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C
ritical infrastructures, such as 
power grids and transporta-
tion systems, are increasingly 
using open networks for opera-
tion. The use of open networks 

poses many challenges for control sys-
tems. The classical design of control 
systems takes into account modeling 
uncertainties as well as physical dis-
turbances, providing a multitude of 
control design methods such as robust 
control, adaptive control, and stochas-
tic control. With the growing level of 

integration of control systems with new 
information technologies, modern control systems face un-
certainties not only from the physical world but also from 
the cybercomponents of the system. The vulnerabilities 
of the software deployed in the new control system infra-
structure will expose the control system to many potential 
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risks and threats from attackers. Exploitation of these vul-
nerabilities can lead to severe damage as has been reported 
in various news outlets [1], [2]. More recently, it has been 
reported in [3] and [4] that a computer worm, Stuxnet, was 
spread to target Siemens supervisory control and data ac-
quisition (SCADA) systems that are configured to control 
and monitor specific industrial processes. 

Uncertainties from the cybersystem are often unantici-
pated and more catastrophic for control systems in terms of 
their high impact and low effort as compared to those from 
the physical world. It is imperative to consider the cyber 
uncertainties in addition to the physical ones in the control-
ler design. Those uncertainties can be caused by intentional 
malicious behaviors and/or by rare events, such as severe 
weather or natural disasters. Engineers are accustomed to 
designing systems to be reliable and robust, despite noise 
and disturbances. However, the cybersecurity aspect of 
control systems has posed new challenges for engineers 
and system designers. 

The notion of robustness often refers to a system’s ability 
to withstand a known range of uncertain parameters or 
disturbances, whereas security describes the system’s abil-
ity to withstand and be protected from malicious behaviors 
and unanticipated events. These two system properties are 
pre-event concepts, that is, the system is designed to be 
robust or secure offline before it is perturbed or attacked. 
Despite many engineering efforts toward designing robust 
and secure systems, it is costly and impractical, if not 
impossible, to achieve perfect robustness and security 
against all possible attacks and events. This fact, however, 
renders it essential to investigate the resilience aspect of a 
system, which refers to the system’s ability to recover online 
after adversarial events occur. It is a post-event concept. 
Hence, to provide performance guarantees, control systems 
should be designed to be inherently resilient, allowing 
them to self-recover from unexpected attacks and failures. 

Resilience has been studied in many fields such as psy-
chology [5], ecology [6], and organizational behavior [7]. 
The concept has also appeared in various engineering 
fields, such as aviation, nuclear power, oil and gas, transpor-
tation, emergency health care, and communication net-
works [8], [9]. The literature on resilience engineering is 
often found to be very diverse, qualitative, and area specific. 
References [10] and [11] propose the concept of resilient con-
trol systems, which emphasizes designing control systems 
for operation in an adversarial and uncertain environment. 
Resilient control systems are required to be capable of main-
taining the state awareness of threats and anomalies and 
assuring an accepted level of operational normalcy in 
response to disturbances, including threats of an unex-
pected and malicious nature. Traditional concepts of robust-
ness, reliability, and cybersecurity appear to be insufficient 
to address these emerging issues of control systems. 

Metrics for robustness in control systems have been well 
studied in the literature [12], [13]. A game-theoretic 

approach has been introduced to obtain the H3  optimal, 
disturbance-attenuating minimax controllers by viewing 
the controller as the cost minimizer and the disturbance as 
the maximizer. Likewise, cybersecurity problems have 
been studied using game theory [14], which provides a nat-
ural framework for capturing the conflict of goals between 
an attacker who seeks to maximize the damage inflicted on 
the system and a defender who aims to minimize it. More-
over, the design of security strategies is enabled by many 
existing analytical and computational tools [15]. Many met-
rics for the resilience of control systems have been pro-
posed recently [16]–[21]. 

The design of resilient control systems pivots on the fun-
damental system tradeoffs between robustness, resilience, 
and security. Perfect security could be achieved by making 
the system unusable, and likewise perfect robustness could 
be attained by making the control performance completely 
inadequate. The need for resilience is due to the fact that no 
desirable control systems exhibit perfect robustness or 
security. Hence, it is imperative in the control design to 
know what type of uncertainties or malicious events need 
to be considered for enhancing robustness and security 
and what uncertainties or malicious events need to 

Table 1 A summary of notation.

Symbol Meaning 

( )x t State of physical system

x0 Initial state of physical system

( )ti State of cybersystem

( )u t Control input to the physical system

n Closed-loop control strategy

( )w t Disturbance input to the physical system

( , , ; )c t x u i Instantaneous cost function

qf Terminal cost function

q0 Cost function for initial condition

o Closed-loop strategy of disturbance

ijm Transition rate from state i  to state j

A Action space of the attacker

L Action space of the defender

( )f k Mixed strategy of the defender at time k

( )g k Mixed strategy of the attacker at time k

( , )J u w Expected cost for the physical system 
performance

( , )V t xi Value function associated with the HJI equation

( , , )f gv ib Payoff for the cybersystem performance

( )v i*
b Value function associated with Shapley’s 

optimality equation
*
CLc Optimal attenuation level under closed-loop 

control strategies
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be considered for post-event resilience. Studying these 
tradeoffs requires extending the control system design 
problem to include the cyberlayers of the system and 
understand the cross-layer issues in cyberphysical systems. 

Resilient control, however, poses new challenges, differ-
ent from the ones encountered in robust control and secu-
rity games. Resiliency should be considered together with 
robustness and security since the post-event resiliency 
relies on the pre-event designs. Resilience builds upon 
robustness and security frameworks and takes a cross-
layer approach by considering post-event system features. 
Since game theory has been successfully applied to study 
robustness and security, it is natural to adopt it as the main 
tool to build an extended and integrated framework. 

The goal of this article is to introduce game-theoretic 
methods for resilient control design and develop a frame-
work that studies the tradeoff between robustness, secu-
rity, and resilience. A hybrid dynamic game-theoretic 
approach is introduced that integrates the discrete-time 
Markov model for modeling the evolution of cyberstates 
with continuous-time dynamics for describing the under-
lying controlled physical process. The hybrid dynamic 
game model provides a holistic and cross-layer viewpoint 
in the decision-making and design for cyberphysical sys-
tems. The continuous-time dynamics model the physical 
layer, that is, the plant, subject to disturbances and control 
efforts. The discrete-time dynamics model the cyberlayer 
of the system, which involves system configurations and 
dynamic human–machine interactions (HMIs). A zero-
sum differential game is used for robust control design at 

the physical layer, while a stochastic zero-sum game 
between an administrator and an attacker is used for the 
design of defense mechanisms. The controlled transition 
between pre-event states to post-event states in the hybrid 
system framework leads to the design of the resilient hybrid 
dynamical system. The controller design at the physical 
layer and the security policy design at the cyberlayer of the 
system are intertwined. A policy made at the cyberlayer 
can influence the optimal control design for the physical 
system, and the optimal control design at the lower level 
needs to be taken into account when security policies are 
determined. For a class of system models, the overall opti-
mal design of the cyberphysical system can be character-
ized by a Hamilton-Jacobi-Isaacs (HJI) equation together 
with a Shapley optimality criterion. The notations used in 
the article are summarized in Table 1 for the reader’s conve-
nience. For a brief introduction to game theory, see “Game 
Theory in a Nutshell”. 

Hierarchical Systems 
A cross-layer approach is pivotal for designing resilient 
control systems. Integrating physical control systems with 
cyberinfrastructure to allow for new levels of HMI has 
been a growing trend in the past few decades. To manage 
the increasing complexity of cyberphysical systems, it is 
essential that control designs exploit the hierarchical nature 
of such systems [22], [23]. Depicted in Figure 1, a cyberphys-
ical control system can be conceptually divided into six 
layers: physical, control, communication, network, supervi-
sory, and management. 

Game Theory in a Nutshell 

G ame theory deals with strategic interactions among mul-

tiple decision makes, called players. Each player’s prefer-

ence ordering among multiple alternatives is captured in an ob-

jective function for that player. Players try to maximize (for utility 

or benefit functions) or minimize (for cost or loss functions) their 

respective objective functions. For a nontrivial game, the objec-

tive function of a player depends on the choices (actions, or 

equivalently decision variables) of at least one other player, and 

generally of all the players, and hence players cannot simply 

optimize their own objective function independent of the choic-

es of the other players. This introduces a coupling between the 

actions of the players and binds them together in decision mak-

ing even in a noncooperative environment. 

A noncooperative game is nonzero sum if the sum of the play-

ers’ objective functions cannot be made zero even after appropri-

ate positive scaling and/or translation that do not depend on the 

players’ decision variables. A two-player game is zero sum if the 

sum of the objective functions of the two players is zero or can be 

made zero by appropriate positive scaling and translation that do 

not depend on the decision variables of the players. A game is 

a finite game if each player has only a finite number of alterna-

tives, that is, the players pick their actions out of finite sets (action 

sets); otherwise the game is an infinite game; finite games are also 

known as matrix games. An infinite game is said to be a continu-

ous-kernel game if the actions sets of the players are subsets of 

finite-dimensional vector spaces, and the players’ objective func-

tions are continuous with respect to action variables of all players. 

A game is said to be deterministic if the players’ actions uniquely 

determine the outcome, as captured in the objective functions, 

whereas if the objective function of at least one player depends 

on an additional variable (state of nature) with a known probabil-

ity distribution, then the game is a stochastic game. A game is a 

complete information game if the description of the game [that is, 

the players, the objective functions, and the underlying probability 

distributions (if stochastic)] is common information to all players; 

otherwise it is an incomplete information game. Finally, a game is 

static if each player acts only once, and none of the players has 

access to information on the actions of any of the other players; 

otherwise it is a dynamic game. A dynamic game is said to be 

a differential game if the evolution of the decision process (con-

trolled by the players over time) takes place in continuous time, 

and generally involves a differential equation.
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The physical layer comprises the physical plant to be con-
trolled. The control layer consists of multiple control compo-
nents, including observers/sensors, intrusion detection 
systems (IDSs), actuators, and other intelligent control compo-
nents. The physical layer together with the control layer can be 
viewed as the physical world of the system. On top of these 
two layers are the communication layer, which establishes 
physical layer wired or wireless communications, and the net-
work layer that allocates resources and manages routing. The 
communication and network layers constitute the cyberworld 
of the system. Note that these two layers generally represent 
all the layers of open system interconnection (OSI) model [24], 
[25], which can be incorporated into the cyberlayers of the 
system. The supervisory layer serves as the brain of the 
system, coordinating all lower layers by designing and send-
ing appropriate commands. The management layer is a higher 
level decision-making engine, where the decision makers take 
an economic perspective towards the resource allocation 
problems in control systems. The supervisory and manage-
ment layers are often interfaced with humans, and hence they 
contain human factor issues and HMIs. 

The layered architecture can facilitate the understanding 
of the cross-layer interactions between the physical layers 
and the cyberlayers. In Figure 2, ( )x t  and ( )ti  denote the 
continuous physical state and the discrete cyberstate of the 
system, which are governed by the laws f  and ,K  respec-
tively. The physical state ( )x t  is subject to disturbances w  
and can be controlled by .u  The cyberstate ( )ti  is controlled 
by the defense mechanism l  used by the network adminis-
trator as well as the attacker’s action .a  The hybrid nature of 
the cross-layer interaction leads to the adoption of a class of 
hybrid system models, as will be seen later. 

Physical Layer Control System Problem 
Resilient control requires a cross-layer control design. The 
control problem at the physical layer of the system is 
described below. Consider a general class of systems sub-
ject to two types of uncertainty: 1) a continuous determin-
istic uncertainty that models the known parametric 
uncertainties and disturbances and 2) a discrete stochastic 
uncertainty that models the unknown and unanticipated 
events that lead to a change in the system operation state at 
random times. Let the system state evolve according to the 
piecewise deterministic dynamics 

	 ( ) ( , , , ; ( , , )), ( ) ,x t f t x u w t a l x t x0 0i= =o � (1) 

where ( ) ,x t xRn
0!  is a fixed (known) initial state of the 

physical plant at starting time , ( )t u t Rr
0 !  is the control 

input, ( )w t Rp!  is the disturbance, and all these quantities 
lie at the physical and control layers of the entire system. 

The state of the cybersystem is described by .i  The evolu-
tion of i  depends on the cyberdefense action l  and the 
attacker’s action ,a  which are also functions of time. ( )ti  is a 
shorthand notation in place of ( , , )t a li  if the pair of actions 
( , )a l  is fixed. For a given pair ( , ),a l  ( ), [ , ],t t t0 f!i  is a Markov 
jump process with right-continuous sample paths, with 

Management Layer

Human Layer

Cyber Layer

Physical Layer

Supervisory Layer

Network Layer

Communication Layer

Control Layer

Physical Layer

Figure 1  The hierarchical structure of cyberphysical control sys-
tems composed of six layers. The physical layer deals with the 
physical devices or chemical processes, such as electric machines 
and transmission lines of power system infrastructure, and electric 
vehicles in transportation networks. The control layer monitors 
and controls the physical layer system for achieving desired 
system performance. The communication layer provides wired or 
wireless data communications that enable advanced monitoring 
and intelligent control. The networking layer allocates network 
resources for routing and provides interconnections between 
system nodes. The supervisory layer is the executive brain of the 
entire system, provides human–machine interactions, and coordi-
nates and manages lower layers through a centralized command 
and control. The management layer resides at the highest eche-
lon. It deals with social and economic issues, such as market 
regulation, pricing, and incentives. 

Cyber
Attack

a

Cyberdefense
l

Disturbances
w

Control
u

Cybersystem

i

Physical Plant

x

Figure 2  The interactions between the cyber and physical sys-
tems are captured by their dynamics. The physical system state 

( )x t  is controlled by u  with the presence of disturbances and nois-
es. The cyberstate ( )ti  is controlled by the defense mechanism l  
used by the network administrator as well as the attacker’s action 

.a  A cyberattack can compromise the controller and the plant 
through their coupling with the cybersystem. 
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initial distribution ,0r  and with rate matrix { } ,,ij i j Sm m= !  
where : { , , , }s1 2S f=  is the state space; Rij !m + are the tran-
sition  rates such that for , ,i j 0ij! $m  and 1ii ijj i

m m= -
!
/   

for .i S!

Transitions between the structural states are controlled 
by the attacker and the system administrator. An attacker 
can exploit the vulnerabilities in the control system soft-
ware and launch an attack to bring down the operation. An 
example is Stuxnet, a Windows-based worm that was 
recently discovered to target industrial software and equip-
ment [3]. An administrator can enforce security by dynami-
cally updating the security policy of the control systems 
[26], [27]. Once an attack occurs, the administrator can 
restore the system back to normal operation. Different from 
conventional computer networks, control systems are 
reported to experience lower rates of attacks [28], and the 
software updates are less frequent than the ones in com-
puter networks. Hence, the transition between structural 
states are at a different time scale from the evolution of 
physical states. The systems are assumed to have reached 
their physical steady states when the structural transition 
happens. This assumption is validated from the fact that the 
attack rate on control systems is often lower than the one on 
information systems [29], [30] and the fact that the time scale 
of the failure rate of devices and components in control sys-
tems is higher than the one of the system dynamics and 
operations [31]. 

Cyberstrategy 
Let / , ,k t 0>f f=r  be the time scale on which cyberevents 
happen, which is often on the order of days, in contrast to 
the one of the physical systems which evolve on the time 
scale of seconds. Denote by a A!  a cyberattack chosen by 
the attacker from his attack space : { , , , }a a aA M1 2 f=  com-
posed of all M  possible actions. l L!  is the cyberdefense 
mechanism that can be employed by the network adminis-
trator, where : { , , , }l l lL N1 2 f=  is the set of all the possible 
defense actions. Without loss of generality, A  and L  do 
not change with time even though, in practice, they can 
change due to technological updates and advances. The 
mixed strategies ( ) [ ( )] , ( ) [ ( )]f gk f k k g kF Gi i

N
k j j

M
k1 1! != == =  

of the defender and the attacker, respectively, are consid-
ered here, where ( )f ki  and ( )g kj  are the probabilities of 
choosing l Li !  and ,a Aj !  respectively, where Fk  and Gk  
are sets of admissible strategies, defined by 

	 : ( ) [ , ] : ( ) ,f k f k0 1 1Fk
N

i
i

N

1
!= =

=

) 3/ � (2) 

	 : ( ) [ , ] : ( ) .g k g k0 1 1Gk
M

j
j

M

1
!= =

=

) 3/ � (3)

The transition law of the cybersystem state ( )ki  at time k  
depends on the actions of the attacker as well as the defense 
mechanism employed by the administrator. More precisely, 
the rate matrix has 

	 { ( ) | ( ) }
( ( ), ( )),
( ( ), ( )),

,
,Prob

f g
f gk j k i

k k
k k

j i
j i

ij

ii

!
i i

m

m
D+ = = =

=
) � (4)

where ,0>D  which is on the same time scale as k  (for 
example, days), and ( ( ), ( ))f gk kijm  are the average transition 
rates in terms of the transition rates ( ( ), ( )), , ,a k l k i j Sij !mu  
defined by 

	 ( ( ), ( )) ( ) ( ) ( ( ), ( )) .f gk k f k g k a k l kij i j ij i j
j

M

i

N

11
m m=

==

u// � (5) 

Equations (1) and (4) describe hybrid systems [32]–[34] 
with both continuous and discrete states. Let Ft  be the 
sigma-field generated by : { ( ), }.s s t[ , ]t t0 #i i=  The admissible 
control and disturbance processes, ( )u $  and ( ),w $  are taken 
to be Ft  measurable and piecewise continuous, with the 
corresponding spaces denoted by U  and ,W  respectively. 
f  is taken to be piecewise continuous in t  and Lipschitz 

continuous in ( , , ),x u w  for each fixed sample path of ,i  with 
probability one. The process i  models the unanticipated or 
rare uncertainties that arise from cyberattacks or compo-
nent failure. These events result in random structural 
changes in the dynamics of the system. For each 

, ,u wU W! !  the state process ( )x $  is continuous with 
probability one, and if ( , )u w  is chosen to be memoryless, 
then the pair ( , )x i  is a Markov process. 

Closed-Loop, Perfect-State Feedback Control 
A closed-loop, perfect-state information structure is con-
sidered for control design. The controller has access to x[ , ]t t0  
at time ,t  which can be written as 

	 ( ) ( , ; ), [ , ],u t t x t t t[ , ] [ , ]t t t t f00 0 !n i= � (6) 

where n  is an admissible closed-loop control strategy, 
piecewise continuous in its first argument, and Lipschitz 
continuous in its second argument. The class of all such 
control strategies is denoted by .M UCL 3  Analogously, let 
N WCL 3  denote the class of all closed-loop disturbance 
strategies 

	 ( ) ( , ; ), [ , ] .w t t x t t t[ , ] [ , ]t t t t f00 0 !o i= � (7) 

The performance index for the hybrid control system is 
given by the expected cost over the statistics of i  

	 ( , ) : { ( , , ; )},J u w L x u wE i= i � (8) 

with the cost function L  given as 

( , , ; ) ( ( ); ( ))

( , ( ), ( ), ( ); ( )) ( ; ( )),

L x u w q x t t

c t x t u t w t t dt c x t

f f f

t

t
0 0 0

f

0

i i

i i

=

+ +#
� (9) 

where q f  is continuous in ,x  and g  is jointly continuous in 
( , , , ) .t x u w  In the infinite-horizon case, q f  is dropped out, 
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and .t f " 3  For each MCL CL!n  and ,NCL CL!o  the sto-
chastic differential equation will admit a well-defined solu-
tion (as a piecewise deterministic process), which will induce 
corresponding unique elements in U  and ,W  which is the 
“open-loop representations” of n  and ,o  respectively. 

The H3-optimal control problem in the time domain is 
in fact a minimax optimization problem, and hence a zero-
sum game, where the controller can be viewed as the mini-
mizing player and the disturbance as the maximizing 
player [13], [35]. Here, the objective is to find a minimax 
closed-loop controller M*

CL CL!n  that infimizes the supre-
mum of J  over all closed-loop disturbance policies

	 ( , ) ( , ) .sup inf supJ J*
CL

N M NCL CL CL

n o n o=
! ! !o n o

� (10)

A cost structure of interest is the separable one

	 ( , , , ; ) ( , , ; ) ( ; ) .c t x u w c t x u r w0
2i i c i= - � (11)

The solution of (10) parameterized in c  is denoted by ,*nc  
and CLc  denotes the smallest value of 0>c  such that for 
> CLc c  the right-hand side of (10) is bounded. Then *nc  for 
> CLc c  is an H3  controller for the hybrid system, with 

respect to the performance index 

	
{ ( ; ( ))}

{ ( ; ( )) ( , ( ), ( ); ( )) }
,sup

w q x t

q x t c t x t u t t dt

E

E

w

f f f
t

t

2
0 0 0

0

W

f

0

i

i i

+

+

! i

i* 4#
� (12)

where $  denotes the L2-norm of w  for each sample path 
of .i  The minimum value of (12) is .CL

2c  It defines a measure 
of disturbance attenuation in the nonlinear hybrid system. 
Note that in (10), x0  is considered as part of the disturbance. 

What has been formulated above, as described by (10), is 
a differential game. Let ( ) :V R R Sn$ # #  denote the cost-to-
go function associated with this differential game, that is, 

( , , )V t x i  is the upper value of a similar game defined on the 
shorter interval [ , ],t t f  with initial state ,x  and initial struc-
ture ( ) .t ii =  The following assumptions are quite standard. 

A1): �The differential game defined by (10) has an upper 
value V  for every initial time ,t  state ( ),x t  and 
structure ( ),ti  which is jointly continuously differ-
entiable in ( , ) .t x  

Under A1), the infinitesimal generator of the upper-
value function is 

	

( , ; )| : { ( , ( ); ( ))

( , ( ), ( ))| ( ) , ( ) }

( , ; ) ( , ; ) ( , , , ; ) ,

limV t x h V t h x t h t h

V t x t t x t x t i

V t x i V t x i f t x u w i V

1 EL

, ;

i

t x ij
j

s

t x j
1

h 0
i i

i i

m

= + + +

- = =

= + +

i=

=

"

/
� (13) 

with u U!  and w W!  chosen to be memoryless, which 
in fact is not a restriction as further elaborated below. From 
(13), the associated HJI equation is 

	
( , ) ( , ) ( , , , , )

( , , , , ) ( , ) ,

inf supV t x V t x f t x u w i

c t x u w i V t x

t
i

u w
x
i

ij
j

j

R R

S

r
p

m

- =

+ +

! !

!

'

1/
�

(14)

	 ( , ) ( ( ); ) ,,V t x q x t i i Si
f f f != � (15) 

where the simpler notation ( , )V t xi  is used in place of 
( , ; ( ) ) .V t x t ii =  Denoting any such control by ,MF

CL!n  
(14) and (15) can be rewritten as 

( , ) ( , ) ( , , ( , , ), , )

, , , , , , , .

supV t x V t x f t x t x i w i

c t x t x i w i V t xF

t
i

w
x
i

ij
j

j

F

R

S

p
n

n m

- =

+ +

!

!

^ ^ ^h h h

'

1/

Furthermore, if the Isaacs condition [on interchangeability 
of infimum and supremum in (14)] holds and if there exists 
a disturbance policy, ,NF

CL!o  that achieves the maximum 
in (14), then Fo  is also a Markov policy, and ( , )F Fn o  are in 
saddle-point equilibrium. In this case, the upper value is 
also the value function, satisfying the partial differential 
equation (PDE) 

	
( , ) ( , ) ( , , ( , , ), ( , , ), )

( , , ( , , ), ( , , ), ) ( , ).
V t x V t x f t x t x i t x i i

c t x t x i t x i i V t x

F F

F F

t
i

x
i

ij
j

j

S

n o

n o m

- =

+ +
!

/ � (16) 

For details on the equilibrium concepts of games, see “Gen-
eral Game Model and Equilibrium Concept.” The preced-
ing discussion and the ensuing result are now summarized 
in the theorem below. 

Theorem 1
Let the cyberstrategy pair ( ( ), ( ))f gk k  be fixed, A1) hold, and 

MF
CL!n  be defined as above. Then, Fn  is a closed-loop 

minimax controller. If, furthermore, the Isaacs condition 
holds and NF

CL!o  is defined above, the pair of Markov 
policies ( , )F Fn o  provides a saddle-point solution on the 
product space .M NCL CL#  The corresponding saddle-point 
value function solves (16) subject to (15). � 4

The optimal cost ( , )V t xi
0 0  yields the physical layer con-

trol performance under the minimax controller. Note that 
this cost depends on the cyberstrategy pair ( , )f g  since the 
transition rate ijm  is a function of mixed strategies. The 
cyberstrategies are determined by analyzing a security 
game at the cyberlayer. 

CyberLayer Defense System 
At the cyberlayer, a zero-sum game framework can be used 
to capture the strategic interactions between an attacker 
and a defender. The game takes different forms depending 
on the information available to the defender, the targets of 
the attacker, and the security mechanism. For example, a 
zero-sum stochastic game has been used for dynamic con-
figurations of a network of IDSs [36], [37], in which the state 



52  IEEE CONTROL SYSTEMS MAGAZINE »  FEBRUARY 2015

of the system evolves according to transition rules deter-
mined by the actions taken by the players, and dynamic 
system configuration policy has been developed for IDSs to 
optimally defend against intrusions. In [38] and [39], a mul-
tistage Stackelberg game has been studied for developing 
deceptive routing strategies for nodes in a multihop wire-
less communication network. The framework is convenient 
to model the scenario where the defender first deploys a 
proactive defense, and the attacker follows the protocol. A 
stochastic repeated game and an iterative learning mecha-
nism have been adopted for moving target defense [40], 
[41]. Due to the lack of complete information of the attacker 
and the system itself, the players update their strategies in 
a feedback manner driven by the data they have observed 
from the system. 

In this article, a general stochastic game formulation is 
introduced in which the state space coincides with .S  This 
class of models captures the uncertainties in cybersystem 
dynamics and the time evolution of system states and 
player strategies. Moreover, in the absence of decision 
making of the players (that is, the costs and the transitions 
are independent of player strategies), the framework would 
be reduced to a Markov-chain model which has been used 
for reliability analysis [42]. 

At time ,k R! +  the action pair ( , )a l  is chosen by the 
attacker and the defender according to a mixed strategy 
pair ( ( ), ( ))f gk k  as introduced in (2) and (3). The joint actions 
affect the transition rates ijm  in (4) and also incur a cost 

( , ; , ),c a l CL CL
i n o  where ci  is a bounded cost function that 

incorporates the physical layer control system performance 
under the closed-loop strategies , .CL CLn o  The cost ci  has 
two components: the cost inflicted on the cyberlayer and 
the resulting impact-aware, physical-layer performance 
index from the action pair ( , ) .a l

The defense against attacks involves HMIs, which occur 
at the human and cyberlayers of the system. Hence, defense 
often evolves on a longer time-scale than the physical layer 
processes. Using time-scale separation, the optimal defense 
mechanism can be designed by viewing the physical con-
trol system at its steady state at each cyberstate i  at a given 
time .k  The interaction between an attacker and a defend-
ing administrator can be captured by a zero-sum stochastic 
game with the defender aiming to maximize the long-term 
system performance or payoff function whereas the 
attacker aiming to minimize it [43]. A discounted payoff 
criterion ( , , )f gv ib  is used and it is defined as 

( , , ) : ( , ; , ) ,f gv i e c a l dkE
( ), ( )

CL CL
f gk

i
k k i

0
n o=

3
b

b-#

General Game Model and Equilibrium Concept 

Consider an N-player game, with : { , , }N1N f=  denoting 

the players set. The decision or action variable of Player 

i  is denoted by ,x Xi i!  where Xi  is the action set of Player .i   

Let x  denote the N-tuple of actions variables of all players, 

: ( , , ) .x x xN1 f=  Allowing for possibly coupled constraints, 

let X1X  be the constraint set for the game, where X  is the  

N -product of , , ;X XN1 f  hence for an N-tuple of action variables 

to be feasible, .x ! X  The players are minimizers, with the ob-

jective function (loss function or cost function) of Player i  de-

noted by ( , ),L x xi i i-  where x i-  stands for the action variables of 

all players except the thi  one. 

Now, an N-tuple of action variables x* ! X  is a Nash equi-

librium (or noncooperative equilibrium) if, for all , ,i x XN i i! !

( , ) ( , ), such that ( , ) .L x x L x x x x* * * *
i i i i i i i i# ! X- - -

If N 2=  and : ,L L L1 2/- =  then the game is a two-player zero-

sum game, with Player 1 minimizing L  and Player 2 maximizing 

the same quantity. In this case, the Nash equilibrium becomes 

the saddle-point equilibrium, which is formally defined as fol-

lows, where the coupling constraint X  is left out (or simply as-

sumed to be equal to the product set :X X X1 2#= ): A pair of 

actions ( , )x x X* *
1 2 !  is in saddle-point equilibrium for a game 

with cost function ,L  if for all ( , ) ,x x X1 2 !  

( , ) ( , ) ( , ) .L x x L x x L x x* * * *
1 2 1 2 1 2# #

This also implies that the order in which minimization and maxi-

mization are carried out is inconsequential, that is, 

	 ( , ) ( , ),min max max minL x x L x x
x X x X x X x X

1 2 1 2
1 1 2 2 2 2 1 1

=
! ! ! !

� (S1)

	 ( , ) : ,L x x L1 2= =) ) ) � (S2)

where the first expression in (S1) is known as the upper value 

of the game, the second expression in (S1) is the lower val-

ue of the game, and L)  is known as the value of the game. 

Upper and lower values are, in fact, defined in more general 

terms using infimum (inf) and supremum (sup) replacing mini-

mum and maximum, respectively, to account for the facts that 

minima and maxima may not exist. When the action sets are 

finite, however, the latter always exists. Note that the value of a 

game, whenever it exists (which certainly does if there exists a 

saddle point), is unique. Hence, if there exists another saddle-

point solution, say ( , ),x x1 2t t  then ( , ) .L x x L1 2 =
)t t  Moreover, these 

multiple saddle points are orderly interchangeable, that is the 

pairs ( , )x x1 2
) t  and ( , )x x1 2

)t  are also in saddle-point equilibrium. 

This property of saddle-point equilibria does not extend to mul-

tiple Nash equilibria (for nonzero-sum games). Multiple Nash 

equilibria are generally not interchangeable, and further they do 

not lead to the same values for the players’ cost functions, the 

implication being that when players switch from one equilibrium 

to another, some players may benefit from that (in terms of re-

duction in cost) while others may see an increase in their costs. 

Further, if the players pick randomly (for their actions) from the 

multiple Nash equilibria of the game, then the resulting N-tuple 

of actions may not be in Nash equilibrium. 
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where b  is the discount factor. The operator E ,f g
i  is the 

expectation operator. Here a class of mixed stationary strat-
egies f Fi i!  and , ,g iG Si i! !  is considered that are only 
dependent on the current cyberstate .i  Let { }fF Fi i SS != !  
and { } ,G g Gi i SS != !  where :F FS i

i
SP= !  and :GS =

.Gi
i

SP !  The following theorem characterizes the station-
ary saddle-point equilibrium of the stochastic zero-sum 
game in a similar fashion as in [43]–[46] . 

Theorem 2 [18]
Let the strategy pair ( , )CL CLn o  be fixed. Assume that ( )kijm  
are continuous in ,fi  and gi  and the cost functions ci  are 
bounded. Then, there exists a pair of stationary strategies 
( , )F G F G* *

S S#!  such that, for all ,i S!  the following 
fixed point equation is satisfied 

	

( ) ( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

: ( )
( , ) ( , ) ( )
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F G F G

F G F G

F G F G
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inf sup
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(17)

where ( , )F Gciu  is a shorthand notation for ( , ; , ),c a lE , CL CLF G
i n o  

and ( ), ( )L i U ib b  are defined to be respectively the lower 
value and the upper value of the game. In addition, ( , )F G* *  
from (17) is a pair of saddle-point equilibrium strategies 
and the value of game ( )v i*

b  is unique and has the property 
that ( ) ( ) ( ) .v i L i U i* = =b b b  � 4

The above result is also known as the Shapley optimal-
ity criterion for stochastic games. For more details on the 
properties of saddle points of zero-sum games, see “Mini-
max Theorem.” The saddle-point equilibrium strategies 
can be computed using a value iteration scheme [44], [45]. 
Let { ( )}v in

n 1
3

b =  be a sequence of values of the game which 
obeys the following update law 

	

( ) ( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( ) .

F G F G

F G F G

F G F G

sup

inf

v i c v j

c v j

c v j

* * * *

* *

* *

F

G

n i
n n ij

j
n n

n
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n n ij

j
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The following theorem provides a convergence result on 
the iterative algorithm in (18). 

Theorem 3
Let { , }F G* *

n n  be the sequence of strategies in F GS S#  pro-
duced by the value iteration scheme described in (18). Then, 
any limit point ( , )F Gn n  of the sequence is a pair of saddle-
point equilibrium strategies. Moreover, the limit point 
yields the unique game value ( ), .v i i S* !b � 4

Note that the equilibrium solution { , }F G* *  depends on 
the physical layer minimax control ( , ),* *

CL CLn o  while finding 
the control policy ( , )* *

CL CLn o  using (14) and (15) relies on the 
security policy { , }F G* *  taken at the cyberlayer. The optimal-
ity criterion (17) in Theorem 2 together with the HJI equation 
in (14) defines a set of coupled optimality conditions that are 
used to solve for obtaining the cyberpolicy F) and the robust 
controller *

CLn  and its associated performance index .c)

The coupling between the cybersystem game (CSG) and 
the physical system game (PSG) captures the essential trade
offs between robustness, resilience, and security. To ensure 
that the system operates in a normal condition, either a per-
fect secure system is designed so that no attack can succeed 
or the system is capable of recovering back to its normal con-
dition quickly once it fails. However, given limited resources, 
perfect security is not possible, and the solution to the cyber-
game (for good states) provides a fundamental limit for the 
best-effort security strategies. Hence, it is essential to allocate 
resources to the cybersystem to recover from the failure 
states. This security and resilience tradeoff is captured by the 
stochastic CSG introduced in this section, which yields strat-
egies balancing the level of security that prevents the cyber-
system from failure, and the level of resilience that brings the 
system quickly back to its normal state of operation. 

On the other hand, to achieve a higher level of robust-
ness, the control effort has to be distributed across different 
cyberstates. Robustness of the control system is high if the 
system is perfectly secure, that is, the system does not fail 
and does not move to a compromised state, because control 
effort only needs to be expended for the good states. How-
ever, perfect security does not exist, and the control effort 
has to be expended on the bad states as well in case the 
system fails to ensure robustness at the failure states. 
Hence, there is a tradeoff between security and robustness. 
The formulation of the PSG captures this tradeoff. 

In addition, the coupling between the CSG and PSG yields a 
design relationship between the level of robustness against w  
in the physical system and the cost for security defense against 
G in the cybersystem. A higher demand of robustness at the 
physical level will lead to a higher control cost and a higher 
impact cost for the cybersystem once the system is compro-
mised, which in turn requires a stronger level of security and 
resilience to prevent or recover from the failure. Given limited 
resources for defense, physical-level robustness will dictate the 
tradeoff relationship between security and resilience. Hence, as 
a result of this framework, a balance of security, resilience, and 
robustness is achieved for the cyberphysical control system. 

Linear-Quadratic Problem with  
Cascading Failures 

Linear Quadratic Problem 
The set of optimality equations can be simplified by con-
sidering the special case of the linear quadratic problem 
defined as 
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	 ( , , , ; ) ,f t x u w i A x B u D wi i i= + + � (19) 

	 ( ; ) | ( )| ,q t i x tf f f Q
2

t
i

f
= � (20)

	 ( , ) | | ,q x i x Q0 0 0
2

i
0

= � (21)

	 ( , , , ) | | | | ,c t x u i x uQ R0
2 2

t
i i

f
= + � (22)

	 ( ; ) | | ,r w w 2i = � (23)

where , | |i S $!  denotes the Euclidean norm with appro-
priate weighting, and , , , ,A B D Q Ri i i i i  are matrices of appro-
priate dimensions, whose entries are continuous functions 
of time .t  Further, ( ) , ( ) ,Q R0 0>i i$ $$  and Q 0>i

0  and .Q 0f
i $

Consider the infinite horizon case with the cost function 
defined by 

	 ( , , ; ) (| ( )| | ( )| | ( )| ) .L x u w x t u t w t dtE
t

Q R
2 2 2 2

i i

0
i c= + -

3# � (24) 

Before stating Theorem 4, the following assumptions 
are made 

A2): �The Markov chain i  is irreducible for any admissi-
ble strategies [47, p. 78]. 

A3): �The pair ( , )A Bi i  is stochastically stabilizable [48, see 
its definition on p. 59]. 

A4): �The pair ( , )A Qi i  is observable for each .i S!

Theorem 4 [33]
Consider the soft-constrained, zero-sum differential game 
with perfect measurements in the infinite-horizon case 

Minimax Theorem 

Consider two-person, zero-sum finite games, or equivalently 

matrix games, where Player 1 is the minimizer and Player 2 

the maximizer. Let X1  and X2  be Player 1’s and Player 2’s ac-

tion sets, respectively. Let card ( )X m1 =  and card ( )X n2 =  be 

the cardinality of action sets, that is the minimizer has m  choic-

es and the maximizer has n  choices. The objective function 

( , )L x x1 2  is defined on .X X1 2#  Equivalently, an m n#  matrix A 

can be associated with this game, whose entries are the values 

of ( , ),L x x1 2  following the same ordering as that of the elements 

of the action sets, that is thij  entry of A is the value of ( , )L x x1 2  

when x1  is the thi  element of X1  and x2  is the jth element of 

.X2  Player 1’s choices are then the rows of the matrix A and 

Player 2’s are its columns. 

In general, a saddle point may not exist in pure strategies 

for all zero-sum games. One example is the game known as 

Matching Pennies. Each player has a penny and can choose 

heads or tails. The players then reveal their choices simultane-

ously. If the two choices are identical (that is, if they match), 

then Player 1 wins and is given the other player’s penny. If the 

choices do not match, then Player 2 wins and is given the other 

player’s penny. This is an example of a zero-sum game, where 

one player’s gain is exactly equal to the other player’s loss. The 

game matrix associated with the game is 

.A
1

1
1
1

=
-

-
c m

The entries of this matrix are losses to Player 1 (and thus gain 

to Player 2). The first row corresponds to the choice of heads for 

Player 1, and the second row corresponds to the choice of tails 

for him. Symmetrically, the first column corresponds to heads 

for Player 1, and the second column is tails for him. Here there is 

no row-column combination at which the players would not have 

an incentive to unilaterally deviate and improve their returns. 

This opens the door for looking for a mixed-strategy equilib-

rium. A mixed strategy for Player i  is a probability distribution 

over his action set ,Xi  which is denoted by pi  for Player .i  If Xi  

is finite, which is the case here, then pi  will be a probability 

vector, taking values in the probability simplex determined by 

,Xi  which is denoted by .Pi  A pair ( , )p p1 2
) )  constitutes a saddle 

point in mixed strategies (or a mixed-strategy saddle-point 

equilibrium), if for all ( , ) ,p p P1 2 !

( , ) ( , ) ( , ),J p p J p p J p p1 2 1 2 1 2# #) ) ) )

where ( , ) ( , ) ,J p p E L x x,p p1 2 1 21 2= 6 @  and : .P P P1 2#=  Here J =)

( , )J p p1 2
) )  is the value of the zero-sum game in mixed strategies. 

In terms of the matrix ,A  and the probability vectors p1  and 

p2  (both column vectors), which were introduced earlier (note 

that in this case p1  is of dimension m  and p2  is of dimen-

sion ,n  and components of each are nonnegative and add up to 

one), the expected cost function can be rewritten as 

( , ) .J p p p Ap1 2 1 2= l

By the minimax theorem [52], J  admits a saddle point, which 

means that the matrix game A has a saddle point in mixed 

strategies, that is there exists a pair ( , )p p1 2
))  such that for all 

other probability vectors p1  and ,p2  of dimensions m  and ,n  

respectively, the following pair of saddle-point inequalities hold 

.p Ap p Ap p Ap1 2 1 2 1 2# #) ) )) l l l

The quantity p Ap1 2
) )l  is the value of the game in mixed strate-

gies. This result is now captured in the following theorem. 

Theorem S1 (Minimax Theorem)

Every finite two-person, zero-sum game has a saddle point in 

mixed strategies. 

The extension of this result to N-player finite games was 

first obtained in [49], as captured in the following theorem. 

Theorem S2

Every finite N-player nonzero-sum game has a Nash equilib-

rium in mixed strategies. 

A standard proof for this result uses Brouwer’s fixed point 

theorem; see [35]. 
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defined by (10), (19)–(23), (24), (6), and (7), with ijm s fixed. Let 
assumptions A2)–A4) hold. Then, ,<,

*
CL 3c +3  and for any 

,> ,
*

CL CLc c 3  there exists a set of minimal positive definite 
solutions , ,Z i Si !  to generalized algebraic Riccati equa-
tions (GAREs), 

( )

( , ) ; ,F G

A Z Z A Z B R B D D Z

Q Z i

1

0 S

i
i i

i
i

i i i i i
i

i
ij

j

s

j

1
2

1
!

c

m

+ - -

+ + =

< < <-

=

c m

/

which further satisfy the condition 

	 , ,Q Z i0 SCL
i

i
2

0 $ !c - � (25) 

and a strategy *n 3c  for P1 that guarantees the zero upper 
value is 

	 ( ) ( , ( ), ( )) ( ) ( ) .u t t x t t R B Z x t* * i i
i

1n i= =-3 3
<

c c
- � (26) 

For almost all ,> *c c3  the jump linear system driven by 
both the optimal control and the optimal disturbance, 

	 ( ) ( ( ) ) ( ),x t A B R B D D Z x t1i i i i i i
i

1
2c

= - -< <-o c m � (27)

is also mean-square stable, that is, {| ( )| } .lim x t 0Et
2 ="3

For ,< ,
*
CLc c 3  on the other hand, either condition (25) is 

not satisfied or the set of GAREs does not admit nonnega-
tive definite solutions, and in both cases, the upper value of 
the game is .3+

On a longer time scale, the continuous-time, zero-sum 
game between the attacker and the administrator has the 
stationary saddle-point equilibrium characterized by The-
orem 2. Let g Vi i=u  be the cost function which describes the 
physical layer system performance. Then, the fixed-point 
equation (17) can be written as 

	 ( ) ( , ) ( , ) ( ) .F G F Gv i x Z x v j* * * * * *
i ij

j
0 0

S

b m= +
!

b bl / � (28) 

The optimal control u*  and the optimal defense strategy F*  
need to be found by solving the coupled equations (28) and 
GAREs in Theorem 4. 

Cascading Failures 
Cascading failure is kind of  failure in a system comprised 
of interconnected parts in which the failure of a part can 
trigger the failure of successive parts. Such a failure is 
common in computer networks and power systems. In the 
case of cascading failures, state 1i =  is the normal operat-
ing state and state Ni =  is the terminal failure state. The 
states , ,i i N2 1# # -  are intermediate compromised states 
in which one system component failure leads to another. 
The failure and compromised states are taken to be irre-
versible, that is, the system cannot be fixed or brought  
back to its normal state immediately after faults occur. This 
is usually due to the fact that the time scale for critical cas-
cading failures is much shorter than the time scale for 
system maintenance. In our modeling framework, the tran-
sition between the failure states follows a Markov jump 
process with rate matrix { } ,ij i j Sm m= !  such that for 

, , ,i j 0 1ij ii ijj i
! $m m m= -

!
/  and i j>  and ,j i 1> + .0ijm =  

For simplicity, the notation , ,p i N1 1,i i i1 # #m = -+  denotes 
the transition rates between adjacent states, and hence 

, , .p i N p1 1 1ii i N NN# #m m= - - =  Here, , , ,p i 1i g= ,N 1-  
are dependent on the cyberstrategy pair ( , ),GF  which has 
been introduced earlier. An effective cyberdefense action 
will lead to lower transition rates, and a power cyberattack 
will increase them. The structure of state transition of cas-
cading failures is depicted in Figure 3. 

Following (28), the optimality criteria for the cybersystem 
under cascading cyberstates can be further simplified to 

	 ( ) ,v N V* Nb =b � (29) 

	 ( ) { ( ) ( )},valv i c p v i p v i1* * *i
i ib = + + -b b b � (30) 

	
( , ) { ( ) ( )},

, , ,
arg valf g c p v i p v i

i N

1
1 1

* *
i i

i
i i

g

! + + -

= -

b b
� (31) 

	 .c x Z xi
i0 0= < �

Here, , ,p i N1 1,i i i 1 # #m= -+  and Vi  is dependent on pi  
through Zi  in Theorem 4. Note that (30) and (31) find the 
game value vi

b  and stationary saddle-point equilibrium 
strategies ( , ),GF  respectively. Since both players have a 
finite number of choices for each ,k  the existence of a sad-
dle-point solution is guaranteed for the zero-sum stochas-
tic game [35], [49]. 

In addition, the optimality criteria for the H3  optimal 
control in the linear quadratic case can be reduced to

	 ( ) ,A Z Z A Z B R B D D Z Q1 0N
N N

N
N

N N N N N
N

N1
2c

+ - - + =< < <-c m
� (32)
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1 1
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i
i
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i

i
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1
2 1

f
c

+ - - + + =
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< < <-
+c m

� (33)

Here, c  is a chosen level of attenuation. Under the regular-
ity conditions in [13], there exists a finite scalar 0>c3  such 

p1 = m12 pN - 1 = mN - 1, N

NN - 121

Figure 3  A system progresses from a normal operating state 
1i =  to the failure state .N  The intermediate states are the ones 

in which part of the system is exploited and attacked due to the 
launch of a multistage attack. The transition between the cyber-
states follows a Markov process with rate , ,p i N1 1,i i i1 # #m = -+  
and , , .p i N p1 1 1ii i NN N# #m m= - - =
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that for all ,>c c3  (32) and (33) admit unique minimal non-
negative definite solutions. 

In (30), pis are dependent on F  and .G  At the same time, 
as a result of solving (33), the value Vi  is dependent on pis 
and Bis, which are in turn functions of F  and .G  The above 
set of coupled equations can be solved by starting with (32) 
for obtaining the value of the terminal state .VN  From (29), 
the value v*

N  is calculated and then in the next step use (30) 
and (33) to find the stationary saddle-point equilibrium 
strategies ,f g* *

N N1 1- -  at state ,N 1i = -  their corresponding 
transition rate ( , )f gp*

,
* *

N N N N N1 1 1 1m=- - - -  and the Riccati 
solution .ZN 1-  The process is iterated again by using ZN 1-  
in (30) for ,i N 2= -  and the obtained strategy pair 
( , )f g* *

N N2 2- -  is used in (33) to solve .ZN 2-  Hence backward 
induction is used to obtain Z1  and ( , ) .f g* *

1 1

Note that the coupling between (32), (33) and (29), (30) 
demonstrates the interdependence between security at the 
cyberlevel and the robustness at the physical level. The 
holistic viewpoint toward these system properties is essen-
tial in addressing the resilience of cyberphysical control 
systems. The coupling between cyber and physical levels of 
the system is not one directional but rather reciprocal. The 
upward resilience from the physical level to the cyberlevel 
results from the function ci  while the downward resilience 
from the cyberlevel to the physical level follows from the 
dependence of ijm  on the cyberpolicies. 

Games-in-Games Structure 
The cross-layer, game-theoretic model captures the cou-
pling between the cyber and the physical layers of the 

system dynamics. In the framework, robustness of the 
cyberphysical control system is studied under an H3  opti-
mal control model, while its security is studied using a 
two-person zero-sum cybersecurity game. The control and 
defense strategy designs are extended to incorporate post-
event system states, where resilient control and cyberstrate-
gies are developed to deal with uncertainties and events 
that are not taken into account in pre-event robustness and 
security designs. Under the assumptions made in Theo-
rems 1 and 2, a secure, resilient, and robust control and 
cyberstrategy pair ( , )FCLn  has to satisfy the general opti-
mality criteria (14), (15), and (17). In the linear quadratic 
problem with cascading states, they are reduced to (32), (33), 
(29), and (30). They are derived from the optimality criteria 
of two dynamic games. One is the zero-sum differential 
game for the H3  robust control design, and the other one is 
the zero-sum stochastic game for equilibrium defense 
policy. Due to the layering architecture and the time-scale 
separation, the CSG can been seen as the one on top of the 
PSG. The two games are coupled and exhibit a games-in-
games structure as illustrated in Figure 4. The outcome of 
the PSG affects the cost structure of the CDG. In addition, 
the solution to the PSG depends on the equilibrium solu-
tion ( , )F G* *  from the CSG. Solutions to this game structure 
define the tradeoff between robust and resilient control of 
cyberphysical control systems. 

One interesting aspect of the games-in-games structure is 
that its solution is featured by zooming-in and zooming-out 
operations. The zooming-out operation refers to the fact that 
the solution of the PSG provides an input to the CSG, which 
leads to a solution of the CSG. The zooming-in operation 
refers to the reverse fact, that is, the PSG also affects the CSG. 
As depicted in Figure 4, solutions to the coupled optimality 
criteria precisely involve these two procedures. zooming in is 
defined as the operation of passing the parameters from 
higher level CSG to lower level PSG, and zooming out as the 
operation of passing the parameters from the lower-level 
PSG to the higher level CSG. A sequence of structured 
zooming-in and zooming-out operations is observed in the 
linear-quadratic problem with cascading states. The proce-
dure for finding the solution starts with finding ZN 1-  using 
(33) and then zooming out to the CSG to find ( ( ), , ) .f gv N 1*

i i-b  
This is followed by zooming in to the PSG again and find 

.ZN 2-  The zooming-in and zooming-out operations alter-
nate until reaching the initial state .1i =

A Numerical Example 
Consider the following two-state linear system that arises 
from a single-machine infinite bus power system linear-
ized around its operation point [18]. Let x R3!  be the state 
vector that includes the power angle, the relative speed, 
and the active power delivered by the generator. Let u R3!  
be the control variable that determines the amplifier of the 
generator. At the normal operating state ,1i =  its dynam-
ics are described by 

Cybersystem Game
vb, F, G

Physical System Game
Vi, nCL, vCL

Figure 4  A games-in-games structure for cross-layer resilient 
control design. At the physical layer control system, a zero-sum 
differential game between the robust controller and the distur-
bance is used to design an H3  controller for achieving robust per-
formance for uncertain parameters or disturbances. At the 
cyberlayer defense system, a zero-sum stochastic game between 
a defender and an attacker is used to design an optimal cyber-
policy for ensuring system security. The cross-layer solution 
( , , , )F GCL CLn o  has to satisfy a Hamilton–Jacobi–Isaacs equation 
and a Shapley optimality criterion. Vi  is the value function for the 
physical system at cybermode ,i  and ( )v ib  is the value function for 
the cybersystem. The solution process is composed of a zooming-
in process and a zooming-out process. The zooming-in operation 
goes from the cyberlayer decision process to the physical layer 
one, while the zooming-out operation refers to the reverse. 
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	 ,x A x B u D w1 1 1= + +o � (34) 

where
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With an unanticipated fault caused by a cyberattack at the 
rate ,12m  the system is compromised and its dynamics at the 
failed state 2i =  are given by 

	 ,x A x B u D w2 2 2= + +o � (35) 

where
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The design strategy based on the linear quadratic criterion 
described above could be used here, by choosing the 
weighting matrices 

, ,,Q Q R R
1000

0
0

0
1
0

0
0
10

10 11 2 1 2= = = => H

where the weights of 1000 are used in Q1  and Q2  to empha-
size the willingness to use more control in a post-attack state. 

The , , , ,i j 1 2ijm =u  take the following parameterized form: 
, , ,p p 012 11 21 22m m m m= =- = =u u u u  where it has been assumed 

that the operation after the attacker cannot be immediately 
recovered. At the cyberlayer, the administrator can take 
two actions, that is, to defend ( )l D1 =  and not to defend 
( ND).l2 =  The attacker can also take two actions, that is, to 
attack ( A)a1 =  or not to ( NA).a2 =  The parameter p  deter-
mines the probability transition law with respect to pure 
strategies and its values are tabulated as 

.
.

.

.
.D

ND

A NA
0 1

0 95
0 05
0 05

In the above table, a higher transition rate has been 
attached to a failure state if the attacker launches an attack 
while the cybersystem does not have proper measures to 
defend itself. On the other hand, the probability is lower if 
the cybersystem can defend itself from attacks. In the above 
table, a base transition rate of 0.05 has been assumed to cap-
ture the inherent reliability of the physical system without 
exogenous attacks. The optimality criterion (28) and GAREs 

in Theorem 4 are used to obtain the discounted value func-
tions ( ), , ,v i i 1 2* =b  with the discount factor chosen to be 

,1b =  and yield .V 7 2075 102 4#=  independent of the 
parameter .p  Hence, ( )v V2* 2=b  and v*

b  satisfies the follow-
ing fixed-point equation: 

	 ( ) ( ) ,val H Gv v1 1* *= -b b" , � (36) 

where

.

.
.
.

,H
1 4396 10
8 4867 10

0 9994 10
0 9994 10

4

4

4

4
#

#

#

#
=; E

and

	
.
.

.

. ,G
0 1
0 95

0 05
0 05=; E

where val is the value operator for a matrix game [44], [45]. 
Using value iteration, it is possible to compute 

( ) . ,v 1 1 3087 10* 4#=b  and the corresponding stationary sad-
dle-point strategy [ , ] , [ , ] ,f g1 0 0 1* *= =l l  which is a pure 
strategy leading to an optimal value of . .p 0 05=  The sta-
tionary saddle-point equilibrium strategy informs that the 
defender should always be defending and the attacker 
should not be attacking. At . ,p 0 05=  the physical layer 
robust feedback control at each state i  is obtained by 

( , , ) ( ) , ( , , ) ( ) ,u t x R B Z u t x R B Z1 2F F1 1 1 1 2 1 2 2=- =-< <- -

where
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,Z
399 3266
31 8581
162 2334
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15 2963

162 2334
15 2963
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-> H

and 

.

.
.

.
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,Z
2 8512
0 1066
2 8575

0 1066
0 0345
0 1041

2 8575
0 1041

4 1506

2 =

- -

-

-> H

and the optimum performance index is . .8 5*c =3

Case Study: Defense Against  
Denial-of-Service Attack 
The games-in-games principle for the special case of the 
linear-quadratic problem with cascading failures has been 
applied to study the resilience of the power energy system 
in [18]. The principle can be further extended to discrete-
time systems where the physical layer game is a discrete-
time minimax design problem with perfect state 
measurements and the cyberlayer game is a discrete-time 
stochastic Markov game. In parallel to the results devel-
oped for continuous-time systems, a similar set of coupled 
equations for discrete-time systems can be developed. 
Interested readers can refer to [13] and [21] for results on the 
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discrete-time minimax design problem with perfect and 
imperfect state measurements. To further illustrate this, a 
case study of denial-of-service (DoS) attack is discussed 
below, which can cause delays and congestion in the com-
munication channel of the cyberphysical systems. 

Control System Model 
A networked control system is vulnerable to different types 
of cyberattacks, including false data injection, DoS, and 
sensor node capture and cloning attack, as depicted in 
Figure 5. Here, the games-in-games principle is used to 
study a class of DoS attacks on control systems. The con-
trolled plant under DoS attacks is described by a discrete-
time model for computational convenience 

	
,

,
x Ax B u B

z Dx
,k k c k k

k k

1 2 1~= + +

=

+' � (37) 

where x Rk
n!  and u R,c k

m!  are, respectively, the state vari-
able and the control signal received by the actuator, k~  is the 
disturbance belonging to [ , ) .l 02 3  , , ,A B B1 2  and D  are matri-
ces with appropriate dimensions. The measurement with 
randomly varying communication delays is described by 
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where y R,c k
p!  is the measured output and y Rk

p!  is the 
actual output. : { , , , }S s1 2 f!i i i i=  is the state space of the 
cybersystem. The stochastic variable di  is distributed 
according to a Bernouli distribution: 
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When ,1d =i  the measured output is ,y y,c k k 1= -  that is, the 
measured output has a one-step time delay. When ,0d =i  
the measured output is ,y y,c k k=  that is, there is no delay 
between the measured output and the actual system output. 
An observer-based control strategy takes the form of 
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where u Rk
m!  is the control signal generated by the control-

ler and u ,c k  is the signal received by the actuator. K Rm n! #i  
and L Rn p! #i  denote the control-
ler gains and observer gains that 
are to be designed. The stochastic 
variable ,bi  mutually indepen-
dent of ,di  is also a Bernoulli dis-
tributed white sequence with 
expected value .bir  Note that the 
sensor-to-controller (S-C) delay  
is described by the situation that 

,1d =i  and the controller-to- 
actuator (C-A) delay is described 
by .1b =i

Intrusion Detection Systems 
IDSs are deployed in communica-
tion networks for detecting unau-
thorized system access. They are 
passive devices that receive and 
evaluate information sent over a 
network against a set of signa-
tures. IDS signatures have been 
developed for most published 
vulnerabilities and for potentially 
dangerous activity in common IT 
protocols. The C-A and S-C delays 
depend on the configurations of 
the IDSs. A configuration provid-
ing high information assurance 
can result in significant delays for 
control system applications since 
a large number of signatures have 
to be checked for each incoming 

IDS

IDS

C-A Delay di

A2

A2

A4

A3

A1

yc

ucu y

A5

S-C Delay bi

Controller
+

-

Physical
System

Physical Layer

Cyber Layer

#

Figure 5  Many components of a networked control system are vulnerable to cyberattacks, 
including the controller, the physical plant, and the communication networks [51]. In the dia-
gram, dotted blocks constitute the cyberlayer of the system while blocks with solid lines are 
components at the physical layer. A1  and A4  represent direct attacks against the actuators or 
the plant. A2  is the denial of service attack, where the controller is prevented from receiving 
sensor measurements and the actuator from receiving control signals. A3  and A5  represent 
deception attacks, where the false information y y!u  and u u!u  is sent from sensors and con-
trollers. Intrusion detection systems (IDSs) are detection devices used to defend the control 
system from intruders but may cause C-A delay between controller (C) and actuator (A) and/or 
S-C delay between sensor (S) and controller (C). The probabilities of incurring a one time-step 
delay are denoted by parameters di  and ,bi  which depend on the cyberstate .i  An IDS is con-
figured optimally as a tradeoff between physical layer control system performance and cyber-
level security enhancement. 
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packet. The configuration of IDSs is not a trivial task. 
The current version of the Snort IDS, for example, has 
approximately 10,000 signature rules located in 50 cat-
egories. Each IDS also comes with a default configura-
tion to use when no additional information or 
expertise is available. It is not trivial to determine the 
optimal configuration of an IDS because of the need to 
understand the quantitative relationships between a 
wide range of analyzers and tuning parameters. 

For industrial control systems, a set of SCADA IDS 
signatures that parallel Snort rules for enterprise IT 
systems have been designed by Digital Bond’s Quick-
draw, which leverages the existing IDS equipment by 
developing signatures for control system protocols, 
devices, and vulnerabilities [50]. In Figure 6, a typical 
SCADA IDS rule is illustrated, which is used to detect 
a buffer overflow attack. The rule is specifically 
designed for Siemens Tecnomatix FactoryLink soft-
ware, which is used for monitoring, supervising, and 
controlling industrial processes. FactoryLink is commonly 
used to build applications such as HMI systems and SCADA 
systems. The logging function of FactoryLink is vulnerable 
to a buffer overflow caused by the usage of vsprintf with 
a stack buffer of 1024 B. The vulnerability can be exploited 
remotely in various ways like the passing of a big path or 
filter string in the file related operations [50]. 

The goal of the network administrator is to configure an 
optimal set of detection rules to protect the cybersystem 
from attackers. To model the interaction between an 
attacker and a defender, a dynamic game approach is used. 
Let L*  be a finite set of possible system configurations in 
the network and A  be the finite action set of the attacker. 
The mixed strategies ( )f k  and ( )g k  are defined on the action 
spaces L*  and A , respectively. 

The distributions of random variables di  and bi  are 
dependent on the states and attack and defense mechanism 
in the cyberlayer. Let H RN M! #  and W RN M! #  be two 
state-dependent matrices whose entries Hij  and Wij  reflect 
the S-C and C-A delays for different attack and defense 
action pairs ( , ) .F ai j  The parameters of the Bernoulli random 
variables are determined by mixed strategies ,gfi i  as

: ( ) , : ( ) .gf H g f WT Td i b i= =i
i i

i
i ir r

The cybersystem transitions between different states 
and its transition probabilities 

( ( ) ( ), , ), ( ), ( ) ,n n a F n n1 1P j i !i i i i H+ +l l

are dependent on the defense and attack action pair ( , )F aj j  
at time ,n  and 

( ( ), , ) .n F a 1P i ji i =
!i H

l
l

/

Cross-Layer Control Design 
The H3  index is the expectation over fi  and gi  for a given 

.i  Without loss of generality, let ;x 00 =  then 
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for all .!i H  The goal of the physical layer control design is 
to find optimal , , .K L S!ii i  The theorem below indicates 
how to convert the conditions satisfying the H3  index into 
linear matrix inequalities (LMIs) that are easy to solve 
numerically using available tools. 

Theorem 5 [21]
Given scalars 0>ci  and a strategy pair ( , )gfi i  for all ,!i H  
the hybrid model described by (37)–(41) is exponentially 
mean-square stable and the H3-norm constraint (10) is 
achieved for all nonzero k~  if there exist positive definite  
matrices , ,P P SR R R( ) ( )m m n m n m n n

11 22 1! ! !# # #i i i- -  and P2 !
i

alert tcp any any -> any 7580 (msg:”ETPRO SCADA
Siemens Tecnomatix FactoryLink CSService GetFile
path Buffer Overflow”; flow:to_server, established;
content:“LEN|00|”; depth:4; byte_test:4,>,
1028,0,little; content:”|99|”; distance:8; within:1;
content:”|99 00 00 00 08 00 00 00 02 06|”; distance:
0; byte_test:4,>,1024,0,big; classtype:attempted-
user;reference:url,digitalbond.com/tools/quickdraw/
vulnerability-rules; sid:1111675; rev:1;)

Figure 6  A supervisory control and data acquisition (SCADA) intrusion 
detection system rule to detect CSService CSMSG GetFile buffer over-
flow in a Siemens Tecnomatix FactoryLink: Siemens Tecnomatix Facto-
ryLink software is used for monitoring, supervising, and controlling 
industrial processes. FactoryLink can be used to build applications such 
as human–machine interface systems and SCADA systems. The logging 
function of the software is vulnerable to a buffer overflow caused by 
vsprintf with a stack buffer of 1024 B. An attacker can exploit the 
vulnerability remotely to cause application crash and obtain illegitimate 
access to arbitrary memory. 

Uncertainties from the cybersystem are often unanticipated and more 

catastrophic for control systems in terms of their high impact and low effort 

as compared to those from the physical world.
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Rn n#  and ,S Rn n
2 !

#i  and real matrices ,M Rm n! #i N Rn p! #i  
such that 

: ,P U P U U P UT T
1 1 11 1 2 22 2= +i i i

where U Rm n
1 !

#  and U R( )n m n
2 !

#-  satisfy 

, { , , , },diag
U
U B V 0 m

1

2
2 1 2 fv v v

R
R= =; ;E E

and , , , , ,i m1 2i fv =  are eigenvalues of .B2  In addition, the 
controller gain and observer gain satisfy the following LMIs:
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Note that (43) and (44) in Theorem 5 lead to a convex 
optimization problem 
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Since ci  is influenced by the cyberstate and strategy, it is 
actually dependent on the triple ( , ( ), ( )) .f gi i i  Let 

( )C RN M!i #  be the performance matrix with its entry ( )Cij i  
corresponding to the physical layer H3  performance index 
under the action pair ( , ) .F ai j  cit  can be seen as the value of 
the mapping: 

( ) .f C gTc i=i i it

The coupled design here means that the cyberdefense 
mechanism takes into account the H3  index, and the H3  
optimal controller is designed with ( )f H g* *Td i=i i ir  and 

( ) .f W g* *Tb i=i i ir  Algorithm 1 is proposed for the coupled 
design. The algorithm involves a value iteration for com-
puting the stationary mixed saddle-point equilibrium for 
the stochastic game, in which a linear program for matrix 
games (LPMG) is solved at each step. For computation of 
the saddle-point equilibrium using linear programming, 
see “Linear Programming for Computing the Saddle-Point 
Equilibrium.” Since the game here is zero-sum and finite, 
the value iteration method converges to stationary saddle-
point equilibrium strategies. Readers interested in a proof 
of convergence of value iteration in zero-sum finite games 
can refer to [44] and [45]. The algorithm also invokes the 
computational tools for solving a set of LMIs for obtaining 
the H3  robust controller in the form of (40) and (41) that 
achieves optimal control system performance. 

A Numerical Example 
An uninterrupted power system (UPS) model is used to 
illustrate the design procedures. A UPS usually provides 
uninterrupted, high quality, and reliable power for vital 
loads, such as life support systems, data storage systems, or 
emergency equipment. Thus, the resilience and robustness 

Algorithm 1 An algorithm for coupled design.

Given: ( )H i  and ( )W i  for all , , ,F aL A*
i j! ! !i H

Output: Ki  and Li  for all ;!i H  F*
s  and .G*

s

  1) Initialization:
  2) Initialize v0

b  and . .0 5b =

  3) Iterative update:
  4) while ( vv >h h1 f-b b

+ ) do
  5) �Solve the convex optimization problem (46) and obtain 

( ) .C i
  6) Calculate the cost matrix ( ) : [ ( )]R Riji i=  using

	 ( ) ( ) ( | , , ) ( ) .R C F a vPij ij i j
hi i b i i i= +

!i H

l l
l

/ � (47)

  7) �Find the value ( )vh 1 ib
+  of the matrix game ( )R i  using the 

following linear program
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  8) end while
  9) �Obtain F*

s  using ( )f yv* i=i bu  and solve the dual problem of 
(LPMG) to get G*

s  and g*
i

  10) �Use Theorem 2 to obtain the controller gain and the 
observer gain for all !i H  with
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of the UPS are essential. An integrated design of the opti-
mal defense mechanism for IDSs and the optimal control 
strategy for a pulse-width modulation (PWM) inverter is 
performed such that the output ac voltage can maintain its 
desired setting under the influence of DoS attacks. Let the 
system parameters be 
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For the cyberlayer, two states are considered: a normal state 
1i  and a compromised state .2i  When there are no attacks 

and the system is in normal state, the communication net-
work is taken to be delay free, that is, .0d b= =i ir  The IDS 
system contains two libraries ,l l1 2  for defending against two 
attacks , .a a1 2  Library l1  is used for detecting a1  whereas 
library l2  for .a2  Let { , }, { , },a a F FA L*

1 2 1 2= =  where F1  is the 
configuration where l1  is loaded and F2  is the configuration 
where l2  is loaded. Figure 7 illustrates the performance of 
IDS configurations under different attack scenarios. 

Linear Programming for Computing Saddle-Point Equilibrium 

Let A and B  be two ( )m n# -dimensional matrices related to 

each other by the relation 

	 ,A B c1 1m n= + l � (S3) 

where 1m  stands for the m-dimensional column vector whose 

entries are all ones and c  is some constant. Denote by ( )V Am  

and ( )V Bm  the saddle-point values in mixed strategies for ma-

trix games A and ,B  respectively. Then 

1)	 every mixed strategy saddle-point equilibrium (MSSPE) 

for matrix game A also constitutes a MSSPE for the ma-

trix game ,B  and vice versa 

2)	 ( ) ( ) .V A V B cm m= +

Matrix games that satisfy (S3) are strategically equivalent 

matrix games. For a given matrix game ,A  a strategically equiv-

alent matrix game can be found with all entries positive by add-

ing a constant .c  

Based on this fact, the complete equivalence between a 

matrix game and a linear program (LP) is used to compute its 

MSSPE. The following proposition captures this result, a proof 

of which can be found in [35]. 

Proposition S1

Given a zero-sum matrix game described by the m n#  matrix 

,A  let B  be another matrix game (strategically equivalent to A), 

obtained from A by adding an appropriate positive constant to 

make all its entries positive. Introduce the two LPs: 

Primal LP:  maxy 1ml  such that , ,B y y 01n# $l  

Dual LP:  minz 1nl  such that , ,Bz z 01m$ $

with their optimal values (if they exist) denoted by Vp  and ,Vd  

respectively. Then 

1)	 Both LPs admit solutions, and / ( ) .V V V B1p d m= =

2)	 If ( , )y z) )  solves matrix game , / ( )B y V Bm
)  solves the pri-

mal LP, and / ( )z V Bm
)  solves the dual LP. 

3)	 If y)u  solves the primal LP, and z)u  solves the dual LP, 

the pair ( / , / )y V z Vp d
))u u  constitutes a MSSPE for the matrix 

game ,B  and hence for ,A  and ( ) / .V B V1m p=

F1

a1 a2

F2

Figure 7  An example to illustrate the necessity of different intru-
sion detection system (IDS) configurations. Library l1  is used to 
detect a1  while library l2  is used to detect .a2  Configurations 

: { }F l1 1=  and : { }F l2 2=  are used to detect a sequence of attacks 
composed of a1  and .a2  Each configuration leads to a different 
physical layer probability of delay in S-C and C-A communication 
channels. The diagram shows IDS performance under four action 
pairs ( , ), ( , ), ( , ),a F a F a F1 1 1 2 2 1  and ( , )a F2 2  in a two-by-two matrix 
style, where the row corresponds to configurations, while the 
column refers to different attack actions. A circle refers to an 
attack. A box refers to a configuration. A successful defense 
thwarts an attack. An X denotes a successful defense that pre-
vents the attack from propagating further. The attacks a1  and a2  
can be successfully detected in the case of ( , )a F1 1  and ( , ),a F2 2  
respectively. The attacks will penetrate the system for the sce-
narios corresponding to ( , )a F1 2  and ( , ).a F2 1  

A cyberphysical control system can be conceptually divided into six layers: 

physical, control, communication, network, supervisory, and management. 
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The following tables describe the payoff matrix pairs 
( ( ), ( ))H Wi i  that correspond to the scenarios in Figure 7. At 
cyberstate ,1i

( ) ( ) .
.

.

.
,H W F

F

a a
0 01
0 03

0 05
0 01

1 1 1

2

1 2

i i= =

and the matrix of transitions between states under differ-
ent action pairs ( , ), , , , ,F a i j1 2 1 2i j = =  is 

( , )
( , )

( , )
( , )

.F
F

a a
1 0
0 1

0 1
1 0

1

2

1 2

When IDSs are configured in a correct way to defend 
against attacks, the system remains safe at its normal state 

.1i  When attacks cannot be defended against by the IDS, 
the system transitions to a failure state .2i  Likewise, at 
cyberstate 2i  the transition matrix takes the same form as 
in state .1i  It captures the fact that the system can be recov-
ered manually if intrusions are detected correctly; other-
wise, the system remains in failure state .2i

( ) ( ) .
.

.
.

.H W F
F

a a
0 06
0 08

0 1
0 06

1

2

1 2

2 2i i= =

The cost/reward table lists the H3  performance index 
under action pairs ( , ), , , , .F a i j1 2 1 2i j = =  At state ,1i

,.
.

.

.
F
F

a a
0 0994
0 1232

0 1641
0 0994

1

2

1 2

and at state ,2i

.

.
.
.

,F
F

a a
0
0

0
0

1961
3148

8084
1961

1

2

1 2

respectively. 

N
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Figure 8  The value iteration method for finding the value of the 
zero-sum stochastic game using the iterative steps 4–8 in Algo-
rithm 1. The game values at states 1i  and 2i  are found to be 

[ . . ] .v 0 3370 0 5299.
T

0 5 =  The optimal mixed strategies are f*
1 =i

[ . . ] ,0 4273 0 5726 T  [ . . ] ,f 0 2329 0 7671* T
2 =i  [ . . ] ,g 0 5726 0 4273* T

1 =i  
and [ . . ] .g 0 76710 2329* T

2 =i
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Figure 9  The minimax optimal controller design for the uninterrupted 
power system. The observer and the controller gains at state 1i  are 

[ . . . ] ,L 0 0283 0 0296 0 0125 T1 =i  and [ . . ],K 0 9357 0 6424 01 = -i  
respectively, and for ,2i  the gains are [ .L 0 70752 = -i  

. . ] ,0 7663 0 0003 T-  and [ . . . ].K 0 0142 0 0238 0 01182 =i  The control-
ler signal at the compromised state has higher magnitude than the 
one at state .1i  Under no attack (that is, the S-C and C-A delays are 
zero), the optimal gains are found to be [ . . . ] ,L 0 0658 0 04210 0108 T=  

[ . . ].K 0 9226 0 6330 0= -

n
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Figure 10  The evolution of cyberstate of the system under the 
saddle-point configuration policy. The cybersystem stochastically 
switches between two cyberstates based on the saddle-point 
mixed strategy of the cybergame. 
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Using Algorithm 1, the game values with .0 5b =  at 
states 1i  and 2i  are [ . . ] .v 0 3370 0 5299.

T
0 5 =  The optimal 

mixed strategies are [ . . ] ,f 0 4273 0 5726* T
1 =i  [ .f 0 2329*

2 =i

. ] ,0 7671 T  [ . . ]g 0 5726 0 4273* T
1 =i  and [ . . ] .g 0 7671 0 2329* T

2 =i  
Figure 8 shows the iterative process to find the value of the 
game in Algorithm 1. It can be seen that the value function 
of the zero-sum stochastic game converges within ten steps 
using the value iteration method. It can be seen from the 
obtained equilibrium mixed strategies that, at a compro-
mised state, more expensive defense mechanisms are used 
by the system, which leads to recovery of its normal opera-
tion. Figure 9 shows the minimax control signal under min-
imax closed-loop optimal control. The controller signal at 
the compromised state has a higher magnitude than at the 
normal state. The system tends to spend more control effort 
to recover the system from instability after attacks. Figure 
10 shows the evolution of cyberstates under the saddle-
point configuration policy and H3  optimal control. The 
cybersystem stochastically switches between two cyber-
states based on the saddle-point mixed strategies. At the 
equilibrium strategies, the occurrence of a compromised 
state is less frequent than the normal operating state. Figure 
11 compares the steady-state performance of a conventional 
H3  design and its performance under resilient control 
design. In the failure state, the system has a higher attenua-
tion rate than the one that occurs at the normal state due to 
the larger control effort (seen in Figure 9). This is how the 
system is designed to recover from its failure mode. Figure 
12 shows the stable oscillation of the physical system under 
switching between two cyberstates 1i  and .2i  Figure 13 

shows the control action from the H3  optimal controller  
for the physical layer under different cyberstates. Resilient 
control keeps the system more often in a normal state,  
and makes the system more robust even when the system  
is compromised. 

Summary and Conclusion 
With the increasing integration of information technolo-
gies into industrial systems and networks, such as the 
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Figure 12  The performance of the dynamical system under the 
codesigned controller when it switches between two cyberstates. 
With a sinusoidal input into the physical layer system and the 
cyberswitching depicted in Figure 10, the output from the physical 
system is observed. At the failure state, the system has a high 
attenuation rate than at normal state. 
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Figure 13  The H3  control result under different cyberstates. The 
control input signal at state 1i  has a lower magnitude than its 
counterpart at state .2i  The control system requires a higher con-
trol effort at a compromised state as it is subjected to a higher 
probability of S-C and C-A delays. Under no attack, the control 
system experiences no delays, that is, ,0d b= =i i  and the control 
effort is the minimum among the three cases. 
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Figure 11  The performance when a conventional H3  optimal con-
troller is used to control the physical dynamical system. The blue 
curve is the system output under state 2i  whereas the red curve is 
the output under state .1i  The physical-layer system performance 
switches randomly between the two cyberstates. The perfor-
mances are shown for sinusoidal inputs for each cyberstate. In 
comparison to Figure 12, the resilient control allows the system to 
be more secure with less probability of being in a compromised 
state and more robust even when the system is compromised. 
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power grid, robust and resilient control system design is 
essential for assuring the robust performance of cyber-
physical control systems in the face of adversarial attacks. 
This article has presented a hybrid game-theoretic frame-
work whereby the occurrence of unanticipated events is 
modeled by stochastic switching, and deterministic uncer-
tainties are represented by the known range of distur-
bances. The design of a robust controller at the physical 
layer takes into account risks of failures due to the cyber-
system, while the design of the security policies is based on 
its potential impact on the control system. The cross-layer 
coupled design introduced in this article results in solving 
a zero-sum differential game for robust control coupled 
with a zero-sum stochastic game for the security policy. 
The two games are intertwined and coupled together 
through cyber and physical system variables. The solution 
to the two coupled games requires a zooming-in process, 
which uses variables from the cyberlevel to solve the physi-
cal layer game, and a zooming-out process, which uses 
physical system variables to solve the cyberlayer game. The 
joint design results in a robust and resilient controller 
switching between different modes for guaranteeing per-
formance in the face of unexpected events. 

This article has presented a general class of system 
models, where the physical system is described by nonlin-
ear ordinary differential equations, and the cybersystem is 
captured by Markov models. The framework can be further 
extended to other classes of systems including sampled-
data systems, systems with delayed measurements, and 
model predictive control systems. The optimal design of 
new classes of systems can follow the same games-in-games 
principle discussed here and can be characterized by a new 
set of optimality conditions. Interesting future research 
includes the study of problems with stronger coupling, in 
which control and defense strategies depend on both cyber-
states and physical states, and the development of advanced 
computational tools to compute the control and defense 
strategies. The article has also discussed offline computa-
tional methods to compute the equilibria. In addition, learn-
ing algorithms and adaptive mechanisms can be developed 
within this framework to provide online adaptation to 
changes, which will enhance the resilience of the system. 
Study of a distributed network of cyberphysical systems is 
another possible research direction. The networking effects 
in the cybersystem can lead to performance interdependen-
cies of distributed physical layer control systems. 

Author Information 
Quanyan Zhu (quanyan.zhu@nyu.edu) is an assistant pro-
fessor in the Department of Electrical and Computer Engi-
neering at New York University. He received the B.Eng. in 
honors electrical engineering with distinction from McGill 
University in 2006, the M.A.Sc. from the University of To-
ronto in 2008, and the Ph.D. from the University of Illinois 
at Urbana-Champaign in 2013. From 2013 to 2014, he was a 
postdoctoral research associate in the Department of Elec-
trical Engineering, Princeton University. He is a recipient 
of many awards including the NSERC Canada Graduate 
Scholarship, the Mavis Future Faculty Fellowships, and the 
NSERC Postdoctoral Fellowship. He spearheaded the INFO-
COM workshop on Communications and Control on Smart 
Energy Systems and the Midwest Workshop on Control and 
Game Theory. His current research interests include optimal 
control, game theory, reinforcement learning, network secu-
rity and privacy, resilient control systems, and cyberphysical 
systems. He is a Member of the IEEE. He can be contacted at 
LC200A, 5 MetroTech Center, Brooklyn, NY 11201 USA.

Tamer Başar is with the University of Illinois at Urbana-
Champaign, where he holds the positions of Swanlund En-
dowed Chair, Center for Advanced Study Professor of Elec-
trical and Computer Engineering; research professor at the 
Coordinated Science Laboratory; and research professor 
at the Information Trust Institute. He received the B.S.E.E. 
from Robert College, Istanbul, and the M.S., M.Phil, and 
Ph.D. from Yale University. He is a member of the U.S. Na-
tional Academy of Engineering, a Life Fellow of IEEE,  and 
a fellow of International Federation of Automatic Control 
(IFAC) and the Society for Industrial and Applied Math-
ematics. He has served as president of IEEE Control Sys-
tems Society (CSS), the International Society of Dynamic 
Games (ISDG, and the American Automatic Control Coun-
cil (AACC). He has received several awards and recogni-
tions over the years, including the highest awards of IEEE 
CSS, IFAC, AACC, and ISDG, and a number of international 
honorary doctorates and professorships. He has over 600 
publications in systems, control, communications, and dy-
namic games, including books on noncooperative dynamic 
game theory, robust control, network security, wireless 
and communication networks, and stochastic networked 
control. He is on editorial boards of several journals and is 
editor of several book series. His current research interests 
include stochastic teams, games, and networks; security; 
and cyberphysical systems. 

To provide performance guarantees, control systems should be designed  

to be inherently resilient, allowing them to self-recover from  

unexpected attacks and failures.
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[37] Q. Zhu, H. Tembine, and T. Başar, “Network security configurations: 
A nonzero-sum stochastic game approach,” in Proc. American Control Conf., 
2010, pp. 1059–1064.
[38] Q. Zhu, A. Clark, R. Poovendran, and T. Başar, “Deceptive routing 
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