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ABSTRACT

This work describes a visualization tool and sensor testbed that can be used for assessing the performance of both
instruments and human observers in support of port and harbor security. Simulation and modeling of littoral
environments must take into account the complex interplay of incident light distributions, spatially correlated
boundary interfaces, bottom-type variation, and the three-dimensional structure of objects in and out of the
water. A general methodology for a two-pass Monte Carlo solution called Photon Mapping has been adopted
and developed in the context of littoral hydrologic optics. The resulting tool is an end-to-end technique for
simulating spectral radiative transfer in natural waters. A modular design allows arbitrary distributions of optical
properties, geometries, and incident radiance to be modeled effectively. This tool has been integrated as part of
the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. DIRSIG has an established history
in multi and hyperspectral scene simulation of terrain targets ranging from the visible to the thermal infrared
(0.380 - 20.0 microns). This tool extends its capabilities to the domain of hydrologic optics and can be used
to simulate and develop active/passive sensors that could be deployed on either aerial or underwater platforms.
Applications of this model as a visualization tool for underwater sensors or divers are also demonstrated.

Keywords: Hyperspectral remote sensing, simulation and modeling, hydrologic optics, Monte Carlo, photon
mapping

1. INTRODUCTION

We introduce a tool for generating synthetic images of complex littoral scenes for port and harbor security
applications integrated with an established hyperspectral remote sensing modeling platform called DIRSIG.1 In
contrast to prior work in this field,2 we do not make any assumptions about the sensor location and orientation,
the type and form of photon sources, or the spatial distribution of photon accumulation. This results in a much
higher degree of computation complexity which is mitigated, in part, by the adaption and further development
of an optimized Monte Carlo technique called photon mapping.3 With this tool it is possible to simulate
a hyperspectral sensor on an aerial platform over a coastal scene, a radiometric instrument measurement off
the side of a boat, a diver under water, or any number of potential collection scenarios – all using the same
methodology, scene and, under invariant lighting conditions, the same photon map. This type of multi-scale,
flexible approach has many possible applications in the realm of port and harbor security, ranging from sensor
design and sensitivity studies to algorithm development.
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1.1. DIRSIG
The work discussed here encompasses a major up-
grade to the capabilities of the DIRSIG (Digital
Imaging and Remote Sensing Image Generation)
tool1 in modeling complex littoral scenes and par-
ticipating media in general. DIRSIG has an estab-
lished history in hyperspectral scene simulation of
terrain targets ranging from the visible to the ther-
mal infrared (0.380 - 20.0 microns). The current
work extends its capabilities into the domain of hy-
drologic optics by implementing the tools and tech-
niques necessary to propagate and collect light in
synthetic media. A summary of the basic DIRSIG
components is shown in Figure 1 (the specific con-
tributions discussed in this paper are outlined).
The components are combined using a spectral
(and polarized) representation and integrated radi-
ance images can be simultaneously produced for an
arbitrary number of user-defined bandpasses. The
model products can be used to test image system
designs, to create test imagery for evaluating im-
age exploitation algorithms, and for creating data
for training image analysts.4

Figure 1. Relationships between DIRSIG components

1.2. Megascene

Figure 2. Selected closeup images from the synthetic Megascene project (left), an overhead view of all five tiles (middle),
and a closer view of Tile 5 (right). Measured overflight data has been used to produce the spectral signature of the water

.

A study site north of Rochester, NY, has been instrumental in understanding various components of the remote
sensing imaging chain5,6. An extensive effort was made to develop tools and build a representative model of this
area (designated Megascene for the sheer size of the endeavor). These products, along with the results from a
comprehensive data collection campaign, provide wide area simulations that support algorithm development. To
date, the five tiles highlighted in Figure 2 have been simulated in DIRSIG and represent approximately seven
square kilometers of real estate in urban, residential, light industrial, and shoreline regions. The intent is not
to generate a simulation that exactly reproduces a specific scene; rather, it is to emulate the scene’s spectral
character and statistics acquired by sensors, such as those used for data collection over the region.
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I

Figure 3. Tile 5 Topobathymetry

The physics simulating the spectral imaging phenomenology for the
terrestrial regions yielded reasonable fidelity.5 Implementation of the
techniques described in this paper enables us to approach the same
level of simulation fidelity for the coastal region (the so-called Tile
5). This area is being being modeled with measured topobathymetry
(as shown in Figure 3) and characteristic optical properties. The
resulting simulations will be compared to collected overflight data.

2. BACKGROUND

2.1. Spectral RTE

We use a standard form7 of the spectral radia- i Loss Elastic scattering out of the beam
ii Loss Inelastic scattering out of the beam
iii Loss True absorption
iv Gain Elastic scattering into the beam
v Gain Inelastic scattering into the beam
vi Gain True Emission into the beam

Table 1. Sources of radiance loss and gain along a beam

tive transfer equation (RTE) incorporating gains and
losses due to the six factors listed in Table 1 and based
on the directed differential radiance at point, �x, time,
t, and direction, ω. The notation, (ω · ∇)Lλ(�x,t,ω,λ)

n(�x,t)2 ,
is used to represent this derivative, where ∇ is the
gradient operator and we have explicitly shown the
dependence on the refractive index. Using symbols
for the inherent optical properties listed in Table 3,
we can write the individual contributions as shown in Table 2. The superscript e, i, and s stand for elastic,
inelastic, and source (emitted), respectively. Solving for the integrated radiance with all six components and
reducing the notation to the single dimension, r, along the ray yields the (simplified) equation,

L∗(rb) =
∫ rb

ra

(
Le
∗(r) + Li

∗(r) + Ls
∗(r)

)
e−

rb
r

c(r′)dr′
dr + L∗(ra)e−

rb
ra

c(r)dr, (1)

where “∗” represents implicit refractive index dependence and the integral is along ray section ra → rb.

This work is primarily concerned with efficiently calculating the elastic scattering corresponding to component
iv (emphasized in Equation 1). The problem of computing inelastic scattering contributions, (component v),
can be solved with similar methods, but the added complexity is beyond the scope of this paper.

i (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = - be(�x, t, λ)Lλ(�x,t,ω)

n(�x,t)2

ii (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = - ai

∗(�x, t, λ)Lλ(�x,t,ω)
n(�x,t)2

iii (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = - ae(�x, t, λ)Lλ(�x,t,ω)

n(�x,t)2

iv (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = + be(�x, t, λ)

∫
Ω
β̃e(�x, t, ω′ → ω, λ)Lλ(�x, t, ω′)dω′

v (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = + bi(�x, t, λ′ → λ)

∫
Ω

∫
Λ
β̃i(�x, t, ω′ → ω, λ′ → λ)Lλ′(�x, t, ω′)dλ′dω′)

vi (ω · ∇)Lλ(�x,t,ω)
n(�x,t)2 = + So(�x, t, ω′)β̃s(�x, t, ω, λ)

Table 2. Contributions to the directional derivative of radiance for the RTE.
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2.2. Photon Mapping
Equation 1 introduced a form of the RTE

Figure 4. Stepwise integration along a ray from ra to rb

that can only be solved numerically except
in special, and not particularly useful,
cases. Stepwise numerical integration
takes the form of “ray marching”; that
is, the ray along which we are integrating
is broken into segments within which we
assume that the local optical properties
and light field influences are invariable.
These segments can be of arbitrary length
and have a center point, rc, which will be the “sample” point from which measurements are made (as
demonstrated in the accompanying figure). In practice, we use an adaptive algorithm to choose segments
based on changes in the local volume properties and choose a sample point close to the center point, but with
a random offset in order to avoid sampling artifacts. Integration in a highly complex and variable medium
requires many ray segments and computations, while relatively homogeneous volumes can be traversed rather
quickly.

The integrated form of the in-scattered radiance from a segment centered at point rc and of length ∆rc can be
written as

Lλ

(
rc +

∆rc
2
, ω

)
=

(
b (rc, λ)

∫
Ω

β̃ (rc, ω′ → ω, λ)Lλ (rc, ω′) dω′
)

∆rc, (2)

where we have assumed that the index of refraction does not change significantly within the segment. Given that
the inherent optical properties are known at point rc (see Section 3.4) at each wavelength λ, the only unknown in
the equation is the radiance coming from all directions ω′. Conceptually, the easiest way to calculate Lλ (rc, ω′)
would be to use the same backwards ray tracing process that has been used thus far to compute the contribution
from the ray. That is, for every direction, ω′, a new ray could be sent out and the radiance contribution could
be calculated. Since there are an infinite number of directions in Ω, the integral would either have to be solved
using standard numerical techniques or using a Monte Carlo approach. Within a volume, every new ray that
would be produced to calculate the integral would also need to do a ray marching integration along its own path.

Diminishing returns eventually limits the effectiveness of sending out numerous new rays and the contributions
of subsequent generations could be approximated or neglected. Nonetheless, the number of operations grows
approximately exponentially as each new generation of rays attempts to calculate the in-scattered radiance. Even
with a moderate number of samples, a limited number of scattering generations, and large integration step sizes,
the calculation is infeasible for any practical application – and we have not even discussed the problem of making
sure that rays eventually “find” the important sources in a scene.

It is therefore impractical to do purely forward (rays from sources) or purely backwards (rays from the detector)
calculations for multiple scattering situations. Instead, we adapt a hybrid approach called photon mapping that
computes the integral along the ray using a two-pass technique. The photon mapping approach was developed
and popularized by Henrik Wan Jensen3 and integrates existing Monte Carlo techniques, an efficient search
algorithm, and the concept of geometry independent photon storage. It has been used to efficiently produce
synthetic, ray-traced images for computer graphics applications. The primary contribution of this work is to
adapt this method in order to generate spectral (rather than three band) synthetic imagery driven by bio-optical
models of water properties and integrate it into the active and passive sensor testbed already described.

The “photon map” is a collection of discrete bundles of energy (the “photons”) that are organized in a way that
conveniently expresses the spatial relationships between energy bundles (the “map”). Within a particular scene,
the photon map is a static entity which contains information about energy in the volume. When ray-tracing a
scene, scattering contributions are measured using local density estimates obtained by querying the photon map.
These calculations are very efficient, especially compared to Monte Carlo sampling techniques for evaluating
in-scattered radiance.
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The first pass of the photon mapping technique consists of generating photons at sources and propagating
them through the scene. The propagation process is exactly equivalent to established forward Monte Carlo
techniques27. As each photon interacts with the volume (through scattering or absorption), a record of the
photon is stored in the map (its position, direction, flux, and wavelength – note that the wavelength cannot be
derived from the flux since these are not true photons, only bundles of energy). The photons are stored in a
k-d tree,8 independent from any geometry or abstract concept of layers or voxels. The k-d tree is essentially
a binary tree for higher-dimensional data and allows for efficient searching in the next pass. Since the photon
map is only dependent on sources and scene geometry, it is possible to re-use the same photon map for different
sensor locations and orientations.

The second pass consists of backward ray tracing from the detector where the contribution from a ray in a volume
is calculated using the ray marching technique discussed previously. Rather than attempting to calculate the
in-scattered radiance directly, we now use the photon map to estimate the in-scattered radiance. Given that we
know the direction, ωi of each photon in the map when it was stored, we can apply the local scattering phase
function to estimate the amount of flux that is scattering in the direction of the integral. Thus, we transform
Equation 2 into,3

Lλ

(
rc +

∆rc
2
, ω

)
≈

(
1

Vsearch

kλ∑
i=1

Φiβ̃ (rc, ωi → ω, λ)

)
∆rc, (3)

where kλ is the number of photons found, Vsearch is the volume of the search, and the scattering coefficient has
been incorporated into the density estimate. The search volume is usually a sphere that encompasses all of the
photons that were found by a search by radius or number. We will modify this method somewhat in Section 3.5
in order to minimize the errors inherent in practical density estimation.

3. APPROACH

3.1. Sampling Algorithms

Any Monte Carlo technique can only be successful if the code that drives it produces samples that are represen-
tative of the underlying probability density functions in the model. We divide the process of generating uniform
samples into two steps. During the first step we generate pseudo-random samples from a uniform distribution
using a hybrid approach that combines stratified and Latin hypercube sampling9 in order to guarantee a high
level of uniformity for any number of samples (see Figure 5).

(a) (b) (c) (d)

Figure 5. Example histograms of two-dimensional samples in the unit square generated from (a) random (by a standard
linear congruential method), (b) stratified, (c) Latin hypercube, and (d) hybrid sampling. Note that while no significant
improvement over stratified sampling can be seen, the hybrid approach gains beneficial uniformity properties from the
inclusion of Latin hypercube constraints that are not apparent in these histograms.

Using a uniform sampling of the unit square as a basis, we now project the samples onto a 2-manifold using an
area preserving algorithm that correctly distributes the samples onto the new surface. The projection operators
are derived using a process compiled from the literature on the subject10 that consists of finding a parametrization
of the manifold, linking the parametrization to the surface area and applying an optional weighting function,
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defining and inverting cumulative distribution functions, and forming a new parametrization that takes the unit
square samples as input. The result is a set of samples on the manifold that have the same uniform distribution
properties as the original samples.

In practice, we use a wide variety of projections to sample anything from arbitrary constructed geometry (using
triangular facet projections) to hemispheres that are weighted by a bi-directional reflectance distribution function
(BRDF). In the next two sections we state, without derivation, two of the simpler sampling projection algorithms
that are relevant to atmospheric photon generation.

3.1.1. Sphere section sampler projection

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 6.

A sphere section projection is used to sample a sky dome quadrant by generating
a vector that points to a location within that quadrant for a sphere centered at
[0, 0, 0]. Angles θ1, θ2, φ1, and φ2 define the range of zenith and azimuth angles in
the quadrant, respectively (in the equation, µ = cos(θ)). The projected sampled
are computed from the two-dimensional uniform random deviates (ξ1,ξ2) as

ψ(ξ1, ξ2) =

⎡⎣ sin
(
cos−1 (µ1(1 − ξ1) + µ2ξ1)

)
cos((φ2 − φ1) · ξ2 + φ1)

sin
(
cos−1 (µ1(1 − ξ1) + µ2ξ1)

)
sin((φ2 − φ1) · ξ2 + φ1)

µ1(1 − ξ1) + µ2ξ1

⎤⎦ (4)

3.1.2. Disk sampler projection
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Figure 7.

A disk projection is used to sample a solar or lunar disk with radius, ρ. It is simpler
to derive the projection on the x-y plane for a uniform disk and then transform the
samples to the proper position defined by the solor/lunar vector and solid angle as
retrieved from appropriate ephemeris data for the scene. The projected samples are
computed as

ψ1(ξ1, ξ2) = ρ
√
ξ1 · cos(2πξ2),

ψ2(ξ1, ξ2) = ρ
√
ξ1 · sin(2πξ2) (5)

3.1.3. One-dimensional importance sampling

In addition to two-dimensional projections, we often need a method to ran-
domly select a particular element from a set when each element has a weight.
Given an arbitrary number of elements, ei, with associated weights, W (ei),
the weights are converted to probabilities, P (ei), by dividing by the sum of
all of the weights (� and �),

P (ei) =
W (ei)∑
iW (ei)

. (6)

The probability elements are ordered so that the largest probability comes
first in the probability vector (�), which helps optimize the next step when
the probabilities vary. In step �, a uniformly distributed random number
r ∈ [0, 1] is pulled from a generator and the value is iteratively compared –
this is why we put the larger probabilities first – to the cumulative probability
of the vector elements. The sampled element is the one corresponding to the
location of the random number in the vector (element E in the example). Figure 8.
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3.2. Photon Generation

For the purposes of this discussion, the source of photons entering the scene is the sky (both the sky dome and
the sun/moon). Nonetheless, the same sampling techniques could be applied to any type of source and used for
low-light level or active sensor modeling.
The sky dome (which is a source of down-welled radiance)

Figure 9. Sampling of atmospheric illumination

is broken into quads, each of which is assumed to be ho-
mogeneous (i.e. the radiance coming from any point within
a quad is the same as any other point in the same quad).
Quads are implemented via a sphere section sampler and the
weight is equal to the integrated flux coming from the quad
(using the area of the current section). All of the quads have
equal area and, therefore, define equal solid angles. The sun
and moon disks are constructed using a disk sampler and
oriented according to ephemeris tables for the current date
and time. The weight of the solar/lunar disk(s) is the total
integrated flux coming from the solid angle defined by the
disk. Figure 9 demonstrates how the atmosphere is divided.
The zenith, θ, and azimuth, φ, angles are shown.

The entire process of generating photons is summarized in
the list below.

Atmospheric Photon Generation

� Initialize a count of “shot photons” to zero

� Initialize the photon map with the pre-
determined number of photons to be stored The
number of photons defined in the preceding two
steps are independent from each other

� For each photon, until the photon map is filled,
perform the following steps:

� Uniformly sample spatially within a pre-
determined horizontal extent of the scene
that defines the PropagationArea

� Record the sampled point, HorizontalSample
� Use one-dimensional importance sampling

to select an element of the atmosphere (a
sky quad or a solar/lunar disk)
Weighting is based on the amount of flux
produced by each element

� Sample spatially within the element us-
ing a sphere section or disk sampler
(see Sections 3.1.1 and 3.1.2, respec-
tively) and record the sample position
(AtmosphereSample)

� Calculate the initial direction of the pho-
ton from point to point,
PhotonDirection = AtmosphereSample
→ HorizontalSample

	 Use one-dimensional importance sampling
to select the wavelength of the photon.
Weighting is based on the amount of flux
contributed by each bandpass for the flux
associated with the atmosphere element


 Propagate the photon through the scene
and store it in the photon map as it is ei-
ther absorbed or scattered

� Increment the count of shot photons The
photon count must be incremented regard-
less of whether the photon is stored

� Calculate the flux associated with each pho-
ton by dividing the total flux passing through
the PropagationArea by the number of pho-
tons that were “shot” This is not the number
of photons stored in the map(s)
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3.3. Surface Modeling
In addition to general scene geometry considerations, we must also create an air/water
interface that is representative of a wind-driven wave surface. The primary approach
to generating such surfaces via spectral wave synthesis and the Fresnel theory that
covers propagation across the interface has already been introduced in detail to this
field.2 We have used an analogous approach to generate height fields from spectral
wave models (a surface generated by a JONSWAP11 spectrum is shown in Figure
10). We are also investigating the use of windowed Fourier transforms and hybrid
wave train models to allow for spatially changing the spectral properties of the wave
surface as waves are propagated into shallower regions. We have also implemented
a microfacet-based bi-directional reflectance/transmittance distribution model12 to
handle cases where the spatial wave frequency is higher than that resolvable by the
modeled sensor.

Figure 10.

3.4. IOP Models

Definition of the inherent optical proper-
Symbol Units Description
a(�x, t, λ)

[
1
m

]
absorption coefficient

b(�x, t, λ)
[

1
m

]
scattering coefficient

c(�x, t, λ)
[

1
m

]
attenuation coefficient

β̃(�x, t, ω, ω′ → ω, λ)
[

1
sr

]
scattering phase function

n(�x, t, λ) dimensionless index of refraction

Table 3. Summary of inherent optical properties

ties of the water (as listed in Table 3)
has been made as flexible as possible to
allow for complicated constituent models
and spatial distributions. We take the ap-
proach of defining the IOPs by starting
with a base medium (eg. pure water using
a hybrid of data for absorption13,14, scat-
tering,15 a roughly Rayleigh form scatter-
ing phase function,7 and the IAPWS standard for the refractive index16). Additional constituent properties
are then added to the base in linear combination using a variety of common parameterized model forms.7 Ac-
cordingly, the linear models for the absorption coefficient, scattering coefficient, and phase function are given
by:

a(�x, t, λ) = a0(�x, t, λ) +
Na∑
i=1

ai(�x, t, λ), (7)

b(�x, t, λ) = b0(�x, t, λ) +
Nb∑
i=1

bi(�x, t, λ), (8)

β̃(�x, t, ω, ω′ → ω, λ) = w0 · β̃0(�x, t, ω, ω′ → ω, λ) +
Nb∑
i=1

wi · β̃i(�x, t, ω, ω′ → ω, λ), (9)

where we have made the dependence on position and time explicit and N is equal to the number of additional
components. The decomposition of the scattering phase function required weighting the component scattering
phase functions by the effective contribution of the corresponding scattering coefficient to the whole. Each
weight, wi, is given by:

wi =
bi(�x, t, λ)
b(�x, t, λ)

, 0 ≤ i ≤ Nb. (10)

Note that we do not include the index of refraction in the linear combination models. We will assume that a
single refractive index model is used, which is usually defined by the base medium, but can be overridden by the
user if necessary.

Proc. of SPIE Vol. 6204  62040F-8



3.5. Collection Algorithms

As the number of photons being searched for (or equivalently, the search radius) is increased, we increase the
risk of finding photons uncharacteristic of the local light field. We want to grow the search so we can drive down
the variance inherent in the photon map due to the random, sampled nature of construction (despite using very
uniform sampling strategies). The objective of the collection algorithms that follow is to find an efficient means
of extending the search volume (to reduce noise) while maintaining the assumption of locality. There are many
plausible and potentially more accurate approaches to compensating for the two sources of error presented here
(boundary and spectral). Our goal in developing these methods is to make the process as efficient as possible
while still compensating for the bulk of the error.

3.5.1. Boundary collection algorithm (Boundary map)

By far, the largest errors are likely to occur near boundaries of the volume where the search radius can extend
beyond the bounds of the volume. This is also the region where, at least for turbid media, the most scattering
will occur. Since the photon map has no internal concept of boundaries, it will treat anything beyond a boundary
as part of the local volume. In most cases, this ends up causing the density estimate to be biased lower than
it should be due to the effective inclusion of a photon “void” in the density estimate. To compensate for this
error, we construct a “boundary map” (analogous to a photon map) composed of nodes containing the distance
to the boundaries of the volume at that particular point. These nodes are computed and stored during the
first pass of the algorithm. The boundary map is constructed using a sparsely populated k-d tree which can be
searched to estimate the location of boundaries from the local boundary nodes. Once these distances are known,
an effective volume can be calculated. Within a complex scene it is possible for boundaries to be arbitrarily
oriented, however, we assume that it is sufficient to know the boundary distances in the six axial directions and
to be conservative in our estimates of the constraints.

We will consider the volume of a sphere that has been constrained in any combination

Figure 11.

of six specified directions. These six directions correspond to the positive and negative
orthogonal axial directions centered at the sphere origin (the search site). The axes
would presumably be aligned with the global coordinate system though this is not
necessary. If the original search sphere does not hit a boundary in a particular
direction then the constraint is zero and the search sphere was able to expand to its
full radius in that direction (whether or not it found nodes at that distance). Each
constraint is also less than the search radius, R, since the search site must be within
the boundary. This gives each constraint a possible range of [0, R).

In order to calculate the effective search volume, the volumes outside of the bound-
aries (the occluded volumes) must be removed from the volume of the unconstrained
sphere. In the simplified case of a single constraint, the effective volume can be found
by removing a spherical cap corresponding to the constraint. When there is more than one constraint and the
spherical caps intersect we need to account for removing the intersected volumes (a conceptual rendering of six
intersecting constraints is shown). Given the level of symmetry in the types of intersections possible we can
pre-compute the intersecting volumes at selected intervals in order to optimize the volume calculation.

3.5.2. Spectral collection algorithm

Accounting for spectral photons for multi/hyperspectral modeling introduces an effective bias error incurred by
searching for enough photons in each spectral band to drive down the spectral noise. Under ideal conditions, we
expect that the total variance in the estimate is linearly related to the number of photons that are used to form
the estimate. Accordingly, under optimal circumstances where the photons are uniformly distributed across all
of the spectral bands, we expect that the spectral variance will increase by a factor of s, where s is the number
of spectral bands. In other words, to maintain the same level of variance as we would have without considering
spectral photons, we need to search for s · N rather than N . This makes us more susceptible to errors as we
violate the locality assumption. The approach we take to compensate for this source of error is to perform a
two-step search.
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The first step is to perform a local core search by radius across all spectral bands. The radius is set so that
the assumption of a local volume is reasonably met. The density that results from this search is used to set the
mean density of the final spectral density (no spectral shape exists at the moment). Thus, we ensure that the
final integrated density will be consistent with the local light field intensity.

The second step performs an expanded spectral search within each spectral band. The number of spectral
photons to find is set such that we ensure a certain level of fidelity. We also calculate the relative weight of each
spectral density and apply this weight to the core density calculated in the previous step (a variety of methods
can be used here). The spectral density that results is our final estimate.

4. VALIDATION

For any model of this size and complexity it is necessary to consider both the theoretical and procedural validity
of the model. We have adopted, and are currently carrying out, an intensive validation process for the model
consisting of five phases of increasing complexity. The validation process is summarized in Table 4.

Phase Type Description

I Code Extensive numerical algorithm testing, step-by-step ray tracing,
and optimization

II Intuitive Design and rendering of a series of simple test scenes which can be
judged based on visual inspection

III IOP⇔AOP Examines apparent optical properties for which an approximate
relationship to IOPs is known17,18

IV Peer-to-peer Comparison against Hydrolight for fully modeled illumination,
IOP, and surface models19

V Sub-space Examines the correspondence between synthetic invariant target
sub-spaces20 and measured targets in the Megascene Tile 5 region

Table 4. Validation phases

5. APPLICATIONS

The potential applications of this tool are multiple and varied and include:

• Passive broadband/multispectral/hyperspectral sensor design and sensitivity studies

• Radiometric instrument design and testing

• Evaluation of existing sensors under various environmental conditions to determine operational limits and
optimum conditions for data acquisition

• Studies of sensor design tradeoffs with respect to cost per sensor, coverage, and data quality

• Thermal modeling (using DIRSIG’s built-in thermal model and weather histories)

• Surface, partially submerged, and fully submerged target detection algorithm design and evaluation

• Spatially variant bio-luminescence studies

• LIDAR simulation (using DIRSIG’s built-in LIDAR model along with photon mapping capabilities)

• Low-light level simulation using above-water or submerged illumination sources

• Geometric obscuration studies coupled with temporal illumination study

• Studies on the impact of adjacency effects on target detection

Proc. of SPIE Vol. 6204  62040F-10



• Multi-scale collection scenario design and mission planning

• As a sensor fusion testbed where a simulated host of sensors across the EM spectrum provide a baseline of
image data sets to best present unique imaging phenomenologies to a user or algorithm

• Background signature characterization

• Invariant sub-space construction for target detection algorithms20

6. SUMMARY

The photon-mapping technique and its extension into the hyperspectral domain shows great potential in ad-
dressing basic hydrologic optical phenomenology in the littoral region including embedded targets and plat-
form/instrument obscuration of the scene. Prior to this implementation, approaches that could simulate littoral
scenes relied on assumptions that limited the model’s capabilities and usability. The stochastic nature of a Monte
Carlo solution coupled with the extreme scales between scene and sensor renders classic techniques prohibitively
computationally demanding when considering scattering media. Photon mapping optimizes the computation of
in-scattered radiance through an efficient photon searching and radiance estimation and brings such simulation
tools closer to operational viability for flexible, multi-scale usage.

The integration of these techniques into the DIRSIG environment makes it possible to address many issues in
port and harbor security by using an extensive collection of sensor, environmental, geometric, and radiative
transfer models and tools. Extensive validation of both overhead, surface, and underwater simulations against
both modeled and measured data will be used to verify subjective phenomenology as well as radiometric accuracy
and fidelity. Finally, simulation of the the Megascene Tile 5 littoral zone will provide a large scale project for
which expansive ground truth data has been collected.
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