
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Boulaire, Fanny, Utting, Mark, & Drogemuller, Robin
(2013)
MODAM: A MODular Agent-based Modelling framework. In
Proceedings of the 2nd International Workshop on Software Engineering
Challenges for the Smart Grid as part of 35th International Conference on
Software Engineering (ICSE 2013), IEEE, San Fransisco, CA, USA, pp.
33-40.

This file was downloaded from: https://eprints.qut.edu.au/63507/

c© Copyright 2013 Please consult the authors

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1109/SE4SG.2013.6596109

https://eprints.qut.edu.au/view/person/Boulaire,_Fanny.html
https://eprints.qut.edu.au/view/person/Utting,_Mark.html
https://eprints.qut.edu.au/view/person/Drogemuller,_Robin.html
https://eprints.qut.edu.au/63507/
https://doi.org/10.1109/SE4SG.2013.6596109

MODAM: A MODular Agent-Based Modelling

Framework

Fanny Boulaire

Mark Utting

Robin Drogemuller

Faculty of Creative Industries

Queensland University of Technology

Brisbane, Australia

Abstract— Designing the smart grid requires combining varied

models. As their number increases, so does the complexity of the

software. Having a well thought architecture for the software

then becomes crucial. This paper presents MODAM, a

framework designed to combine agent-based models in a flexible

and extensible manner, using well known software engineering

design solutions (OSGI specification [1] and Eclipse plugins [2]).

Details on how to build a modular agent-based model for the

smart grid are given in this paper, illustrated by an example for a

small network.

Index Terms— Modular, Agent-based model, OSGi

I. INTRODUCTION

The future grid is going to be smart, where information and

communication technology will allow the automation of the

delivery of electricity in an efficient, reliable and sustainable

manner [3]. To plan such a grid, it is necessary to select the

appropriate components that are able to communicate useful

information, to understand their most appropriate placement

and finally to tune them so that they can be used in their most

efficient manner. These three phases have been considered in a

large project the work presented in this paper belongs to [4].

Modelling and simulation has been used in this project to

represent the network and trial scenarios to understand its

possible evolution; combining agent-based modelling and

particle swarm optimisation to model the overall distribution

grid.

The work presented in this paper concentrates on the

specifics of the agent-based model, implemented in a modular

manner. Agent-based modelling has been chosen to model the

design of the smart grid for its capacity to describe the

components at various scales (defining the granularity of the

model) and their behaviour (using decision-making heuristics,

learning rules or adaptive processes which make them

autonomous). The contribution of this paper lies in the fact that

this agent-based model is built in a modular manner, taking

advantage of good software engineering practices to build

extensible and flexible software. That way, models can evolve

as the information relating to the smart grid changes or

becomes available or more accurate. Also, models can be

implemented by different groups for different analysis types

and combined to obtain a more complete system representation.

For this, the modules need to follow the guidelines described in

this paper, implemented in Java. The MODAM (MODular

Agent-based Modelling) framework gives the backbone

structure of the modular implementation of ABMs, allowing

modules to communicate via named data values and user-

defined Java interfaces.

In the first part of this paper, the different challenges faced

when building a simulation tool for a smart grid are presented,

along with the justification for using an agent-based model and

building the software in a modular manner. Details on the

architecture of the modular agent-based model (MODAM)

follow. The different concepts introduced are illustrated using

an example for a small network with solar panels.

II. WHY USE A MODULAR AGENT-BASED MODEL TO DESCRIBE

THE SMART GRID?

This section places the context of the work presented here,

followed by the justification in using agent-based modelling to

represent the smart grid. It then describes the solution in

implementing it using a modular approach.

A. Context of the project and challenges from studying such a

grid

The scope of the project is to understand and model the

future electrical distribution network managed by Ergon

Energy, one of the two electricity distribution companies that

serve the state of Queensland, Australia. Ergon's distribution

network covers 1.7 million square kilometres and provides

power to approximately 650,000 homes and businesses across

regional and rural Queensland. The network consists of

approximately 150,000 kilometres of power lines and

associated distribution infrastructure. Ergon also owns and

operates 33 stand-alone power stations that power isolated

communities across Queensland that are not connected to the

main electricity grid. Two types of network are used: 3 phase

network as well as SWER (Single Wired Earth Return). The

consumers are of different types (residential, commercial, and

industrial) and can also be producers via the use of

decentralised generators (solar panels, batteries…).

Having described this system as such, it becomes clear that

modelling such a grid poses challenges in terms of modelling

techniques and software implementation constraints. Table 1

highlights a few of the challenges when modelling the smart

grid, and how they translate in terms of the modelling and

software implementation requirements (data and modelling).

TABLE 1 – SOME CHALLENGES OF THE SMART GRID IN THE CONTEXT OF OUR

PROJECT, AND THEIR TRANSLATION IN TERMS OF MODELLING REQUIREMENTS.

Challenges
of the Smart
Grid

Technical constraint/Geographical scale

 Different technical systems
o 3 phase systems vs. SWER networks

 Distance constraints between components –
network density variability

 Variation in terms of usage and load types

Behaviour of the system

 From centralised to decentralised
o Producers and Consumers at same

location

o Bi-directional flow of information

 Changes in terms of usage behaviour

o Incentives for usage at different

times from time of use tariffs
o Changes in net usage behaviour

from decentralised generators (PV,

battery…)

Technical - feedback loops

 Higher response from the controllers to changes
in consumptions

Feedback loop and autonomous response

Data and
Modelling
requirements

Data requirements

 Different types of information
o Different data for the network

topology (SWER, 3 phase)
o qualitative vs. quantitative

information

o Different time scales (records every
1/2 hour, 5 minutes…)

 Different databases holding the information

 Large datasets to manage and analyse

Modelling/Analysis requirements

 Need a good representation of the system actors
o Capture individual behaviours

o Capture interactions of behaviours

 Large variation – no averages

B. A technical solution to implementing a smart-grid

simulation tool

From this list of data and modelling requirements, a modular

agent-based model was chosen as the solution to represent the

smart grid. Reasons for such a choice are given below.

1) The use of agent-based modelling to model the smart

grid

According to House-Peters [5], the popularity of ABMs for

the analysis of complex systems is mainly due to their ability:

“to incorporate both spatially and temporally explicit data, to

model bidirectional relations between individual human agents

and the macrobehavior of the social or environmental system

being modeled, to capture emerging patterns at higher scales

of the system that result from interactions at lower levels, and

to blend qualitative and quantitative approaches”. These are

some of the reasons agent-based modelling was chosen for

modelling the smart grid, as they are answering some of the

challenges described in Table 1 (varying types of data - spatial

and time, individual behaviours and interactions, qualitative

and quantitative information).

Other considerations for choosing agent-based

modelling were that agent-based modelling can model

individual components and their individual behaviour which

other modelling techniques cannot. For example, statistical

techniques which are based on analysing large samples of

individuals of similar behaviour cannot capture appropriately

networks that are sparsely populated, and for which electricity

usage can differ greatly. Indeed, SWER networks often have

30km between each residence with only 20 or 30 customers

under a feeder, some of which can be farmers with very

different behaviours. The sudden changes in electricity needs,

when a farmer starts irrigating, are greatly affecting the

distribution compared to having many users requiring small

loads but in a more even manner.

Finally, one of the interest in using agent-based modelling

for the smart grid is the capability of the agents to be

autonomous, to have explicit goals that drive their behaviour

and to learn from past experiences [6]. This is an important

quality as its components are to automatically adapt to the

changes in the network and respond to them so that electricity

is delivered in an efficient manner. Rule-based or evolutionary

algorithms, for example, can be trialled in the simulation tool

before being implemented on the grid.

2) Designing the software in a modular manner

Studying the smart grid requires building a system that can

be rather large in terms of the number of components that need

to be modelled as well as the representation of their

interactions. It also necessitates many different types of

analyses depending on which aspect of the smart grid a user is

interested in.

Consequently, building software for the smart grid will lead

to large software systems which will become more and more

complex as they are being built. One way of avoiding complex

and difficult to extend and maintain software, is to build them

in a modular manner. “Modularity involves breaking a large

system into separate physical entities that ultimately makes the

system easier to understand. By understanding the behaviours

contained within a module and the dependencies that exist

between modules, it’s easier to identify and assess the

ramification of change” [7]. That way, not only is it easier to

build the system, it is also easier to modify parts of the code

when more is learnt about smart grids as they develop.

Also, from Table 1, having different databases holding the

information was identified as a challenge to modelling the

grid. Being able to handle all these data types is made easier

by having a modular approach, where each element of the

software system can use one or many data formats, and

common interfaces are used to hide the differences between

alternative suppliers of similar data.

III. RELATED WORK

Modularity is not a new concept. Parnas in [8] describes it

as information hiding, where separation of concerns [9] are

respected. Many programming languages have been developed

with this concept in mind, with object-oriented programming

one of them. While modularity can be seen at the object level,

such as with the object-oriented paradigm, the modularity can

happen at a higher level of granularity. For example,

component-based software engineering [10] is an example of a

modular implementation at the software level. The work

presented in this context considers modularity at the software

level, i.e. at the component level. However, it also uses

modularity at a fine level through the use of agents that are

defined in an agent-based model. Unlike EPOCHS [11], our

agents are the finest level of granularity of the system, and

contain the information describing their behavior through their

implementation; an EPOCHS ‘agent would be what we call a

module. More detail on modularity in the MODAM context is

given below.

IV. THE FRAMEWORK

Having demonstrated the interest of implementing an agent-

based model in a modular manner for the simulation of a smart

grid, this section describes how such a framework can be built,

and what software engineering solutions have been used for

this. An example of an implementation is given here to

illustrate the principles described; it describes a network

containing solar panels. The example describes the different

parts of the simulation set up but does not go into details about

the whole simulation; more details on the whole simulation

can be requested to the authors.

A. Technology - OSGi and Eclipse plugins

The implementation of the platform was done in Java

using the Eclipse Platform [2] . The modularity of the platform

was achieved through the use of Eclipse plugins which can be

defined as OSGi bundles. OSGi is a specification as defined

by the OSGi Alliance (formerly Open Services Gateway

Initiative) [1], and OSGI bundles are defined as the unit of

modularisation [12]. A bundle is a self-contained unit which

explicitly defines its dependencies on other modules and

services, as well as its external API.

The notion of modularity is not specific to any technology,

and can be achieved using principles in standard Java, for

example [13]. However, OSGi offers a higher value solution

to the problem of encapsulation, and eases the modularity of a

software: “This is where a module framework, such as OSGi,

shines because it allows you to carefully encapsulate

implementation details within a module through its explicit

import package and export package manifest headers” [7],

chapter 3. Consequently, the programmer can effectively

control the provided API and the dependencies of their

plugins. The modules and services can also be dynamically

activated, de-activated, updated and de-installed, which makes

their use very flexible, especially since it is possible to change

the configuration of the system at runtime. For example, it is

possible to download a module from a website and add it to a

model without recompiling or recoding any module.

B. MODAM Framework

The MODAM (MODular Agent Model) framework is the

backbone structure for a modular agent-based model

implementation. It is currently only used in the context of the

smart grid; however, it is not limited to it and is applicable to

other domains such as the water or transport areas.

Consequently, some definitions below are quite generic, while

examples are always referring to the smart grid.

1) Breakdown of the software into reusable modules

A module in the MODAM framework is defined as:

 Module = Name + Assets + Agents + Data 

A module is here an Eclipse plugin. As described above,

OSGi was the chosen technology, and the framework is

implemented using Eclipse plugins as the development unit.

Plugins are the smallest deployable and installable software

components of Eclipse, and they can define extension points,

which allows other plugins to reference and use them.

Figure 1below shows an example of 2 modules, along with

the definition of the extensions from the framework plugin.

This example will be used all along the paper to support the

description of the different components making MODAM.

We can see here that the framework plugin defines 3

extensions: Data Provider, Asset Factory and Agent Factory.

These are used in any plugin that extends the framework

through their plugin.xml file. In Figure 1, PvAsset plugin has a

class that extends the Asset Factory, and PvAsset.reader one

that extends the Data Provider; the two modules are also

linked through the use of data values. This way, each module

satisfies the definition above.

One important feature of this framework is the use of the

factory pattern. Assets and agents in a module are not created

manually and individually; they are created using factories

(implementing the interfaces Asset Factory and Agent

Factory). This process is done in an automated manner, using

information held by the data providers (more details on this

below). This way of creating the agents differ from the classic

agent-based model implementations such as Repast [14] or

MASON [15] which require the modeller to define agents

individually. Here, the agent factory will create all the agents

it finds, from the assets already created, not just some

specified. Also, binding the module to its data is a requirement

of this framework, which is done through the data providers

(more detail on this below).

2) Defining the interfaces from the modularity requirements

– extension points

Modularity within the Agent-Based Model - Separation

of asset and agents

One of the first steps towards modularity was the

identification of 2 main types of entities in the definition of the

model: assets and agents. The assets are the entities that

describe the network topology (information about their

characteristics and their physical connections) and the agents

describe their behaviour. In a classic way, an agent would

normally contain both the characteristics and the behaviour in

one single object. Here a clear distinction has been made

between the assets and the agents, giving more flexibility to

the model. For example, the behaviour can be defined as the

consequence of a given policy. Having many policies to be

tested, these can be implemented in the behaviour and easily

tried by assigning them to an asset without needing to modify

one or more of the methods of the object.

Also, using this approach, an asset can be assigned 1 or

more agents to describe its behaviour, allowing an asset to

remain the same even if its user changes its behaviour during

its lifetime. An example of this would be of a premise asset

that would see a change of tenants and consequently of

electricity usage, while still maintaining the same

characteristics in terms of insulation when calculating the

heating and cooling needs of the building envelope.

Modularity when populating the model – using different

data readers

In order to answer the challenge of dealing with different

databases that hold the information, two approaches at least

can be taken. One is to implement one type of readers in the

software, requiring data manipulation before importing the

file. Another is to have a different reader for each of the

databases, so that file types are dealt with individually to

populate the model. The second option was chosen in the

MODAM implementation as it offers more flexibility; the first

Figure 1 – Example of definition of 2 Plugins, and their relationship to one another.

PvAsset Plugin contains an extension point for the asset factory, and PvAsset.reader plugin contains many extension points for the data providers. These

are shown with the green arrows, showing an implementation of the interfaces defined in the MODAM framework. These two plugins are linked through
their InputDataId and OutputDataId – shown in the red dashed lines. Many extension points can be defined in the plugin.xml, and only used when needed

through their linking.

one is still possible however. The extension point for Data

Provider allows the flexibility to having different data formats

as many implementations of a data provider can be done. The

object needing access to the data can then call the interface

without having to know anything about the data format. If

required, the data provider implementation can be switched

over without impacting the rest of the code.

Connecting modules together through interfaces

In Eclipse, plugins are connected together through

extension points and extensions. The extension points defined

in MODAM are given in Figure 2, following the 3

requirements described above (separation of asset and agent,

and different data readers). These extension points define

interfaces in the code, allowing the different modules to be

connected to one another, ensuring the functioning of the

modular platform. The definitions of these extensions are

given in TABLE 2, where the attributes are described, and the

interfaces are given in the ClassName attribute of the

extensions. These interfaces differentiate this approach from

the traditional tools used for agent-based modelling, such as

MASON and Repast [16], which are non-modular and

combine the data and behaviour aspects of agents.

It has to be noted that additional extensions can be defined if

required, and this can be done in the users’ modules too. This

ensures the extensibility of the MODAM framework, allowing

users to build on the existing code.

3) Connecting the modules together when setting up a

simulation

The module Manager

Having defined the different elements of the code in

the different plugins, these need to be connected to one

another. This is done by the module manager that can be seen

as the central point of code. Figure 3 shows the lifecycle of the

simulation tool. Two parts are distinguished here; the one

setting up the simulation (Module Manager) and the one

running it (ABM state). The role of the Module Manager is to

find all the plugins that are available in the registry, and enable

those that have been chosen by the user. From these enabled

plugins, the required plugins that are missing are found and

added to the simulation.

The module manager can then call the asset factories

and the agent factories that have been passed through the

extension points of the enabled plugins. Methods are then

called on these factories, using reflection, by just knowing the

type of interface they implement – these have been passed in

through the extension point definition.

Once all the modules have been enabled, the

simulation can be started (ABM state part of the lifecycle).

The simulation can be started and stop at any time; the

simulation is running when the step() method of the agents is

called upon.

Communication between plugins

Through these extension definitions, the plugins can be

linked not only by extending the interfaces, but through the

data values. These data values are defined in the plugin.xml

file under the InputDataId and the OutputDataId attributes,

and need to have the same value to be linked to one another.

For example, in Figure 1, PvAssetFactory will use the

data provider PVAssetSpecificReader that has been linked to it

through the PVAssetDataCharacteristicsSpecific value in the

PVAsset.reader plugin; and the data provider

PVMinorParameterReader linked through

PVAssetDataAllocMinor. These links are shown in Figure 1

<?xml version="1.0" encoding="UTF-8"?>

<?eclipse version="3.4"?>

<plugin>

 <extension-point id="dataprovider" name="Data Provider" schema="schema/datareader.exsd"/>

 <extension-point id="agentfactory" name="Agent Factory" schema="schema/agentfactory.exsd"/>

 <extension-point id="assetfactory" name="Asset Factory" schema="schema/assetfactory.exsd"/>

</plugin>

Figure 2 – Extension points for the MODAM framework – extract from the plugin.xml file.

TABLE 2 –MODAM EXTENSION DEFINITIONS.

Asset Factory Agent Factory Data Provider

through the dashed lines. These 2 extension points are used in

the code to describe the types of solar panels that need to be

created (PVAssetDataCharacteristicsSpecific), and to which

asset they are associated with, i.e. premise or substation

number (PVAssetDataAllocMinor).

It can be seen as well in Figure 1 that there are 4

extension points for the PvAsset.Reader plugin, but only 2 are

used. This demonstrates the flexibility in the model

implementation, as different combinations can be chosen to

create the solar panels, e.g; it is therefore possible to change

the behaviour of the software in an easy way.

While these plugins are linked through the plugin.xml

file, their use in the code is automated through the use of

reflection in the Module Manager. Consequently, the user does

not need to modify the Module Manager, but simply define

these 2 attributes with the same value in the plugins and

implement a method named “set + ValueOf(OutputDataId)” in

the factory class. For example, according to Figure 1, the class

PVassetFactory then requires 2 methods that will be:

 setPVAssetDataAllocMinor (IDataProvider)

 setPVAssetDataCharacteristicsSpecific

(IDataProvider)

Finally, an InputDataId can have many values as shown in

Figure 1, which are separated by semi-colons.

4) Cross-connections amongst plugins

Parameters tracking

As in many software systems, parameters can be set

and used at different stages of the simulation. MODAM

considers two types of parameters: global and plugin specific.

As its name indicates, the plugin specific parameters will be

held at the plugin level and cannot be accessed from other

plugins. An example of this would be whether the power flow

analysis is done using simple or complex power in the power

flow plugin. The global parameters however, are defined in

the module manager and can be tracked all along the

simulation from any plugin. Such parameters are the start

time, end time, and random seed.

Figure 3 – Illustration of the lifecycle of the simulation tool.

2 phases can be distinguished here: the set-up of the simulation (Module Manager part) and its running phase (ABM state). The Module Manager is

responsible for finding all the modules, connecting them together and creating the assets and agents through their factories; data is used to populate them.

The simulation can then be started and stopped as required.

Sharing an asset amongst plugins

An asset can be used by different modules by having an

agent in each of these modules. For each agent type, different

attributes of the asset would be used that can be defined at

runtime through the use of channels. Channels are defined

here as a set of attributes defined at runtime for an agent.

Depending on the value of the channel parameter, the

behaviour of the agent is different, through its connection to a

different demand data type (residential, commercial data…) or

different logic (simple and complex power). While the choice

of the parameter is defined at runtime and within a plugin, all

the available channels are defined globally and held in the

MODAM framework.

The data structure chosen for the channels is a map object

where a given parameter will be assigned a value which can be

accessed anywhere. This map is located at the ABMState

level. The reason for doing this was so that someone who

needs to use the MODAM framework in the future will have

the mechanisms to use global variables in that manner.

5) Setting up the simulation – command line arguments

In order to run a simulation, modules relevant to the specific

analysis can be loaded. For this, a command line reader was

created; an example of it is given in TABLE 3.

First, the modules and their classes required to set up the

simulation are given, using “+M” and “+C” respectively

followed by the names of the required modules and classes.

Specifying the classes is not always required, for example

when only one type of factories is available in the module. In

that case, only the “+M” command will be called. However, if

there are different factories in one module for example to

describe the network, e.g. network data and SWER data, a

distinction can be made as to which needs to be called. Each

of the specified classes can also be parameterised using the “-

D” command followed by the parameter value. This is then

called by the class as an argument and using reflection on the

parameter name. For example, ‘-D = AllocationMethod = “R”’

will be used in the specified class with the method

setAllocationMethod (String R). Finally, other parameters for

the simulation run can be passed. These are the start and end

times of the simulation, called using “-from” and “-to”. And a

folder that will contain the output of the simulation can be

specified using “-output”.

While many modules can be created, not all of them need to

be loaded, only those required for a given analysis type.

However, as the model grows, many modules might be

required to be loaded as they will ensure that the whole of the

system is taken into account. This might lead to a very long

command line. To prevent this, and also build on previous

simulation runs, it is possible use a configuration file that has

been saved in a previous simulation. An example of this is

also given in Table 3, which calls “-config” with the name of

the file, and adds the new modules that are required for this

simulation.

To summarise, Table 3 shows the command line for 2

simulation runs. The first one is to run the demand on a

network and uses information from 3 plugins which create the

assets and the agents using the data provided by the readers.

The simulation is to be run for 1 week, from the 01/01/2010

until the 08/01/2010, and the output of the simulation will be

saved in the tempOutDir directory. The second simulation

builds on this one (calling the network.xml file), and 4

additional modules are loaded. These 4 modules are for the

modelling of the solar panels.

I. APPLICATION OF MODAM

Using the approach described above, many simulations

have been performed, investigating different parts of the

system. For example, in addition to the 3 phase network that is

mostly found in cities, simulations on a SWER network were

performed to study the load variations on a rural network in

central Queensland. The voltage drops seen by each customer

as the load varies were calculated using a load flow analysis. A

battery plugin was added where battery assets could be placed

on the network to support voltage drop at places under stress.

By adding other plugins that describe the batteries behaviour,

different control algorithms could be tried to identify the ones

that would be most helpful to the network.

When assessing the impact of renewables on the grid, and

more particularly describing the behaviour of solar panels,

many different approaches can be taken. One is to use

historical data for given solar panels and reuse them in future

years, expecting simular weather output. Another one is to

simulate the PV output using weather information as well as

TABLE 3 – EXAMPLE OF 2 SIMULATIONS SET UP, USING COMMAND LINE AND CONFIGURATION.

Command Line example for network simulation Reuse of an existing configuration file plus additional commands

+M= assetreader
 +C=assetreader.NetworkReader
 +C=assetreader.LocationReader
+M=demandreader
 +C=demandreader.historical.HistoricalDemandReader
 +C=demandreader.billing.BillingDataReader
+M=assetnetwork
 +C=assetnetwork.ergon.NetworkAssetFactory
 +C=assetnetwork.agent.NetworkAgentFactory
-from=2010-01-01 -to=2010-01-08
-output=tempOutDir

 -config=network.xml
+M=pvasset
 +C=pvasset.PVAssetFactory
+M=pvagent
 +C=pvagent.WeatherPVAgentFactory
+M=pvasset.reader
 +C=pvasset.reader.allocation.PVMinorParameterReader
+C=pvasset.reader.assetcharacteristics.PVAssetCommonReader
+M=weatherreader
 +C=weatherreader.CloudDataReader
 +C=weatherreader.TemperatureDataReader
-output=tempOutDir

the usual physical equations, and predict the PV output taking

into account the passage of clouds – details on this

implementation can be found in [17]. These 2 approaches have

been implemented in 2 distinct plugins and can be selected

indifferently depending on the needs of the user.

With time, it is expected that many more plugins will be

added so that the behaviour of the system can be captured in

its entirety. One of the near future tasks is to explore different

types of demand-side management (DSM) and their uptake

level on the grid. Each of these DSM options is expected to be

implemented in separate plugins, and called at setup of the

scenario depending on the type of assessment required. Most

of the power grid scenarios are handled by adding new

modules and/or extending the existing modules to have flags

and parameters to give more control over their behaviour.

II. CONCLUSION

Smart grids can be modelled using agent-based modelling

in a modular manner which is an efficient manner of building

software. Taking such an approach allows building on

previous work, as the simulation environment grows and more

data becomes available. This paper demonstrated that such an

approach is possible through the illustration of the

implementation of the functionalities on a network with solar

panels. The code for the MODAM framework which is open-

source can be used for the implementation of user

functionalities of the smart grid as more data become

available. Examples of functionalities of the smart grid, such

as feedback loops haven’t been shown here, because the aim

of this paper was rather to set the architecture for a modular

approach to agent-based modelling in the view of simulating

the smart grid rather than the different algorithms that

populate the software. More details on the implementations of

the functionalities will be given in a later paper. This paper

showed that current software engineering techniques can be

useful in developing solid software for the smart grid.

III. REFERENCES

[1] OSGI Alliance. (2013, 01/02/2013). OSGI Alliance.

Available: http://www.osgi.org/Main/HomePage

[2] The Eclipse Foundation. (2012, 27/02/2012). About

the Eclipse Foundation. Available:

http://www.eclipse.org/org/

[3] The National Institute of Standards and Technology

(NIST). (2012, 06/02/2013). Smart Grid: a Beginner's

Guide Available:

http://www.nist.gov/smartgrid/beginnersguide.cfm

[4] F. A. Boulaire, M. Utting, R. Drogemuller, G.

Ledwich, and I. Ziari, "A Hybrid Simulation

Framework to Assess the Impact of Renewable

Generators on a Distribution Network," in 2012

Winter Simulation Conference, Berlin, Germany,

2012.

[5] L. A. House-Peters and H. Chang, "Urban Water

Demand Modeling: Review of Concepts, Methods,

and Organizing Principles," Water Resources

Research, vol. 47, p. W05401, 2011.

[6] C. M. Macal and M. J. North, "Agent-Based Modeling

And Simulation," in 2005 Winter Simulation

Conference, 2005.

[7] K. Knoernschild, Java Application Architecture:

Modularity Patterns with Examples Using OSGi:

Prentice Hall, 2012.

[8] D. Parnas, "On the criteria to be used in decomposing

systems into modules," Communications of the ACM,

vol. 15, pp. 1053-1058, 1972.

[9] E. W. Dijkstra, "EWD 447: On the role of scientific

thought," Selected Writings on Computing: A

Personal Perspective, pp. 60-66, 1982.

[10] C. Szyperski, Component software: beyond object-

oriented programming. New York: ACM Press, 1997.

[11] K. Hopkinson, W. Xiaoru, R. Giovanini, J. Thorp, K.

Birman, and D. Coury, "EPOCHS: a platform for

agent-based electric power and communication

simulation built from commercial off-the-shelf

components," pp. 548-558.

[12] L. Vogel. (2012, 24/09/2012). OSGi Modularity -

Tutorial. Available:

http://www.vogella.com/articles/OSGi/article.html

[13] K. Knoernschild. (2012, 04/12/2012). Patterns of

Modular Architecture. DZone Refcardz, 7. Available:

www.dzone.com

[14] Argonne National Laboratory. (2011, 25/09/2011).

Repast Simphony. Available:

http://repast.sourceforge.net/repast_simphony.html

[15] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and

G. Balan, "MASON: A Multi-Agent Simulation

Environment," Simulation: Transactions of the society

for Modeling and Simulation International, vol. 82,

pp. 517-527, 2005.

[16] C. Nikolai and G. Madey, "Tools of the Trade: A

Survey of Various Agent Based Modeling Platforms,"

Journal of Artificial Societies and Social Simulation,

vol. 12, p. 2, 2009.

[17] F. A. Boulaire, M. Utting, R. Drogemuller, A.

Abeygunawardana, G. Ledwich, and J. Bell,

"Planning for the Impact of Distributed Solar Energy

on the Grid," presented at the Solar 2012 Conference,

Swinburne University of Technology, Melbourne,

2012.

http://www.osgi.org/Main/HomePage
http://www.eclipse.org/org/
http://www.nist.gov/smartgrid/beginnersguide.cfm
http://www.vogella.com/articles/OSGi/article.html
http://www.dzone.com/
http://repast.sourceforge.net/repast_simphony.html

