was  evaluated in three main sce-
narios – intelligent watermarking of homogeneous, heterogeneous
image streams, and a mix  of both, respectively. It is possible to
observe through the simulation results that for the heterogeneous
image streams, the proposed memory scheme results in less re-
optimizations than the case-based scheme but at nearly the same
watermarking performance. Both, the fidelity of the watermarked
image and the detection rate of the robust and fragile watermarks
are comparable to those of full optimization. The main reason is that
by using particle history data, it is possible to sample a larger region
of the fitness landscape but in a targeted manner. It can be said thus
that the case-based mechanism is sensitive to the distribution of
particles in the end of the optimization process. It was  also observed
that the proposed technique allows a significant decrease in com-
putational burden when compared to full optimization in both,
homogeneous and heterogeneous image streams. More specifi-
cally, the number of fitness evaluations per image was above 800
age where the mean � and standard deviation � are presented as �(�). FEvals is the
 is the decrease in the number of fitness evaluations compared to full optimization.

Case-based GMM-based

AFPI FEvals DFE (%) AFPI FEvals DFE (%)

185 (382) 18,520 78.5 72 (187) 7240 91.6
140 (342) 55,740 83.1 64 (179) 25,560 92.2
113 (290) 44,940 86.3 50 (150) 19,800 94

462 (507) 46,220 48.2 163 (360) 16,320 81.7
253 (433) 100,580 74.1 92 (281) 36,360 90.6
157 (321) 62,200 84 42 (133) 16,560 95.7

or all values, the mean � and standard deviation � per image are presented in the
n percentage (%) with one decimal point.

ase-based GMM-based

 ‡  § †  ‡  §

.04 (0.05) 98 (3.1) 99.9 (0.5) 0.04 (0.06) 97.1 (3.8) 99.8 (0.6)

.03 (0.04) 97 (4.5) 99.6 (1.4) 0.04 (0.04) 95.4 (5.7) 99.3 (2)

.04 (0.05) 97.1 (4.4) 99.6 (1.2) 0.04 (0.05) 94.7 (6.4) 99.1 (1.9)

.03 (0.03) 97.9 (3.1) 99.7 (0.5) 0.03 (0.03) 97.1 (4.3) 99.3 (1.3)

.02 (0.03) 97.2 (3.3) 98.9 (1.4) 0.03 (0.04) 97.2 (3.6) 99.4 (1)

.03 (0.04) 97.1 (3.6) 99.4 (1.1) 0.03 (0.04) 97.1 (0.04) 99.2 (1.2)

for the best scenario of Full Optimization which is unfeasible for
practical applications as it involves more than 800 embedding and
detection operations per image. This number was decreased to 67
in the worst case for the proposed approach with learning.
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Fig. 16. Memory 

For the heterogeneous scenario, a memory fill up experiment
as performed and it showed that as new images are fed into

he system, the amount of novelty brought by these images
ecreases considerably for the first third of the image stream
OULU-1999-TRAIN) and then stabilizes. Consequently, the lack
f a proper memory management mechanism results in redun-
ant probes which impair the computational performance of

 unsuccessful recall (since all LTM probes need to be tested
efore re-optimization is triggered). At the same time, when insert
perations are employed indiscriminately, the resulting memory
ecomes quite noneffective. Moreover, the probing capability of the
emory is negatively affected as the diversity of sampling solutions

ecrease.
The adaptive memory management experiments involving het-

rogeneous streams showed that the proposed approach not only
ecreases the computational burden of intelligent watermarking
when compared to the case-based approach) but with practically
o impact on watermarking performance. And more important
han that, an analysis of memory dynamics showed that in the pro-
osed mechanism, the memory space is used in a more effective
anner as insert operations are employed sparingly. Moreover,

t has been demonstrated that the frequency of memory update
perations are in a par with the amount of novelty brought by the
ew problems. This is more in tune with the formulation of incre-
ental learning seen in [46] as with this combination of merge

nd insert operations (1) none of the inserted probes will contra-
ict the data processed up to that point and (2) through the use
f a merge operator each intermediate hypothesis is maintained
s long as it is consistent with the data seen. That is, insert only
ccurs when the new problem represents new knowledge to the
emory. These experiments also showed that by maintaining the

istance between LTM probes high, it is possible to improve the
iversity of sampled solutions which allows a better probing capa-
ility. Analysis of memory dynamics showed that the proposed

emory management mechanism helps to avoid inserting probes

hat do not bring novelty to the LTM. For example, both the pair-
ise distance between probes and the minimum distance between

able 7
daptation performance. DFE is the decrease in the number of fitness evaluations compa
ll  values, the mean � and standard deviation � per image are presented in the followin
ercentage (%) with one decimal point.

Attack Database Re-optimizations Inserted pro

No attack OULU-1999-TRAIN 13 3 

Cropping 2% OULU-1999-TRAIN 13 3 

S&P  0.02 OULU-1999-TRAIN 12 1 

No  attack (I) OULU-1999-TEST 20 1 

Cropping 2% (II) OULU-1999-TEST 15 2 

S&P  0.02 (III) OULU-1999-TEST 29 5 

Random (IV) OULU-1999-TEST 31 4 

Random (IVa) OULU-1999-TEST 65 8 
tion experiment.

new probes and probes in the memory are increased considerably
when the memory management scheme is employed. This shows
that the proposed scheme minimizes redundancy in the LTM. The
sampling diversity was also increased which means that despite
smaller memory and computational burden, the proposed mem-
ory management scheme resulted in probes that cover a significant
area of the fitness landscape.

Memorization experiments demonstrated that the GMM  mem-
ory can learn considerably well the stream of optimization
problems. First because density estimate of solutions in the
optimization space offer a reliable approximation of the fitness
landscape and second because the merge operator results in less
biased probes that generalize well to new problems, as observed
in the experiments involving multiple recalls for a same image.
These experiments also demonstrated that the probe is subject to a
trade-off between memorization and generalization (bias/variance
trade-off). This trade-off can be modified when necessary (e.g. in an
application involving more dynamism in the stream of document
images) by adjusting the confidence level of the change detection
mechanism. And yet, memorization can be further improved (when
necessary) by de-activating the merge operator (not recommended
for heterogeneous streams).

It was possible to observe in experiments with higher crop-
ping intensity and salt & pepper attack that the results observed
for the cropping 1% and no attack are applicable to other types of
removal attacks. The conclusion to be drawn here is that as long
as robustness against a given attack can be attained through opti-
mization of embedding parameters and considering that the stream
of images contains recurrent (similar images), the proposed GMM-
based approach is expected to result in a smaller computational
burden compared to full optimization, with an equivalent water-
marking performance. The reason is that the use of GMM  results in
a precise approximation of the stream of optimization problems.
The limitation of the proposed approach is that its watermarking

performance is bounded by the watermarking performance of full
optimization. For example, in the baseline watermarking system,
robustness against geometric attacks cannot be attained through

red to full optimization, †  is the DRDM,  ‡  is the BCR robust, § is the BCR fragile. For
g form: �(�). DRDM is presented with two decimal points and BCR is presented in

bes DFE (%) †  ‡  §

84.8 0 (0) 100 (0) 100 (0)
84.3 0.04 (0.05) 97 (3.6) 99.7 (1)
79.4 0.03 (0.04) 97.3 (3.6) 99.5 (1.2)

88.9 0.01 (0.02) 99.9 (0.01) 99.9 (0.01)
91.4 0.04 (0.05) 93.3 (0.06) 99.1 (0.02)
87.4 0.04 (0.04) 97.1 (3.7) 99.3 (1.1)
85.5 0.03 (0.04) 97.3 (4.3) 99.4 (1.4)
76.3 0.03 (0.04) 97.6 (3.7) 99.6 (1)
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anipulation of embedding parameters (instead, it is attained
hrough the use of reference marks [3]). Therefore, the GMM-based
pproach also will not tackle robustness against such type of attack.

In the adaptation experiments, it was possible to observe that
n applications involving high dynamism in the stream of prob-
ems (e.g. changing attacks), the proposed approach can adapt well,

ith a relatively small computational burden. The reason is that
he memory of GMMs  results in a more precise representation of
he stream of optimization problems which allows a better change
etection capability (as observed in the memorization experiments
s well). These experiments also allow us to draw some guidelines
egarding the choice of confidence level. In situations involving high
ariability (like changing attacks), a more restrictive confidence
evel is to be preferred. Otherwise, a more relaxed confidence level
s preferred (since it should result in less re-optimizations).

It was possible to observe that the GMM-based approach is not
nly less expensive than the case-based approach (for the het-
rogeneous streams) but the gains in computational burden are
ore consistent, that is, are quite similar across different scenar-

os. Another advantage of the GMM-based approach is that it has a
maller memory footprint than the case-based approach. Not only
ecause the mixture model offers a more compact data represen-
ation but also because in the GMM-based approach, the number
f probes is considerably smaller than for the case-based approach.
t is important to mention that although the LTM size is limited
or the GMM-based approach, such limit was not achieved for the
hosen confidence level. It is worth mentioning that the decrease
n the number of fitness evaluations is proportional to the num-
er of probes, the number of re-sampled particles, the frequency of
ecall and the number of fitness evaluations required in full opti-
ization. Since the number of fitness evaluations required in full

ptimization varies across the images in a stream the possible boost
btained by replacing full optimization by memory recall is image-
ependent. It is also important noticing that for a limited memory
ize, the number of fitness evaluations in full optimization tends
o be considerably larger than that of a successful recall. Therefore,
he impact of a case of re-optimization in the number of fitness
valuations tends to be exacerbated in small databases.

In general these experiments show that by estimating mixture
odels of swarm solutions and keeping a memory of these mod-

ls with the use an appropriate memory management strategy
t is possible to build a general model of a stream of optimiza-
ion problems in an intelligent watermarking application using a
et of learning images and then decrease significantly the cost of
ntelligent watermarking with little impact on watermarking per-
ormance. This general model is more adaptive than that created by
he case-based approach and is thus more appropriate for applica-
ions where the stream of images to be optimized is heterogeneous.

. Conclusion

In this paper an intelligent watermarking technique based on
ynamic particle swarm optimization (DPSO) is proposed. The
daptive memory relies on sampled solutions from GMMs  of
revious optimization problems and their respective global best
olutions in order to (1) compare how similar future optimization
roblems are to those previously seen and (2) provide alternative
olutions in cases where the similarity between problems is small,
voiding re-optimization. Its memory management strategy aimed
t tackling two main issues observed in previous experiments. The
rst was to avoid redundancy in the LTM while the second was to

llow the memory to adapt quickly to new optimization problems.

Although the use of density models in evolutionary computing
s not new, the use of models based on phenotypic and genotypic
ata of candidate solutions is novel. Moreover, while in the EDA

[

puting 13 (2013) 3130–3148 3147

literature most authors rely on high evaluation solutions in order
to estimate these models, in the proposed approach we rely on
all solutions in order to build a more comprehensive model of the
fitness landscape. It was  demonstrated empirically that this more
comprehensive model allows a more precise match between previ-
ously seen and new optimization problems. Another contribution
of the proposed technique was  the inception of a management
approach that allows the memory to incrementally learn new
trends on the stream of optimization problems while limiting mem-
ory footprint.

Experimental results demonstrate that replacing memory solu-
tions by density estimates of swarm solutions result not only in less
memory burden but in a more precise probing mechanism which
resulted in a decrease in the number of re-optimizations with little
impact in watermarking performance. Since the proposed approach
allows an incremental learning of optimization problems, the use
of a learning stream of images allowed decreasing computational
cost while improving precision altogether. In such case, a decrease
of 97.7% in the number of fitness evaluations was obtained for het-
erogeneous image streams (when compared to full optimization)
through the use of a learning stream of images. Such improvement
in computational performance was higher than that of no learn-
ing. It was  also possible to observe that the GMM  memory allows
a more precise representation of the fitness landscape. This results
in better probing of the fitness landscape (compared to a mem-
ory of static solutions) which helps to avoid false positive errors
(recalling wrong probes which would decrease the watermarking
performance). Such memory makes possible for example, changing
the attack employed on the DPSO module, without any further need
of human intervention in what regards memory management.

As a future work we propose a deeper study on each of the
main modules of the proposed technique and a comparison study
with alternative approaches for these modules. We  also pro-
pose validating the GMM-based approach using a larger image
stream.
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