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Abstract—We propose and evaluate an empirical method for
water depth determination from hyperspectral imagery when the
benthic layer is visible using support vector regression (SVR). The
implementation of the empirical method is presented, and its abil-
ity to estimate water depths is compared with a more commonly
used band ratio method for two distinct fluvial environments.
Our analysis shows that SVR outperforms the band ratio method
by providing better root-mean-square error (RMSE) agreement
and higher R2 for both clear and turbid water. We also demon-
strate an extension of the nonparametric properties of SVR to pro-
vide estimates of water turbidity from hyperspectral imagery and
show that the approach is able to estimate turbidity with an RMSE
of approximately 1.2 NTU when compared with independent tur-
bidity measurements.

Index Terms—Bathymetry, hyperspectral, support vector re-
gression (SVR), turbidity.

I. INTRODUCTION

BATHYMETRY estimates provide the research community
with quantitative spatially distributed models that allow

the development of hydraulic and mesohabitat models [1]. Ac-
quiring bathymetry through remote sensing techniques is well
established and has been applied successfully in both coastal
and inland fluvial environments [2]. Remote sensing can yield
accurate quantitative bathymetry using typical methods such as
echosounders, airborne bathymetric LiDAR, and passive opti-
cal imagery [3]. Due to their relatively high spatial resolu-
tion and accuracy, improved spectral resolution, and easily
implemented image processing techniques, multispectral/
hyperspectral imagery has emerged as a popular method for
bathymetry retrieval [4].

Bathymetry using passive multispectral imagery can provide
relatively high accuracy, and source imagery can be easily
accessed through a number of free or low-cost portals. Once
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acquired, the algorithms to process the imagery are available in
many conventional image processing software packages. The
physical principle behind passive optical image bathymetry is
that water depth, substrate type, water column properties, and
water surface roughness all affect the observed reflectance [5].
Water attenuates the propagated light due to scattering and ab-
sorption in water body, with a rate of attenuation depending on
wavelength. Through investigation of water optical properties,
many analytical and empirical methods have been proposed
to retrieve water depth directly from passive multispectral/
hyperspectral imagery. Lyzenga [6] and Philpot [7] proposed
and validated the efficacy of passive remote sensing for water
bathymetry retrieval using a linear solution. Legleiter et al.
[5] proposed a band ratio method to retrieve bathymetry from
passive optical imagery data using a statistical test to select an
optimal band pair for bathymetric regression. Bachmann et al.
[8] used a manifold coordinate representation to retrieve bathy-
metry from hyperspectral imagery with a reduced represen-
tation. Sandidge and Holyer [9] used the Airborne Visible/
Infrared Imaging Spectrometer data to train a neural network
system to retrieve bathymetry with established quantitative
empirical relationship.

The band ratio method implemented by Legleiter et al. [5]
and Ma et al. [10] has been shown in the literature to be easy
to implement, provide accurate bathymetric results from hyper-
spectral imagery, and have a minimum number of tuning pa-
rameters. The main drawback of the band ratio method is that
only a portion of the spectral information is utilized; however,
all bands, theoretically, are attenuated by the water column with
specific, but wavelength-dependent, attenuation coefficients.
Therefore, all spectral bands should potentially contain water
bathymetry information. A more generalized model, which
takes advantage of a number of spectral channels, could po-
tentially improve bathymetric estimates. However, a specific
model would be difficult to construct due to the complex and
unknown relationship between the spectral bands and the water
column response. A nonparametric method, which utilizes all
spectral information, can be formulated and could potentially
improve bathymetry retrieval. It would be also preferable if, like
the OBRA method, the algorithm could be easily implemented
without a requirement for extensive radiative transfer modeling.

Support vector machine (SVM) is a supervised machine
learning algorithm used to analyze patterns within data, and
support vector regression (SVR) is a realization of SVM for
prediction [11]. SVR is a nonparametric regression method and
a data-dependent learning scheme, and thus, no explicit model
is required to fuse the observations with the physical measure-
ment quantities. The regression model is generalized and can
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be used to estimate any spectrally related parameters where no
explicit physical model exists. A review of SVMs and regres-
sion can be found in [12]. Bruzzone and Melgani [13] have
estimated biophysical parameters from remotely sensed data
using a multiple-estimator system, which incorporated SVM
in combination with a multilayer perceptron neural network.
Camps-Valls et al. [14] utilized the SVR method to estimate
ocean chlorophyll concentration with satellite remote sensing
data to provide a more accurate, less biased, and noise-resistant
model.

In this letter, we propose and test using SVR as an alternative
method for bathymetric retrieval in order to more accurately ac-
count for the nonlinearity existing in the observed hyperspectral
data. A conventional band ratio bathymetry retrieval method
is used as a baseline for comparison with the proposed SVR
method, and a comparison with in situ water depth observations
is presented. To demonstrate the generality of the SVR method,
we also evaluate its ability to predict other water column
parameters empirically by using it to estimate water turbidity
from hyperspectral imagery. We again compare the results with
in situ measurements of turbidity.

II. SVR

SVR is a nonparametric regression technique, and there-
fore, no assumptions regarding the underlying data model are
required. SVR can transform a nonlinear regression problem
into linear regression through the implementation of a kernel
function, which projects the original feature space into higher
dimensional space. A hyperplane is then used to fit the projected
space, and the estimated parameters can be used for subsequent
prediction [15].

SVR is a supervised machine learning algorithm, and
therefore, calibration samples are essential. We define (x1, z1),
(x2, z2), . . . , (xn, zn), where xi∈RN is the feature vector, and
zi∈R1 is the target output. Here, N is the dimension of feature
space, and n denotes the number of samples. With ε− SV
regression, the goal is to find a hyperplane f(x) for calibration
data set. The linear function f(x) can be described as

y = f(x) = 〈w·φ(x)〉+ b =

n∑
i=1

wiφi(x) + b (1)

where y is the predicted value, w is the weight vector, φ is the
nonlinear mapping function for reprojection, and b is the bias
term; more details for SVR can be found in [16].

Slack variables ξi and ξ∗i are introduced to accommodate
a soft-margin SVR [16] (see Fig. 1). Under given parameters
C > 0 and ε > 0, the standard form of SVR is

Min:
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ) (2)

Subject to

⎧⎪⎨
⎪⎩

yi − f(xi) ≤ ε+ ξ∗i
f(xi)− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0, i = 1, . . . , n.

(3)

Here, C is the penalty parameter, which tunes the tradeoff
between the generalization of functional relationship and the
accuracy of the fitted hyperplane. ε is the maximum allowed
deviation from the fitted hyperplane.

Fig. 1. Slack variable ξ for soft-margin SVR; ε is the maximum allowed
deviation.

Kernel functions are also introduced into SVR to accommo-
date a nonlinear relationship in the linear formulation earlier.
The kernel functions project the original feature space into a
higher dimensional space that allows SVR to fit a hyperplane
in a transformed feature space. There are many commonly
used kernel functions, including linear, polynomial, radial basis
function (RBF), and hyperbolic tangent [17]. RBF is widely
used and implemented here because of its good performance
and smaller number of input parameters. The RBF kernel can
be described as

K(xi, xj) = exp
(
−λ‖xi − xj‖2

)
. (4)

Here, K denotes the kernel on two samples vectors xi and
xj ; λ is related to the kernel width, which requires tuning to
achieve the best performance. The performance of SVR with
RBF kernel is highly correlated to the three input parameters:
C, ε, and λ. To optimize the selection of three parameters,
a general k-fold cross-validation method and a grid searching
scheme are used [18].

To evaluate the performance of the proposed method, root-
mean-square error (RMSE) and R square value R2 are utilized
in this study.

III. EXPERIMENT DATA SETS

A. Airborne Hyperspectral Imagery

Both the Snake River in Wyoming Grand Teton National
Park (see Fig. 2.1) and the confluence of the Blue and Colorado
Rivers in north-central Colorado (see Fig. 2.2) are investigated
in this study. The Snake River is predominantly clear water,
and the study focused on an area referred to as Rusty Bend.
The Colorado River originates in Rocky Mountain Park, and
the Blue River enters the Colorado River from the south near
Kremmling, Colorado. This site has variable water conditions
because the Colorado River is also joined near the confluence
by Muddy Creek, which, as the name implies, was turbid.

Hyperspectral imagery was collected with an ITRES Com-
pact Airborne Spectrographic Imager (CASI)-1500 sensor.
CASI-1500 is a pushbroom camera with 1500 across-track pix-
els spanning a 40◦ field of view and has a programmable spec-
tral range that extends from 380 to 1050 nm with a maximum of
288 bands. The CASI image data were directly georeferenced
using trajectory information from the Global Positioning Sys-
tem and the Inertial Navigation System onboard the aircraft.

The hyperspectral imagery was calibrated with
manufacturer-provided software and calibration constants to
convert the raw measurement into spectral radiance. ATCOR-4
software was used for atmospheric correction to convert the
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Fig. 2. (1) Snake River and (2) Blue/Colorado River study areas overlayed with ADCP depth observations. (3) Histograms of the in situ ADCP data for both
rivers and turbidity measurements for the Blue/Colorado confluence. (4) Blue/Colorado River study area overlayed with in situ turbidity observations.

sensor-based reflectance to surface reflectance [19]. This
program uses a digital elevation model and a database derived
from Modtran-5 radiative transfer simulation to account for
topographic and atmospheric effects on surface reflectance.

B. ADCP Data

Both the band ratio method (used as a baseline for compar-
ison) and SVR are empirical methods that require a calibra-
tion data set to relate the physical measurements to observed
spectral data. Acoustic Doppler Current Profiler (ADCP) data
are used in this study to calibrate both the band ratio and
SVR methods. The ADCP reference data were collected with
a SonTek River Surveyor S5 ADCP deployed from a kayak.
SonTek reports a depth resolution of 0.001 m and an accuracy
of 1% over the range of 0.2–15 m. ADCP data are our primary
ground reference data. We estimate the accuracy of the ADCP
depths to be better than 3 cm for these two projects as all water
was shallower than 3 m (see Fig. 2.3(a) for Snake River and
Fig. 2.3(b) for Blue/Colorado River depth histograms).

C. Water Turbidity Measurements

Water turbidity observations are used in this study to validate
the efficacy of SVR for deriving spectrally influenced parame-
ters without an explicit model. Attenuation of light in water is

wavelength dependent, and water turbidity is a primary envi-
ronmental parameter that depicts the water column reflectance,
and hence, the reflected energy received by a hyperspectral
camera should be influenced by water turbidity. In this letter, a
WET Labs EcoTriplet was deployed from a kayak on the Blue/
Colorado River to measure the portion of the total backscat-
tering associated with particulates in the water column, and
turbidity was then derived from the measured backscatter (see
Fig. 2.4). The distribution of the turbidity measurements is
shown in Fig. 2.3(c), which displays a bimodal distribution due
to the introduction of higher turbidity water from Muddy Creek
(see Fig. 2.4).

IV. EXPERIMENT SETUP AND RESULTS

We studied the accuracy of SVR for bathymetry retrieval
using hyperspectral imagery and compared its performance
with optimal band ratio analysis (OBRA) [8]. To investigate the
influence of calibration sample size, we increased the number
of training samples from 100 to 500 in increments of 100, with
a validation sample size fixed at 1000 to maintain the same
comparison baseline. The calibration samples and validation
samples were randomly selected from the in situ measurements.
The calibration samples were first used to estimate the OBRA
parameters for water depth retrieval; the retrieved parameters
were applied to estimate water depths at the validation sample
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Fig. 3. RMSE (m) and R2 of OBRA and SVR for Snake River water depths.

Fig. 4. RMSE (m) and R2 of OBRA and SVR for Blue/Colorado River water
depths.

locations. The same calibration samples were then fed into
SVR for estimation of water depths; the retrieved water depths
from both OBRA and SVR estimation were compared with the
validation samples to calculate RMSE and R2.

In order to ensure consistent and stable results from both
algorithms, the experiment was repeated 20 times. In addition,
to maintain a good model fit across all depths, the field mea-
sured water depths were first categorized into different depth
bins with an interval of 0.1 m [see Fig. 2.3(a) and 2.3(b)].
The random calibration samples were chosen to have the same
relative percentage as the water depths distribution. The RMSE
and R2 between retrieved water depth and validation samples
were calculated for each iteration, and the average value was
used for result.

The RMSE for SVR decreases as the calibration sample size
increases for the Snake River, whereas R2 also increases (see
Fig. 3). OBRA shows a fairly consistent performance with all
training sample sizes. SVR outperforms OBRA with both lower
RMSE and higher R2 regardless of the training sample size.
Both SVR and OBRA depth estimates degraded in the more
turbid Blue/Colorado River as the overall RMSE is higher and
R2 for both algorithms are lower than Snake River (see Fig. 4).
However, SVR still significantly outperforms OBRA with a
lower RMSE and higher R2 value.

To further investigate the influence of water depth on the
accuracy of depth determination for both OBRA and SVR,

Fig. 5. RMSE (m) with varying water depth of OBRA and SVR for Snake
River water depths.

Fig. 6. RMSE (m) with varying water depth of OBRA and SVR for Blue/
Colorado River water depths.

Fig. 5 (Snake River) and Fig. 6 (Blue/Colorado River) show the
RMSE associated with varying water depths. The SVR results
show significantly better RMSE for both shallower (< 1.5 m)
and deeper water (> 2.5 m) for the Snake River; however, SVR
results only show notable improvement in RMSE for deeper
water (> 1.5 m) in the Blue/Colorado River. RMSE increases
at deeper water (> 2 m for Snake River, > 1.5 m for Blue/
Colorado River) due to the saturation of the water column
radiance over bottom radiance signal in deeper water.

Finally, we briefly demonstrate the application of SVR for es-
timation of water turbidity from hyperspectral imagery. As the
relationship between optical turbidity and observed spectra re-
mains unknown, a physical model to predict turbidity is difficult
to establish. Therefore, herein, we use the same k-fold cross-
validation and calibration–validation procedures to train an
SVR model for extraction of water turbidity. From our in situ
turbidity observations, we again varied the number of training
samples from 100 to 500 in 100 sample increments and kept
1000 observed turbidity measurements as validation samples.
Fig. 7 shows that the RMSE between retrieved water turbid-
ity decreases as the calibration sample size increases and is
matched by a corresponding increase in R2.

V. DISCUSSION AND CONCLUSION

In this letter, bathymetry extraction using SVR has been pro-
posed and applied to two hyperspectral imagery data sets when
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Fig. 7. RMSE (NTU) and R2 of OBRA and SVR for Blue/Colorado River
water turbidity.

the benthic layer is visible in two distinct fluvial environments.
The retrieved water bathymetry was compared with a band
ratio method. SVR incorporates all available spectral bands
instead of only examining the ratio of a pair of bands. This is
important, as all spectral bands were influenced by both benthic
reflection and water attenuation. The band ratio method, i.e.,
OBRA, establishes a physical model and then uses an empirical
method to find the optimal pair of spectral bands and neglects
all other spectral channels. The physics-based water depth
retrieval characteristic of OBRA makes it more generalized.
The results also show that OBRA provides consistent results
with relatively few training samples; however, its performance,
unfortunately, does not improve with an increase in the training
sample size. As an empirical method, a band ratio method
may not be optimal for the accurate estimation of bathymetry.
In contrast, SVR does not require a physical model to bridge
the observed data with the desired product. The bathymetry
retrieved from SVR outperforms OBRA with a lower RMSE
and better R2 for both the Snake and Blue/Colorado Rivers.
The increase of training sample size was shown to improve
SVR water depth estimation performance as well. Because
no explicit relationship is required between the observations
and the estimated physical parameters, SVR can be potentially
extended to estimate other spectral-based physical parameters.
We also demonstrated how SVR can be used to estimate water
turbidity, and the results show that hyperspectral imagery can
be used to estimate turbidity with a low RMSE and high R2.

For depth determination, the RMSEs for both SVR and
OBRA degrade in deeper water (> 2.0 m for Snake River,
> 1.5 m for Blue/Colorado River); this is caused by the non-
linear influence of the water column radiance in deeper water.
However, for both rivers, SVR still outperforms OBRA, likely
because of its use of all spectral radiance measurements. Both
SVR and OBRA are less effective in the more turbid Blue/
Colorado River (SVR has a R2 of 0.5); however, the estimated
water turbidity shows an obvious coherence with the observed
radiance (SVR has a R2 of 0.87 when estimating turbidity).
This is due to the assumption that, for spectral bathymetric
retrieval, the observed benthic radiance is the more dominant
term compared with the water column radiance. However, the
substantial turbidity of the Blue/Colorado River has resulted in

significant water column radiance, which masks radiance from
the benthic layer.

In summary, the proposed SVR method is effective at extract-
ing water depths from hyperspectral imagery and outperforms
the band ratio method. Due to its nonparametric formulation,
SVR has been also successfully used to retrieve water turbidity
from the observed hyperspectral imagery with high coherence
with the physical measured water turbidity.
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