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Abstract: In this paper, an efficient image deblurring algorithm is proposed. This algorithm

restores the blurred image by incorporating a curvelet-based empirical Wiener filter with a

spatial-based joint non-local means filter. Curvelets provide a multidirectional and multiscale

decomposition that has been mathematically shown to represent distributed discontinuities such

as edges better than traditional wavelets. Our method restores the image in the frequency

domain to obtain a noisy result with minimal loss of image components, followed by an

empirical Wiener filter in the curvelet domain to attenuate the leaked noise. Although the

curvelet-based methods are efficient in edge-preserving image denoising, they are prone to

producing edge ringing which relates to the structure of the underlying curvelet. In order to

reduce the ringing, we develop an efficient joint non-local means filter by using the curvelet

deblurring result. This filter could suppress the leaked noise while preserving image details. We

compare our deblurring algorithm with a few competitive deblurring techniques in terms of

improvement in signal-to-noise-ratio (ISNR) and visual quality.
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1 INTRODUCTION

Image deblurring is a classical inverse problem; the

goal of it is to best estimate an image that has been

degraded. Such inverse problems often arise in many

image processing applications such as radiometry,

satellite imaging, optical systems, magnetic resonance

imaging and seismic processing. Deblurring becomes

necessary when we wish a crisp deblurred image for

viewing or further processing.

Wavelets are popular for image representation and

are used in a wide variety of image processing

applications such as compression, and image restora-

tion.1 The main reason for wavelets’ success can be

explained by their ability to sparsely represent one-

dimensional signals which are smooth away from

point discontinuities. It is because of this optimality

property of wavelet representations that wavelet-

based deblurring routines have been proposed.

However, wavelet representations are actually not

optimal for all types of images. Specifically, in

dimension two, if we model images as piecewise

smooth functions that are smooth away from a C2

edge, the standard two-dimensional (2D) wavelets do

not reach the best possible rate. As a result, denoising

estimates based on 2D wavelets tend to have small

unwanted artefacts and complex decision metrics or

schemes need to be utilised to try to improve the qua-

lity of the estimate. In particular, the approximation
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error for a wavelet representation decays as O(N21)

as N increases.2 Multidirectional representations such

as curvelets3–5 can provide nearly the optimal

approximation rate for these types of images [the

approximation rate being O(N22(log N)3) as N

increases6]. The curvelet transform is tailored to

exploit the structure of images, such as seismic

images,5,7 which contain directionally oriented fea-

tures. In this work, we utilise unique properties to an

implementation of the curvelet transform that offer

advantages for the purpose of deblurring.

The concept of using a sparse representation to

achieve good estimates for deblurring has been suggested

before (see, for example, Ref. 8). However, particular

features concerning implementations of such representa-

tions that contribute to performance presented here have

not been previously considered. The performance of the

proposed method is improved by using an empirical

Wiener shrinkage filter. In this case, the curvelet

coefficients with a slightly different decomposition are

filtered using the initial curvelet-based estimate.

In the implementation stage, to surmount the

problems of boundary effects, and to be effective in

regularising the approximate deblurring process, a

joint non-local means (NLM) filter is utilised. The

NLM filter9,10 replaces a pixel’s value by a weighted

average of pixels selected using self-similarity for

image denosing. This method has shown remarkable

and convincing results. Our joint NLM filter modifies

the NLM filter using a reference image to achieve a

texture-preserving result.

1.1 Problem statement

The degradation procedure is often modelled as the

result of a convolution with a low-pass filter

y n1,n2ð Þ~Hx n1,n2ð Þzc n1,n2ð Þ

~ h xð Þ n1,n2ð Þzc n1,n2ð Þ
(1)

where x and y are the original image and the observed

image, respectively. c is the noise introduced in the

procedure of image acquisition, and it is generally

assumed to be independent and identically distributed

zero-mean additive white Gaussian noise (AWGN)

with variance s2. denotes circular convolution, and h

denotes the point spread function (PSF) of a linear

space invariant system H.

A naive deblurring estimate �xx is obtained using the

operator inverse H{1 as:

�xx n1,n2ð Þ~H{1y n1,n2ð Þ~x n1,n2ð ÞzH{1c n1,n2ð Þ

Unfortunately, the variance of the colored noise

H{1c in �xx is large when H is ill conditioned. Thus, to

get a reasonable image estimate, a method of reducing/

controlling noise needs to be utilised.

1.2 Known approaches

In recent years, lots of deblurring algorithms have

been proposed. In these methods, the Wiener filter11,12

and the constrained least squares algorithm,11 can

solve this problem in the frequency domain in a fast

speed. However, they often obtain a noisy result with

ringing effects. Increased performance of deblurring

methods can be attributed to the inclusion of the

wavelet-based estimators. One such technique called

the wavelet-vaguelette deconvolution was proposed in

Ref. 13, and an improved hybrid wavelet-based

regularised deblurring algorithm that works with any

ill-conditioned convolution system was developed in

Ref. 14. This Fourier-wavelet regularised deconvolu-

tion (ForWaRD) method can obtain good results via

tandem scalar shrinkages in both the Fourier and

wavelet domains. However, sometimes the restored

images would have slightly low contrast and ripple

artefacts. An extension in shearlet and incomplete

measurements, named as ShearDec and ForIcM, was

proposed in Refs. 15 and 16, respectively.

The iterative deblurring method is another important

category.17–19 The well-known basic iterative methods

are Landweber20 and Richardson–Lucy.21,22 Many

extensions and improvements over these methods have

been proposed that include use of the wavelets or other

sparse representations, such as contourlets.23,24 The

fast total variation deconvolution (FTVd) method,25

which is well known for its edge-preserving capability,

can generally achieve state-of-the-art results, and some

iterative methods for total variation-based image re-

storation can be found in Refs. 26–28. The total

variation deblurring method finds approximate solu-

tions to differential equations in the space of bounded

variation functions. The space of bounded variation

functions is a reasonable functional model for images

since it contains piecewise smooth functions that allow

for discontinuities. The discontinuities can be identi-

fied as the image edges. However, its ability to describe

image textures is not satisfactory. This method usually

leads to a slightly blocky result and some fine image

textures are lost. Because image textures are important

visual information to the human eye, the results with

texture loss may show unnatural looks.
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1.3 Proposed algorithm

In this paper, we develop an efficient algorithm that

combines the curvelet-based empirical Wiener filter

and the spatial-based joint NLM filter for image

deblurring. We adopt a three-step non-iterative pro-

cessing procedure, which first uses regularisation in

the Fourier domain to restore a noisy result, and then

following an empirical Wiener shrinkage filter in

curvelet domain, finally, considering that the curvelet

deblurring image preserves most of the important

image features, we use it as a reference image in the

spatial denoising for the noisy image obtained from

the first step. Therefore, an efficient joint NLM filter

is developed. Compared with other spatial algo-

rithms, this proposed spatial filter could suppress the

noise while preserving image details.

1.4 Paper organisation

In Section 2, we give a brief introduction to the

curvelet transform. In Section 3, we discuss details

about the proposed deblurring algorithm. In Section

4, we show some of the simulation results, and

present the concluding remarks in Section 5.

2 AN OVERVIEW OF CURVELET

TRANSFORM

Curvelets are new multiscale transforms that represent

an image in terms of shifted versions of a low-pass

scaling function and shifted, dilated and rotated

versions of a prototype band-pass curvelet function.

Unlike wavelet basis functions, each band-pass curve-

let basis function has an elongated envelope with the

envelope’s length scaling as its width squared; this is

referred to as the parabolic scaling law.4 The curvelet

transform was designed to represent edges and other

singularities along curves much more efficiently than

traditional transforms. Formally, curvelets provide

optimally economical representations for images in so-

called C2/C2 spaces. An C2/C2 image comprises twice

differentiable regions separated by piecewise twice

differentiable boundary curves. In other words, an C2/

C2 image is a piecewise ‘smooth’ image with piecewise

‘smooth’ boundary edges.4

In this paper, we use a so-called second-generation

discrete curvelet transform,5 which is extremely

simple to use.

Let m be the collection of triple index (j,l,k), where j,

l and k~ k1,k2ð Þ[Z2 are respectively scale, orientation

and translation parameters. The curvelets are defined

as functions of x[R2 by

Qm xð Þ~Qj,l,k xð Þ~Qj Rhl
x{x

j,lð Þ
k

� �h i
where hl~2p2{tj=2sl, with l50, 1, … such that

0(hl,2p, x
j,lð Þ

k ~R{1
hl

k12{j,k22{j=2
� �

, Rh is the rota-

tion by h radians and R{1
h is its inverse. In the above, Q

is a waveform which is oscillatory in the horizontal

direction and bell-shaped along the vertical direction.

A curvelet coefficient is then simply the inner product

between an element f [L2 R2
� �

and a curvelet Qm,

cm~Cmf ~Sf ,QmT~

ð
R2

f (x)Qm xð Þdx (2)

which can be evaluated directly in frequency domain.

Here Qm is the conjugation of Qm. Introduce the 2D

frequency window

Uj vð Þ~2{3j=4W 2{jjvj
� �

V
2tj=2sh

2p

� �
where the radial window W (e.g. Meyer wavelet

window) partitions the frequency domain into annuli

jxj[½2j, 2jz1) and the angular window V partitions the

annuli into wedges hl. By defining the curvelets in the

frequency domain bQQm(v)~Uj Rhl
ð Þe{Sx

j,l

k
,vT. Taking

oriented local Fourier bases on each wedge, and using

Plancherel’s theorem for equation (2), we get

cm~
1

2pð Þ2
ð

f̂f vð ÞUj Rhl
ð ÞeSx

j,lð Þ
k

,vTdv

There are two digital implementations of the curvelet

transform in two dimensions.5 The first digital trans-

formation is based on unequally spaced fast Fourier

transforms, while the second is based on the wrapping

of specially selected Fourier samples (Wrapping). Both

implementations are fast in the sense that they run in

O(M2 log M) for an M6M image. In addition, they are

also invertible, with rapid inversion algorithms of

about the same complexity. For details, we refer to

Ref. 5. In this paper, the digital transformation based

on ‘Wrapping’ is used in the experiments.

3 EMPIRICAL WIENER FILTER AND JOINT

NLM FILTER

3.1 Fourier-based deblurring

The Fourier domain is the traditional choice for

deblurring11 because convolution simplifies to scalar

Fourier operations and it provides the most economical
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representation of the colored noise H{1c.14 That is,

equation (1) can be rewritten as

Y k1,k2ð Þ~H k1,k2ð ÞX k1,k2ð ÞzC k1,k2ð Þ (3)

where Y, X, H and C are the 2D discrete Fourier trans-

forms (DFTs) of y, x, h and c, respectively. Rewriting the

pseudo-inversion operation in the Fourier domain

~X k1,k2ð Þ~

X k1,k2ð ÞzC k1,k2ð Þ=H k1,k2ð Þ, if jH k1,k2ð Þjw0,

0, otherwise

(
(4)

where ~X is the DFT of ~xx. Equation (4) clearly

demonstrates that noise components where |H(k)|<0

are particularly amplified during operator inversion.

In our method, we first employ the simplified linear

time invariant (LTI) Wiener shrinkage29 to obtain a

distortion-free but noisy estimate. As reported in

Ref. 14, this LTI Wiener shrinkage is sufficient to

significantly attenuate the amplified noise compo-

nents with a minimal loss of image components.

When an estimate of the power spectral density can

be accurately determined from a method such as that

proposed in Ref. 29, a LTI Wiener-based solution

can be found by using

Ha k1,k2ð Þ~ H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd k1,k2ð Þj½ �

(5)

where s2 is the variance of noise, a[Rz, Psd is the

estimated power spectral density of the image, H is the

complex conjugate of H and M is the size of image. An

image estimate in the Fourier domain can be written by

Xa k1,k2ð Þ~Y k1,k2ð ÞHa k1,k2ð Þ

~X k1,k2ð Þ H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd k1,k2ð Þj½ �

zCa

(6)

Ca~C k1,k2ð ÞHa k1,k2ð Þ

The Xa and CHa denote the respective DFTs of the

estimate image xa and the leaked noise ca.

Consequently, after the LTI Wiener shrinkage step

(equation (6)), the leaked noise ca in the xa has sub-

stantially reduced variances s2
a,m in all curvelet coeffi-

cients. The variance s2
a,m at curvelet subscript m is given by

s2
a,m~E jSca,QmTj

2
� �

~

s2
X
k1,k2

H k1,k2ð Þ
jH k1,k2ð Þj2za M2s2=jPsd(k1,k2)j½ �

Ym k1,k2ð Þ
�����

�����
2

(7)

where Ym is the DFT of curvelet Qm.

3.2 Curvelet-based empirical Wiener filter

The remaining aspect of the deblurring problem is

transformed into a denoising problem in the presence

of leaked noise. Curvelets offer a better representa-

tion of images containing directionally oriented

features than traditional transforms, and the empiri-

cal Wiener shrinkage in the curvelet domain can

provide well estimates of x.

In the case when wavelets are used for image

denoising, it was shown in Ref. 30 that an empirical

Wiener wavelet shrinkage filter typically improves upon

the mean square error performance over that of hard/

soft thresholding. By the empirical Wiener shrinkage,

we mean to weigh the curvelet coefficients as

cw
a,m~ca,m

jce
a,mj

2

jce
a,mj

2
zls2

a,m

(8)

where ce
a,m are the curvelet coefficients from another

denoised estimate, s2
a,m are the noise’s variance at

curvelet subscript m and l is regularisation parameters.

The performance of the proposed method is improved

by using this empirical Wiener shrinkage filter. In this

case, we use two different decompositions (different

decomposition scales and different decomposition

orientations). We denote the curvelet coefficients using

the different subscripts m9 and m for the different

decompositions, respectively (for one curvelet trans-

form implementation, we used 1, 8, 16, 16, 32 and 32

directions in the scales from coarse to fine; for the

other curvelet transform implementation, we used 1,

16, 32, 32, 64 and 64 directions in the scales from

coarse to fine).

To attenuate the leaked noise, the hard-threshold is

first made dependent on the variance of each curvelet-

transform coefficient using the curvelet decomposition

m9. Let ca,m’ denote the curvelet coefficients of the still

noisy image xa for a given regularisation parameter a

and subscript m9. We shrink ca,m’ with the hard-

thresholding function HT ca,m’,r
� �

to obtain ce
a,m’.

HT ca,m’,r
� �

~
ca,m’, ifjca,m’jwrs2

a,m’,

0, otherwise

(
(9)

Then we compute the inverse curvelet transform with

the ce
a,m’ to obtain an initial curvelet-based estimate xe

a.

Then, we use the xe
a to construct the cw

m . Let ca,m and

ce
a,m denote the curvelet coefficients of the still noisy

image xa and the ‘empirical’ estimate xe
a using

curvelet decomposition m, respectively. Using equa-

tion (8), we can obtain the empirical Wiener curvelet
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coefficients. Computing the inverse curvelet trans-

form with cw
a,m, we can get the curvelet-based empi-

rical Wiener estimate xw
a .

The estimate ce
a,m~Cmxe

a~CmCT
m’c

e
a,m’. The mismatch

between Cm and Cm’ guarantees that the operator CmCT
m’

spreads or stretches the clear image trustworthy co-

efficients in ce
a,m’ into a larger number of nonzero coeffi-

cients in ce
a,m. The composite operator CmCT

m’ smooths

ce
a,m’ to predict the remaining noise dubious coeffi-

cients, and yields an estimate of the noisy image

coefficients. The empirical Wiener filter designed using

the same curvelet decomposition almost completely

coincides with the hard thresholding filter.30

An important advantage in the use of the curvelet

transform implementation for deblurring is that it has

the ability to represent edges and other singularities

along curves much more efficiently than traditional

transforms. The needle-shape elements of curvelets

also own very high directional sensitivity and aniso-

tropy. Obviously, it is natural to apply the curvelet

for detail-preserving image deblurring.

3.3 Joint NLM filter in spatial domain

As mentioned above, curvelet-based methods pro-

duce edge ringing which relates to the structure of the

underlying curvelet, and most spatial-based algo-

rithms output much higher quality denoising image

with less artifacts. The NLM filter, as described in

Refs. 9, 10 and 31, applied a simple nonlinear filter to

remove noise while retaining the sharpness of edges.

Nonlocal methods are an exciting innovation and

work well for texture-like images containing many

repeated patterns. Given a noisy image u, at a pixel

location (i,j), the restored result ûu(i,j) can be directly

calculated by a weighted average of the intensities in

its noisy neighbourhood u(k,l) as follows:

ûu(i, j)~
X

(k,l)[VP(i,j)

v k,l½ �, i,j½ �ð Þu k,lð Þ (10)

where the weights v k,l½ �, i,j½ �ð Þf gk,l are defined as,

v ½k,l�,½i, j�ð Þ~ 1

Ci,j

exp {
u Ni,j

� �
{u Nk,lð Þ

		 		2

2,a

s2
h

0@ 1A (11)

u Ni,j

� �
{u Nk,lð Þ

		 		2

2,a
~

XL

m~{L

XL

n~{L

Ga m,nð Þ u Ni,j

� �
m,nð Þ{u Nk,lð Þ m,nð Þ


 �2(12)

and the VP(i,j) denotes the set of points in

the (2Pz1)6(2Pz1) window centered at (i,j),

(2Lz1)6(2Lz1) is the size of similarity square

neighbourhood window, u(Ni,j) is the image patch

centered at pixel location (i, j) and Ga is a Gaussian

kernel, where a is the standard deviation. sh is the

similarity spread in the image range. Ci,j is the normal-

isation factor. Eu(Ni, j){u(Nk, l)E2
2,a is the weighted

Euclidean distance of the two pixels’ neighbourhoods

Ni,j and Nk,l with equal size.

This formula amounts to say that the denoised

value at (i, j) is a mean of the values of all points

whose gaussian neighbourhood looks like the neigh-

bourhood of (i, j). Rather than simply replacing a

pixel’s value with a weighted average of its neigh-

bours in the image domain, this filter replaces a

pixel’s value by a weighted average of pixels selected

using self-similarity to achieve a texture-preserving

result.

The parameter a characterises the spatial behavior

of the filter, but with the changes of the noise level

and the size of VP, a is not easy to select. So we define

a simpler spatial weight function D to replace the

Gaussian kernel Ga

D m,nð Þ~
XL

d~s

1

2dz1ð Þ2
, s~max jmj,jnj,1ð Þ

Let E.ED denote the l2 norm by using weight function

D. That is to say, we use the weight function D to

replace the function Ga in equation (12).

The main problem of the classic non-local filter in

image denoising is that the weights could not be

estimated accurately based on the noisy image. If a

reference contains a much better estimate of the true

high-frequency information than the noisy image,32

we can present a joint NLM filter to compute the

weights. In this way, the weights could be estimated

more accurately.

Now, we propose the joint NLM algorithm, which

is defined by the simple formula

ûu i,jð Þ~

1

Cref
i,j

X
(k,l)[VP(i,j)

exp {
Euref Ni,j

� �
{uref Nk,lð ÞE2

D

s2
h

 !
u i, jð Þ

(13)

Considering that the curvelet deblurring image

preserves most of the important image textural

features, we use it as a reference image in the spatial

denoising. So the proposed joint NLM filter is very

efficient to improve the image quality. Then, the

restored result xJ using joint NLM filter can be

calculated as follow:
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xJ i, jð Þ~

1

Cref
i,j

X
(k,l)[VP(i,j)

exp {
Exw

a Ni,j

� �
{xw

a Nk,lð ÞE2
D

s2
h

 !
xa i, jð Þ

(14)

where xw
a is the curvelet-based estimate.

If we use the joint NLM filter in equation (14)

directly, there are some noise spots in the output

debluring image, especially when the noise level is

high. In this paper, for simplicity, we add the

curvelet-based estimate in the joint NLM filter to

suppress the spots.

x̂x~bxw
a z 1{bð ÞxJ, b[½0, 1) (15)

This method also can balance the curvelet-based

estimate and joint NLM-based estimate, and improve

the image quality.

3.4 Deblurring algorithm

We summarise the main steps of the proposed image

deblurring algorithm as follows (Fig. 1):

3.4.1 Step 1. Operator inversion and Fourier shrinkage

Obtain Y and H by computing the DFTs of y and h.

Then, apply the LTI Wiener filter Ha (equation (5))

to Y to obtain Xa. Compute the inverse DFT of Xa to

obtain xa.

3.4.2 Step 2. Curvelet-based empirical Wiener filter

1. Compute the curvelet transform of still noisy

image xa to obtain ca,m’, and estimate the variance

using equation (7). Shrink ca,m’ with hard-thresh-

olding function equation (9) to obtain ce
a,m’.

Compute the inverse curvelet transform with the

ce
a,m’ to obtain an initial curvelet-based estimate xe

a.

2. Compute the curvelet transform of still noisy

image xa and the initial curvelet-based estimate xe
a

to obtain ca,m and ce
a,m using the different curvelet

decomposition from the Step 2.1 (note the

difference between m and m9.) Estimate the

variance using equation (7). Use the empirical

Wiener filter (equation (8)), we can obtain the

empirical Wiener curvelet coefficients cw
a,m.

Compute the inverse curvelet transform with the

cw
a,m to obtain the curvelet-based empirical Wiener

estimate xw
a .

3.4.3 Step 3. Joint NLM filter

In the spatial phase, the joint NLM filter for xa using

the previously generated curvelet restoration results

xw
a as a reference image, and then we get the final

recovery image x̂x using equations (14) and (15).

4 EXPERIMENTS

In this section, we present results of our proposed

algorithm and compare them with some of the

deblurring methods such as ForWaRD,14 FTVd,25

ShearDec,15 L0-AbS17 and CGMK.18 In these experi-

ments, we will use the improvement in signal-

to-noise-ratio (ISNR) to measure the performance.

The ISNR is defined as

ISNR~10 log10

Ex{yE2
2

Ex{x̂xE2
2

 !
In our experiments, we used the following parameter

settings. In the joint NLM filter, we kept a 11611 pixels

search window and a 767 similarity square neigh-

bourhood of pixels for all the results reported in this

paper, that is to say, we set P55 and L53. For the

parameter sh, we found that a large value of it would

result in a smooth image, whereas a too small value

would lead to inadequate denoising. The choice of this

parameter is largely heuristic in nature. We have

empirically found that sh[½0:025, 0:05� generally yields

good results and have accordingly used sh50.04 for

the results in the experiments.
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In our joint NLM filter, the parameters b in

equation (15) vary with respect to the reference image

quality. Ideally, if the reference image is very close to

the original image, b50 could be good choice.

However, in fact, the reference image is generated

from the noisy image by using the curvelet Wiener

shrinkage filter. Experimental results show that good

range for the parameter is b[½0:3, 0:5�. In this paper,

for simplicity, we set b50.4. And the regularisation

parameter a was estimated by the method proposed

in Ref. 14. The l53.0 in equation (8) and r52.0 in

equation (9) for all experiments. Although better

results could be obtained with ‘optimal’ tuning of

these parameters, from our experience with this

method, it is believed that these heuristic values can

achieve good results in most cases.

We consider six benchmark deblurring problems.

In these experiments, the original images are Barbara

(experiments 1, 2 and 3) of size 5126512, Gold Hill

of size 5126512 (experiment 4) and Lena of size

5126512 (experiments 5 and 6). Table 1 summarises

the different degradation models used, which are

defined by the blur type and the variance of the

additive white Gaussian noise.

We have compared the ISNR result given by our

approach and the other published state-of-the-art

methods respectively in Tables 2.

In the first set of tests, the Barbara image is blurred

by a PSF given by hi,j5(1zi2zj2), i, j527, …, 7, and

the noise variance is s258. The SNR improvements

are summarised in Table 2 under the Exp 1. Our

algorithm outperforms the other methods in terms of

ISNR.

In the second set of tests, the Barbara image is

blurred by a 969 uniform box-car blur. The AWGN

variance is 0.308. A comparison of different methods

in terms of ISNR is shown in Table 2 under the Exp 2

column. The proposed method yields a value of

5.01 dB which is better than the values obtained by

any of the other methods.

In the third experiment, the original image Barbara

is blurred by a 565 separable filter with weights [1, 4,

6, 4, 1]/16 in both the horizontal and vertical

directions and then contaminated with AWGN with

s2549. The details of the images obtained by the

different methods are shown in Fig. 2. Again, our

algorithm performs the best in terms of ISNR and

captures the details better than any of the other

methods. Both the objective and subjective quality of

our estimates are high.

In the forth set of tests, we use the blur filter

considered in Exp 1. The original image of Gold Hill

is blurred by this PSF, and the noise variance s252.

The ISNR values are summarised in Table 2 under

the Exp 4 column. The proposed method yields a

value of 5.22 dB which is better than the values

obtained by any of the other methods. The results

obtained by different methods are shown in Fig. 3.

One can see that our method achieves better visual

result than the others algorithms.

In the fifth set of tests, the original image of Lena is

blurred by a Gaussian PSF defined as
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Table 1 Description of the observation parameters for the five experiments

Blur s2

Exp 1 hi,j5(1zi2zj2), i, j527, …, 7 (Barabra) 8
Exp 2 969 uniform kernel (Barabra) 0.308
Exp 3 [1, 4, 6, 4, 1]T [1, 4, 6, 4, 1]/256 (Barabra) 49
Exp 4 hi,j5(1zi2zj2), i, j527, …, 7 (Gold Hill) 2
Exp 5 Gaussian PSF (25625) with standard deviation 1.6 (Lena) 4
Exp 6 Gaussian PSF (35635)with standard deviation 2.6 (Lena) 4

Table 2 ISNR for different experiments

Methods Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

ForWaRD 1.87 4.02 0.94 4.51 3.74 2.34
FTVd 1.67 4.63 0.67 4.98 3.63 2.61
ShearDec 2.54 4.57 1.72 4.66 3.90 2.73
L0-AbS 1.68 3.81 0.78 5.02 4.11 2.87
CGMK 1.34 3.55 0.44 4.95 3.93 2.52
Proposed method 3.97 5.01 2.27 5.22 4.27 3.08
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h(i, j)~K exp {
i2zj2

2g2

� �
for i,j5212, …, 12, where K is a normalising

constant ensuring that the blur is of unit mass, and

g2 is the variance that determines the severity of the

blur. In this experiment, we chose g51.6 and the

noise variance s254. We report the simulation results

under the Exp 5 column of Table. 2. And Fig. 4

shows the details of the images obtained by the

different methods.

In the above experiments, the blur kernel and the

noise variance are assumed exactly known. In

practice, noise variance error on algorithm effect is

very small. When an inaccurate blur kernel is used as

the input, some distortions will appear in the image

recovered. In light of the robustness to noise and PSF

of our method shown in Fig. 5, we replicated the set-

up similar to that given in Ref. 19. In many practical

situations, the PSF is only partially known and the

noise variance contains error. In this experiment, the

Gaussian PSF used to blur the Lena image has a

The Imaging Science Journal ims356.3d 20/8/12 17:04:45
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2 Details of the image deblurring experiment with a 5126512 Barbara image: (a) original image;

(b) blurred image; (c) ForWaRD result; ISNR50.94; (d) FTVd result, ISNR50.67;

(e) ShearDec result, ISNR51.72; (f) L0-AbS result, ISNR50.78; (g) CGMK result,

ISNR50.44; (h) our method result, ISNR52.27

3 Image deblurring experiment with a 5126512 Gold Hill image: (a) original image; (b) blurred

image; (c) ForWaRD result, ISNR54.51; (d) FTVd result, ISNR54.98; (e) ShearDec result,

ISNR54.66; (f) L0-AbS result, ISNR55.02; (g) CGMK result, ISNR54.95; (h) our method

result, ISNR55.22

8 YANG ET AL.
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variance of g256.76, the region of support is 35635,

and the noise variance s254. The PSF was corrupted

with additive white Gaussian noise of variance

861027, and the noise variance is estimated as

s256.5. Four hundred independent realisations of

the stochastic blurs were formed the common input

to each method. From this experiment, one can see

that our algorithm has good visual and objective

quality. The ISNR values are summarised in Table. 2

under the Exp 6.

5 CONCLUSION AND FUTURE WORK

In this work, we have proposed an effective image

deblurring method. The curvelet-based empirical

Wiener shrinkage filter and the NLM filter are the

exciting innovation and work well for images

containing directionally oriented features. So our

algorithm restores the blurred image by incorporat-

ing a curvelet-based empirical Wiener filter with a

spatial-based joint NLM filter. We have compared

The Imaging Science Journal ims356.3d 20/8/12 17:04:57
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4 Details of the image deblurring experiment with a 5126512 Lena image: (a) original image;

(b) blurred image; (c) ForWaRD result, ISNR53.74; (d) FTVd result, ISNR53.63;

(e) ShearDec result, ISNR53.90; (f) L0-AbS result, ISNR54.11; (g) CGMK result,

ISNR53.93; (h) our method result, ISNR54.27

5 Image deblurring experiment with a 5126512 Lena image: (a) blurred image; (b) ForWaRD,

ISNR52.34; (c) FTVd result, ISNR52.61; (d) ShearDec result, ISNR52.73; (e) L0-AbS result,

ISNR52.87; (f) our final result, ISNR53.08
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the performance of the proposed method against the

some state-of-the-art methods. Results have shown

that the proposed method is attractive to obtain a

deblurring result with better visual and quantitative

performance.

It is also worth noting that many of the improved/

fast NLM filter methods like33,34 proposed to elim-

inate dissimilar pixels in the search window before

computing their weight or to substitute with a more

robust similarity metric to achieve better results or

much speed-up. These ideas can be easily adopted into

our method and will be in our future work.
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