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Abstract— Designing the smart grid requires combining varied 

models. As their number increases, so does the complexity of the 

software. Having a well thought architecture for the software 

then becomes crucial. This paper presents MODAM, a 

framework designed to combine agent-based models in a flexible 

and extensible manner, using well known software engineering 

design solutions (OSGI specification [1] and Eclipse plugins [2]). 

Details on how to build a modular agent-based model for the 

smart grid are given in this paper, illustrated by an example for a 

small network. 

Index Terms— Modular, Agent-based model, OSGi 

I. INTRODUCTION 

The future grid is going to be smart, where information and 

communication technology will allow the automation of the 

delivery of electricity in an efficient, reliable and sustainable 

manner [3]. To plan such a grid, it is necessary to select the 

appropriate components that are able to communicate useful 

information, to understand their most appropriate placement 

and finally to tune them so that they can be used in their most 

efficient manner. These three phases have been considered in a 

large project the work presented in this paper belongs to [4].  

Modelling and simulation has been used in this project to 

represent the network and trial scenarios to understand its 

possible evolution; combining  agent-based modelling and 

particle swarm optimisation to model the overall distribution 

grid. 

The work presented in this paper concentrates on the 

specifics of the agent-based model, implemented in a modular 

manner. Agent-based modelling has been chosen to model the 

design of the smart grid for its capacity to describe the 

components at various scales (defining the granularity of the 

model) and their behaviour (using decision-making heuristics, 

learning rules or adaptive processes which make them 

autonomous). The contribution of this paper lies in the fact that 

this agent-based model is built in a modular manner, taking 

advantage of good software engineering practices to build 

extensible and flexible software. That way, models can evolve 

as the information relating to the smart grid changes or 

becomes available or more accurate. Also, models can be 

implemented by different groups for different analysis types 

and combined to obtain a more complete system representation. 

For this, the modules need to follow the guidelines described in 

this paper, implemented in Java. The MODAM (MODular 

Agent-based Modelling) framework gives the backbone 

structure of the modular implementation of ABMs, allowing 

modules to communicate via named data values and user-

defined Java interfaces. 

In the first part of this paper, the different challenges faced 

when building a simulation tool for a smart grid are presented, 

along with the justification for using an agent-based model and 

building the software in a modular manner. Details on the 

architecture of the modular agent-based model (MODAM) 

follow. The different concepts introduced are illustrated using 

an example for a small network with solar panels. 

 

II. WHY USE A MODULAR AGENT-BASED MODEL TO DESCRIBE 

THE SMART GRID? 

This section places the context of the work presented here, 

followed by the justification in using agent-based modelling to 

represent the smart grid. It then describes the solution in 

implementing it using a modular approach. 

 

A. Context of the project and challenges from studying such a 

grid 

The scope of the project is to understand and model the 

future electrical distribution network managed by Ergon 

Energy, one of the two electricity distribution companies that 

serve the state of Queensland, Australia. Ergon's distribution 

network covers 1.7 million square kilometres and provides 

power to approximately 650,000 homes and businesses across 

regional and rural Queensland. The network consists of 

approximately 150,000 kilometres of power lines and 

associated distribution infrastructure. Ergon also owns and 

operates 33 stand-alone power stations that power isolated 

communities across Queensland that are not connected to the 

main electricity grid. Two types of network are used: 3 phase 

network as well as SWER (Single Wired Earth Return). The 

consumers are of different types (residential, commercial, and 



industrial) and can also be producers via the use of 

decentralised generators (solar panels, batteries…).  

Having described this system as such, it becomes clear that 

modelling such a grid poses challenges in terms of modelling 

techniques and software implementation constraints. Table 1 

highlights a few of the challenges when modelling the smart 

grid, and how they translate in terms of the modelling and 

software implementation requirements (data and modelling). 

TABLE 1 – SOME CHALLENGES OF THE SMART GRID IN THE CONTEXT OF OUR 

PROJECT, AND THEIR TRANSLATION IN TERMS OF MODELLING REQUIREMENTS. 

Challenges 
of the Smart 
Grid 

Technical constraint/Geographical scale 

 Different technical systems  
o 3 phase systems vs. SWER networks 

 Distance constraints between components –
network density variability 

 Variation in terms of usage and load types 

 
Behaviour of the system 

 From centralised to decentralised 
o Producers and Consumers at same 

location 

o Bi-directional flow of information 

 Changes in terms of usage behaviour 

o Incentives for usage at different 

times from time of use tariffs 
o Changes in net usage behaviour 

from decentralised generators (PV, 

battery…) 

 
Technical - feedback loops 

 Higher response from the controllers to changes 
in consumptions 

 

Feedback loop and autonomous response 

Data and 
Modelling 
requirements 

Data requirements 

 Different types of information 
o Different data  for the network 

topology (SWER, 3 phase) 
o qualitative vs. quantitative 

information 

o Different time scales (records every 
1/2 hour, 5 minutes…) 

 Different databases holding the information 

 Large datasets to manage and analyse 

 

Modelling/Analysis requirements 

 Need a good representation of the system actors 
o Capture individual behaviours 

o Capture interactions of behaviours 

 Large variation – no averages 

 

B. A technical solution to implementing a smart-grid 

simulation tool 

From this list of data and modelling requirements, a modular 

agent-based model was chosen as the solution to represent the 

smart grid. Reasons for such a choice are given below. 

 

1) The use of agent-based modelling to model the smart 

grid 

According to House-Peters [5], the popularity of ABMs for 

the analysis of complex systems is mainly due to their ability: 

“to incorporate both spatially and temporally explicit data, to 

model bidirectional relations between individual human agents 

and the macrobehavior of the social or environmental system 

being modeled, to capture emerging patterns at higher scales 

of the system that result from interactions at lower levels, and 

to blend qualitative and quantitative approaches”. These are 

some of the reasons agent-based modelling was chosen for 

modelling the smart grid, as they are answering some of the 

challenges described in Table 1 (varying types of data - spatial 

and time, individual behaviours and interactions, qualitative 

and quantitative information). 

Other considerations for choosing agent-based 

modelling were that agent-based modelling can model 

individual components and their individual behaviour which 

other modelling techniques cannot. For example, statistical 

techniques which are based on analysing large samples of 

individuals of similar behaviour cannot capture appropriately 

networks that are sparsely populated, and for which electricity 

usage can differ greatly. Indeed, SWER networks often have 

30km between each residence with only 20 or 30 customers 

under a feeder, some of which can be farmers with very 

different behaviours. The sudden changes in electricity needs, 

when a farmer starts irrigating, are greatly affecting the 

distribution compared to having many users requiring small 

loads but in a more even manner.   

Finally, one of the interest in using agent-based modelling 

for the smart grid is the capability of the agents to be 

autonomous, to have explicit goals that drive their behaviour 

and to learn from past experiences [6]. This is an important 

quality as its components are to automatically adapt to the 

changes in the network and respond to them so that electricity 

is delivered in an efficient manner. Rule-based or evolutionary 

algorithms, for example, can be trialled in the simulation tool 

before being implemented on the grid. 

 

2) Designing the software in a modular manner 

Studying the smart grid requires building a system that can 

be rather large in terms of the number of components that need 

to be modelled as well as the representation of their 

interactions. It also necessitates many different types of 

analyses depending on which aspect of the smart grid a user is 

interested in. 

Consequently, building software for the smart grid will lead 

to large software systems which will become more and more 

complex as they are being built. One way of avoiding complex 

and difficult to extend and maintain software, is to build them 

in a modular manner. “Modularity involves breaking a large 

system into separate physical entities that ultimately makes the 

system easier to understand. By understanding the behaviours 

contained within a module and the dependencies that exist 

between modules, it’s easier to identify and assess the 

ramification of change” [7]. That way, not only is it easier to 

build the system, it is also easier to modify parts of the code 

when more is learnt about smart grids as they develop. 

Also, from Table 1, having different databases holding the 

information was identified as a challenge to modelling the 

grid. Being able to handle all these data types is made easier 



by having a modular approach, where each element of the 

software system can use one or many data formats, and 

common interfaces are used to hide the differences between 

alternative suppliers of similar data. 

 

III. RELATED WORK 

Modularity is not a new concept. Parnas in [8] describes it 

as information hiding, where separation of concerns [9] are 

respected. Many programming languages have been developed 

with this concept in mind, with object-oriented programming 

one of them. While modularity can be seen at the object level, 

such as with the object-oriented paradigm, the modularity can 

happen at a higher level of granularity. For example, 

component-based software engineering [10] is an example of a 

modular implementation at the software level. The work 

presented in this context considers modularity at the software 

level, i.e. at the component level. However, it also uses 

modularity at a fine level through the use of agents that are 

defined in an agent-based model. Unlike EPOCHS [11], our 

agents are the finest level of granularity of the system, and 

contain the information describing their behavior through their 

implementation; an EPOCHS ‘agent would be what we call a 

module. More detail on modularity in the MODAM context is 

given below. 

IV. THE FRAMEWORK 

Having demonstrated the interest of implementing an agent-

based model in a modular manner for the simulation of a smart 

grid, this section describes how such a framework can be built, 

and what software engineering solutions have been used for 

this. An example of an implementation is given here to 

illustrate the principles described; it describes a network 

containing solar panels. The example describes the different 

parts of the simulation set up but does not go into details about 

the whole simulation; more details on the whole simulation 

can be requested to the authors. 

 

A. Technology - OSGi and Eclipse plugins 

The implementation of the platform was done in Java 

using the Eclipse Platform [2] . The modularity of the platform 

was achieved through the use of Eclipse plugins which can be 

defined as OSGi bundles. OSGi is a specification as defined 

by the OSGi Alliance (formerly Open Services Gateway 

Initiative) [1], and OSGI bundles are defined as the unit of 

modularisation [12]. A bundle is a self-contained unit which 

explicitly defines its dependencies on other modules and 

services, as well as its external API. 

The notion of modularity is not specific to any technology, 

and can be achieved using principles in standard Java, for 

example [13]. However, OSGi offers a higher value solution 

to the problem of encapsulation, and eases the modularity of a 

software: “This is where a module framework, such as OSGi, 

shines because it allows you to carefully encapsulate 

implementation details within a module through its explicit 

import package and export package manifest headers” [7], 

chapter 3. Consequently, the programmer can effectively 

control the provided API and the dependencies of their 

plugins. The modules and services can also be dynamically 

activated, de-activated, updated and de-installed, which makes 

their use very flexible, especially since it is possible to change 

the configuration of the system at runtime. For example, it is 

possible to download a module from a website and add it to a 

model without recompiling or recoding any module. 

 

B. MODAM Framework 

The  MODAM (MODular Agent Model) framework is the 

backbone structure for a modular agent-based model 

implementation. It is currently only used in the context of the 

smart grid; however, it is not limited to it and is applicable to 

other domains such as the water or transport areas. 

Consequently, some definitions below are quite generic, while 

examples are always referring to the smart grid. 

 

1) Breakdown of the software into reusable modules 

 

A module in the MODAM framework is defined as: 

 Module = Name + Assets + Agents + Data 

A module is here an Eclipse plugin. As described above, 

OSGi was the chosen technology, and the framework is 

implemented using Eclipse plugins as the development unit. 

Plugins are the smallest deployable and installable software 

components of Eclipse, and they can define extension points, 

which allows other plugins to reference and use them.  

Figure 1below shows an example of 2 modules, along with 

the definition of the extensions from the framework plugin. 

This example will be used all along the paper to support the 

description of the different components making MODAM. 

We can see here that the framework plugin defines 3 

extensions: Data Provider, Asset Factory and Agent Factory. 

These are used in any plugin that extends the framework 

through their plugin.xml file. In Figure 1, PvAsset plugin has a 

class that extends the Asset Factory, and PvAsset.reader one 

that extends the Data Provider; the two modules are also 

linked through the use of data values. This way, each module 

satisfies the definition above. 

One important feature of this framework is the use of the 

factory pattern. Assets and agents in a module are not created 

manually and individually; they are created using factories 

(implementing the interfaces Asset Factory and Agent 

Factory). This process is done in an automated manner, using 

information held by the data providers (more details on this 

below). This way of creating the agents differ from the classic 

agent-based model implementations such as Repast [14] or 

MASON [15] which require the modeller to define agents 

individually. Here, the agent factory will create all the agents 

it finds, from the assets already created, not just some 

specified. Also, binding the module to its data is a requirement 

of this framework, which is done through the data providers 

(more detail on this below). 

 



2) Defining the interfaces from the modularity requirements 

– extension points 

 

Modularity within the Agent-Based Model - Separation 

of asset and agents 

One of the first steps towards modularity was the 

identification of 2 main types of entities in the definition of the 

model: assets and agents. The assets are the entities that 

describe the network topology (information about their 

characteristics and their physical connections) and the agents 

describe their behaviour. In a classic way, an agent would 

normally contain both the characteristics and the behaviour in 

one single object. Here a clear distinction has been made 

between the assets and the agents, giving more flexibility to 

the model. For example, the behaviour can be defined as the 

consequence of a given policy. Having many policies to be 

tested, these can be implemented in the behaviour and easily 

tried by assigning them to an asset without needing to modify 

one or more of the methods of the object. 

Also, using this approach, an asset can be assigned 1 or 

more agents to describe its behaviour, allowing an asset to 

remain the same even if its user changes its behaviour during 

its lifetime. An example of this would be of a premise asset 

that would see a change of tenants and consequently of 

electricity usage, while still maintaining the same 

characteristics in terms of insulation when calculating the 

heating and cooling needs of the building envelope. 

 

Modularity when populating the model – using different 

data readers 

In order to answer the challenge of dealing with different 

databases that hold the information, two approaches at least 

can be taken. One is to implement one type of readers in the 

software, requiring data manipulation before importing the 

file. Another is to have a different reader for each of the 

databases, so that file types are dealt with individually to 

populate the model. The second option was chosen in the 

MODAM implementation as it offers more flexibility; the first 

 

Figure 1 – Example of definition of 2 Plugins, and their relationship to one another. 

PvAsset Plugin contains an extension point for the asset factory, and PvAsset.reader plugin contains many extension points for the data providers. These 

are shown with the green arrows, showing an implementation of the interfaces defined in the MODAM framework. These two plugins are linked through 
their InputDataId and OutputDataId – shown in the red dashed lines. Many extension points can be defined in the plugin.xml, and only used when needed 

through their linking. 

 
 



one is still possible however. The extension point for Data 

Provider allows the flexibility to having different data formats 

as many implementations of a data provider can be done. The 

object needing access to the data can then call the interface 

without having to know anything about the data format. If 

required, the data provider implementation can be switched 

over without impacting the rest of the code. 

 

Connecting modules together through interfaces 

In Eclipse, plugins are connected together through 

extension points and extensions. The extension points defined 

in MODAM are given in Figure 2, following the 3 

requirements described above (separation of asset and agent, 

and different data readers). These extension points define 

interfaces in the code, allowing the different modules to be 

connected to one another, ensuring the functioning of the 

modular platform. The definitions of these extensions are 

given in TABLE 2, where the attributes are described, and the 

interfaces are given in the ClassName attribute of the 

extensions. These interfaces differentiate this approach from 

the traditional tools used for agent-based modelling, such as 

MASON and Repast [16], which are non-modular and 

combine the data and behaviour aspects of agents. 

It has to be noted that additional extensions can be defined if 

required, and this can be done in the users’ modules too. This 

ensures the extensibility of the MODAM framework, allowing 

users to build on the existing code. 

 

3) Connecting the modules together when setting up a 

simulation 

 

The module Manager 

Having defined the different elements of the code in 

the different plugins, these need to be connected to one 

another. This is done by the module manager that can be seen 

as the central point of code. Figure 3 shows the lifecycle of the 

simulation tool. Two parts are distinguished here; the one 

setting up the simulation (Module Manager) and the one 

running it (ABM state). The role of the Module Manager is to 

find all the plugins that are available in the registry, and enable 

those that have been chosen by the user. From these enabled 

plugins, the required plugins that are missing are found and 

added to the simulation.  

The module manager can then call the asset factories 

and the agent factories that have been passed through the 

extension points of the enabled plugins. Methods are then 

called on these factories, using reflection, by just knowing the 

type of interface they implement – these have been passed in 

through the extension point definition. 

Once all the modules have been enabled, the 

simulation can be started (ABM state part of the lifecycle). 

The simulation can be started and stop at any time; the 

simulation is running when the step() method of the agents is 

called upon. 

 

Communication between plugins 

Through these extension definitions, the plugins can be 

linked not only by extending the interfaces, but through the 

data values. These data values are defined in the plugin.xml 

file under the InputDataId and the OutputDataId attributes, 

and need to have the same value to be linked to one another.  

For example, in Figure 1, PvAssetFactory will use the 

data provider PVAssetSpecificReader that has been linked to it 

through the PVAssetDataCharacteristicsSpecific value in the 

PVAsset.reader plugin; and the data provider 

PVMinorParameterReader linked through 

PVAssetDataAllocMinor. These links are shown in Figure 1 

<?xml version="1.0" encoding="UTF-8"?> 

<?eclipse version="3.4"?> 

<plugin> 

   <extension-point id="dataprovider" name="Data Provider" schema="schema/datareader.exsd"/> 

   <extension-point id="agentfactory" name="Agent Factory" schema="schema/agentfactory.exsd"/> 

   <extension-point id="assetfactory" name="Asset Factory" schema="schema/assetfactory.exsd"/> 

</plugin> 

Figure 2 – Extension points for the MODAM framework – extract from the plugin.xml file. 

TABLE 2 –MODAM EXTENSION DEFINITIONS. 

Asset Factory Agent Factory Data Provider 

   
 



through the dashed lines. These 2 extension points are used in 

the code to describe the types of solar panels that need to be 

created (PVAssetDataCharacteristicsSpecific), and to which 

asset they are associated with, i.e. premise or substation 

number (PVAssetDataAllocMinor). 

It can be seen as well in Figure 1 that there are 4 

extension points for the PvAsset.Reader plugin, but only 2 are 

used. This demonstrates the flexibility in the model 

implementation, as different combinations can be chosen to 

create the solar panels, e.g; it is therefore possible to change 

the behaviour of the software in an easy way. 

While these plugins are linked through the plugin.xml 

file, their use in the code is automated through the use of 

reflection in the Module Manager. Consequently, the user does 

not need to modify the Module Manager, but simply define 

these 2 attributes with the same value in the plugins and 

implement a method named “set + ValueOf(OutputDataId)” in 

the factory class. For example, according to Figure 1, the class 

PVassetFactory then requires 2 methods that will be: 

 setPVAssetDataAllocMinor (IDataProvider) 

 setPVAssetDataCharacteristicsSpecific 

(IDataProvider) 

Finally, an InputDataId can have many values as shown in 

Figure 1, which are separated by semi-colons. 

 

4) Cross-connections amongst plugins 

 

Parameters tracking 

As in many software systems, parameters can be set 

and used at different stages of the simulation. MODAM 

considers two types of parameters: global and plugin specific. 

As its name indicates, the plugin specific parameters will be 

held at the plugin level and cannot be accessed from other 

plugins. An example of this would be whether the power flow 

analysis is done using simple or complex power in the power 

flow plugin. The global parameters however, are defined in 

the module manager and can be tracked all along the 

simulation from any plugin. Such parameters are the start 

time, end time, and random seed. 

 

 

Figure 3 – Illustration of the lifecycle of the simulation tool. 

2 phases can be distinguished here: the set-up of the simulation (Module Manager part) and its running phase (ABM state). The Module Manager is 

responsible for finding all the modules, connecting them together and creating the assets and agents through their factories; data is used to populate them. 

The simulation can then be started and stopped as required. 



Sharing an asset amongst plugins 

An asset can be used by different modules by having an 

agent in each of these modules. For each agent type, different 

attributes of the asset would be used that can be defined at 

runtime through the use of channels. Channels are defined 

here as a set of attributes defined at runtime for an agent. 

Depending on the value of the channel parameter, the 

behaviour of the agent is different, through its connection to a 

different demand data type (residential, commercial data…) or 

different logic (simple and complex power). While the choice 

of the parameter is defined at runtime and within a plugin, all 

the available channels are defined globally and held in the 

MODAM framework. 

The data structure chosen for the channels is a map object 

where a given parameter will be assigned a value which can be 

accessed anywhere. This map is located at the ABMState 

level. The reason for doing this was so that someone who 

needs to use the MODAM framework in the future will have 

the mechanisms to use global variables in that manner. 

 

5) Setting up the simulation – command line arguments 

In order to run a simulation, modules relevant to the specific 

analysis can be loaded. For this, a command line reader was 

created; an example of it is given in TABLE 3. 

First, the modules and their classes required to set up the 

simulation are given, using “+M” and “+C” respectively 

followed by the names of the required modules and classes. 

Specifying the classes is not always required, for example 

when only one type of factories is available in the module. In 

that case, only the “+M” command will be called. However, if 

there are different factories in one module for example to 

describe the network, e.g. network data and SWER data, a 

distinction can be made as to which needs to be called. Each 

of the specified classes can also be parameterised using the “-

D” command followed by the parameter value. This is then 

called by the class as an argument and using reflection on the 

parameter name. For example, ‘-D = AllocationMethod = “R”’ 

will be used in the specified class with the method 

setAllocationMethod (String R). Finally, other parameters for 

the simulation run can be passed. These are the start and end 

times of the simulation, called using “-from” and “-to”. And a 

folder that will contain the output of the simulation can be 

specified using “-output”.  

While many modules can be created, not all of them need to 

be loaded, only those required for a given analysis type. 

However, as the model grows, many modules might be 

required to be loaded as they will ensure that the whole of the 

system is taken into account. This might lead to a very long 

command line. To prevent this, and also build on previous 

simulation runs, it is possible use a configuration file that has 

been saved in a previous simulation.  An example of this is 

also given in Table 3, which calls “-config” with the name of 

the file, and adds the new modules that are required for this 

simulation.  

To summarise, Table 3 shows the command line for 2 

simulation runs. The first one is to run the demand on a 

network and uses information from 3 plugins which create the 

assets and the agents using the data provided by the readers. 

The simulation is to be run for 1 week, from the 01/01/2010 

until the 08/01/2010, and the output of the simulation will be 

saved in the tempOutDir directory. The second simulation 

builds on this one (calling the network.xml file), and 4 

additional modules are loaded. These 4 modules are for the 

modelling of the solar panels. 

I. APPLICATION OF MODAM 

Using the approach described above, many simulations 

have been performed, investigating different parts of the 

system. For example, in addition to the 3 phase network that is 

mostly found in cities, simulations on a SWER network were 

performed to study the load variations on a rural network in 

central Queensland. The voltage drops seen by each customer 

as the load varies were calculated using a load flow analysis. A 

battery plugin was added where battery assets could be placed 

on the network to support voltage drop at places under stress. 

By adding other plugins that describe the batteries behaviour, 

different control algorithms could be tried to identify the ones 

that would be most helpful to the network.  

When assessing the impact of renewables on the grid, and 

more particularly describing the behaviour of solar panels, 

many different approaches can be taken. One is to use 

historical data for given solar panels and reuse them in future 

years, expecting simular weather output. Another one is to 

simulate the PV output using weather information as well as 

TABLE 3 – EXAMPLE OF 2 SIMULATIONS SET UP, USING COMMAND LINE AND CONFIGURATION. 

Command Line example for network simulation Reuse of an existing configuration file plus additional commands 

+M= assetreader 
      +C=assetreader.NetworkReader 
      +C=assetreader.LocationReader                
+M=demandreader 
      +C=demandreader.historical.HistoricalDemandReader 
      +C=demandreader.billing.BillingDataReader 
+M=assetnetwork 
      +C=assetnetwork.ergon.NetworkAssetFactory 
      +C=assetnetwork.agent.NetworkAgentFactory  
-from=2010-01-01    -to=2010-01-08 
-output=tempOutDir 

 -config=network.xml 
+M=pvasset 
      +C=pvasset.PVAssetFactory 
+M=pvagent 
      +C=pvagent.WeatherPVAgentFactory 
+M=pvasset.reader 
      +C=pvasset.reader.allocation.PVMinorParameterReader 
+C=pvasset.reader.assetcharacteristics.PVAssetCommonReader            
+M=weatherreader 
     +C=weatherreader.CloudDataReader 
     +C=weatherreader.TemperatureDataReader 
-output=tempOutDir 

 



the usual physical equations, and predict the PV output taking 

into account the passage of clouds – details on this 

implementation can be found in [17]. These 2 approaches have 

been implemented in 2 distinct plugins and can be selected 

indifferently depending on the needs of the user.  

With time, it is expected that many more plugins will be 

added so that the behaviour of the system can be captured in 

its entirety. One of the near future tasks is to explore different 

types of demand-side management (DSM) and their uptake 

level on the grid. Each of these DSM options is expected to be 

implemented in separate plugins, and called at setup of the 

scenario depending on the type of assessment required. Most 

of the power grid scenarios are handled by adding new 

modules and/or extending the existing modules to have flags 

and parameters to give more control over their behaviour.  

II. CONCLUSION 

Smart grids can be modelled using agent-based modelling 

in a modular manner which is an efficient manner of building 

software. Taking such an approach allows building on 

previous work, as the simulation environment grows and more 

data becomes available. This paper demonstrated that such an 

approach is possible through the illustration of the 

implementation of the functionalities on a network with solar 

panels. The code for the MODAM framework which is open-

source can be used for the implementation of user 

functionalities of the smart grid as more data become 

available. Examples of functionalities of the smart grid, such 

as feedback loops haven’t been shown here, because the aim 

of this paper was rather to set the architecture for a modular 

approach to agent-based modelling in the view of simulating 

the smart grid rather than the different algorithms that 

populate the software. More details on the implementations of 

the functionalities will be given in a later paper. This paper 

showed that current software engineering techniques can be 

useful in developing solid software for the smart grid. 
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