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Abstract This paper considers a class of functions referred to as convex-concave-
convex (CCC) functions to calibrate unimodal or multimodal probability distributions.
In discrete case, this class of functions can be expressed by a system of linear con-
straints and incorporated into an optimization problem. We use CCC functions for
calibrating a risk-neutral probability distribution of obligors default intensities (haz-
ard rates) in collateral debt obligations (CDO). The optimal distribution is calculated
by maximizing the entropy function with no-arbitrage constraints given by bid and
ask prices of CDO tranches. Such distribution reflects the views of market participants
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on the future market environments. We provide an explanation of why CCC functions
may be applicable for capturing a non-data information about the considered distri-
bution. The numerical experiments conducted on market quotes for the iTraxx index
with different maturities and starting dates support our ideas and demonstrate that the
proposed approach has stable performance. Distribution generalizations with multiple
humps and their applications in credit risk are also discussed.

Keywords OR banking · Convex optimization · Convex-concave-convex probability
distribution · Implied copula · CDO pricing

Mathematics Subject Classification 90 (Operations Research, Mathematical
Programming)

1 Introduction

The problem of recovering a probability distribution using limited information about
the value of interest is considered in a variety of applications. Calibrated distributions
provide more informative picture about an underlying parameter than just two com-
monly used statistical measures: mean and standard deviation. Although the method-
ology is very general and can be used in any area, this paper focuses on financial
applications. For instance, in financial markets, the evolution of risk-neutral probabil-
ity distributions around events related to monetary policy actions over time can be used
by policy makers to analyze how market participants respond to implemented policies
and measure its effectiveness Bahra (1997). The prices of financial derivatives give a
broad picture of market expectations as there might be many products associated with
a single asset with various terms such as different strike prices and time to maturity.
Therefore, the prices of financial derivatives may reflect market views on different
parts of probability distributions and can be used for calibration. A substantial body
of work has been done on recovering risk-neutral probability distributions of under-
lying asset prices (Bahra 1997; Bu and Hadri 2007; Jackwerth and Rubinstein 1996;
Monteiro et al. 2008) or other uncertain parameters, such as exchange rates (Campa
et al. 1998; Malz 1997) from option prices [see Jackwerth (1999) for review].

This paper focuses on methods for estimating such probabilistic distributions. In
particular, we propose a new class of probabilistic distributions so-called convex-
concave-convex (CCC), which improves the stability of estimation procedures to noise
in data. CCC is a wide class of distributions including normal, log-normal, gamma,
and F distributions. By definition, the PDF of a CCC distribution is a convex function
from the beginning to some point, then it is concave to some further point, and then it
is again convex to the end. For discrete distributions, we describe CCC distributions
by a system of linear constraints. The class of CCC distributions is quite general and
it can be used in various applications, including those being calibrated from the prices
of financial derivatives. We also demonstrate how CCC class can be used to model
distributions with multiple humps by allowing distributions to satisfy CCC constraints
on different intervals.

The credit risk derivatives market is an area where the efficient techniques for cal-
ibrating probability distributions are quite important. High profit margins has led to a
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growing appeal for Collateralized Debt Obligations (CDOs) or the bespoke-CDO bas-
kets of instruments from many market participants. A CDO is a credit risk derivative,
which is based on so-called “credit tranching”, where the losses of the portfolio of
bonds, loans or other securities are repackaged and traded on the market. The losses
are applied to the later classes of debt before earlier ones. A range of products can be
created from the underlying pool of instruments, varying from a very risky equity debt
to a relatively riskless senior debt. It allows investors to invest in instruments with
almost any risk which satisfies their preferences and the view on creditworthiness of
underlying companies. The pricing of CDOs is a difficult quantitative problem faced
by credit risk markets. The main issue is the uncertainty about obligors default risk in
the corresponding pool of assets and its tranched structure. A large amount of stud-
ies has been done by academic researchers and market participants on analysis and
development of different CDO pricing models (Andersen and Sidenius 2004; Arnsdorf
and Halperin 2007; Burtschell et al. 2005; Dempster et al. 2007; Halperin 2009; Hull
and White 2010, 2006; Laurent and Gregory 2003; Nedeljkovic et al. 2010; Rosen
and Saunders 2009). This paper uses the implied copula model proposed by Hull and
White (Hull and White 2010, 2006) since it requires an efficient calibration techniques
for probability distribution function of market states. In the simplest version of the
standard implied copula approach the time to default of each obligor is assumed to be
an exponential random variable with a hazard rate (same for all obligors) depending
on a market state. Using the current CDO prices one can recover the risk-neutral prob-
ability distribution of market states which fits no-arbitrage assumptions. A number of
recent papers have proposed methods for implying risk-neutral distributions based on
observed CDO tranche prices. These include, for example, the implied copula model
(Hull and White 2006), and its parametric variant (Hull and White 2010) as well as
the approaches based on minimum entropy, including (Meyer-Dautrich and Wagner
2007; Dempster et al. 2007; Nedeljkovic et al. 2010). Since the amount of data for
calibrating distribution is usually quite small, the efficient noise-reduction techniques
may be very useful.

This paper applies an “entropy” approach to the implied copula model motivated
by the results of papers which study the maximum entropy principle for asset pricing
(Avellaneda 1998; Avellaneda et al. 2001; Meyer-Dautrich and Wagner 2007; Demp-
ster et al. 2007; Nedeljkovic et al. 2010) and the references therein. As it is stated in
(Dempster et al. 2007), the minimum entropy principle is well-suited to the estimation
of copulas in portfolio credit risk modeling. By maximizing entropy we find the most
uncertain distribution consistent with given information and do not assume anything
else. The observed prices may not fully reflect the information about the distribution of
market states. In other words, other non-data information may need to be embedded
into the entropy maximization problem such as the shape of distribution, smooth-
ness, bounds, etc. Intuitively, CCC functions may help to incorporate an additional
information about the nature of the distribution of market states.

We use Monte Carlo method to simulate the expected tranche payoffs in each market
state and identify the optimal probability distribution of market states by maximizing
the entropy with no-arbitrage constraints given by bid and ask prices of CDO tranches.
In our computational experiments, we compare the model proposed in (Hull and White
2006) and our approach based on CCC distributions. We use December, 2006 iTraxx

123



A. Veremyev et al.

tranche quotes from (Halperin 2009) containing the bid and ask qoutes as well as more
recent data from 2007–2008 years where the market was in an unstable condition.
We also demonstrate how our model can be generalized to distributions with multiple
humps. The case study is implemented using portfolio safeguard (PSG) package (MAT-
LAB and Run-File Text Environments), see (Portfolio safeguard 2009). The compu-
tational experiments show that the proposed approach has stable performance. The
MATLAB and Text codes used for conducting numerical experiments are provided1.

The paper proceeds as follows: Sect. 2 summarizes the implied copula model intro-
duced in (Hull and White 2006). Section 3 describes the usage of maximum entropy
principle for calibrating probability distributions. Section 4 proposes the CCC distri-
bution and describes how to calibrate it with the entropy approach. It provides the
formal optimization problem statements and a heuristic algorithm for finding proba-
bility distribution. Section 5 discusses the case study. Section 6 concludes.

2 Implied copula CDO pricing model: background

This section briefly describes the simplest version of implied copula model proposed
in (Hull and White 2006), which we use to test the performance of proposed calibration
techniques. More details on fundamentals of CDO pricing models using copulas and
implied copulas can be found in (Andersen and Sidenius 2004; Dempster et al. 2007;
Hull and White 2010; Laurent and Gregory 2003; Li 2000) and references therein. For
the sake of readability, we also omit the formal description of CDO contracts, specifics
of tranching, and the details on their payment structure. We only mention that a CDO
has K instruments (obligors), T time to maturity, and J tranches, whose net payoffs
(difference between expected present value of premium leg payments and default leg
payments) are completely determined by the time to default of each obligor and tranche
prices (more details on CDO prices given, for example, in Table 1 are presented in
the case study section). The default time of each obligor is a non-negative random
variable which is driven by two main factors: market state (default environment)
and idiosyncratic component, i.e., the default risk due to its own circumstances. The
implied copula model has the following assumptions on these components.

Let M be the discrete random variable of possible market states (default environ-
ments) with the set of states I = {1, . . . , I }. If M = i , then the time to default Tk of
obligor k in a given CDO pool of K assets is assumed to be an exponential random
variable with hazard rate λi . In other words, in each possible market state i ∈ I all
obligors have the same probabilities of default by time t equal to

P{Tk ≤ t |M = i} = 1 − e−λi t ,∀k ∈ {1, . . . , K }. (1)

Normally, the hazard rates λi , i = 1, . . . , I are assumed to be defined and fixed, and
chosen in such a way that if i1 < i2 ∈ I, then λi1 < λi2 , i.e, the larger the realized
value of market state M , the more severe is the credit environment for obligors (larger
probability to default earlier). Assume that each market state i has probability pi to
occur:

1 http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/cs_calibration_copula/.
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Table 1 Market quotes for 5, 7,
10-year iTraxx on 20 December,
2006 obtained from Halperin
(2009)

Quotes for the 0 to 3 % tranche
are the percent of the principal
that must be paid up front in
addition to 500 basis points per
year. Quotes for other tranches
are in basis points

Maturity Low
stike (%)

High strike
(%)

Bid Ask

20-Dec-11 0 3 11.75 % 12.00 %

20-Dec-11 3 6 53.75 55.25

20-Dec-11 6 9 14.00 15.50

20-Dec-11 9 12 5.75 6.75

20-Dec-11 12 22 2.13 2.88

20-Dec-11 22 100 0.80 1.30

20-Dec-11 0 100 24.75 25.25

20-Dec-13 0 3 26.88% 27.13%

20-Dec-13 3 6 130.00 132.00

20-Dec-13 6 9 36.75 38.25

20-Dec-13 9 12 16.25 18.00

20-Dec-13 12 22 5.50 6.50

20-Dec-13 22 100 2.40 2.90

20-Dec-13 0 100 33.50 34.50

20-Dec-16 0 3 41.88% 42.13%

20-Dec-16 3 6 348.00 353.00

20-Dec-16 6 9 93.00 95.00

20-Dec-16 9 12 40.00 42.00

20-Dec-16 12 22 13.25 14.25

20-Dec-16 22 100 4.35 4.85

20-Dec-16 0 100 44.50 45.50

P{M = i} = pi , ∀i ∈ I.

Let ai j be the expected net payments (what you expected to pay minus what you
expected to get paid) of tranche j in the market state i . Since the time to default
of each obligor is completely defined in each market state, then the expected net
payments ai j can be calculated using current CDO prices. In the risk-neutral world,
under no-arbitrage assumptions, the expected net payoff of each tranche should be
zero. Therefore,

I∑

i=1

ai j pi = 0, j = 1, . . . , J. (2)

Since the tranche prices are usually given in bid and ask quotes, we use ai j and ai j

to denote the expected net payments of tranche j in the market state i for bid and ask
quotes respectively. Then, the no-arbitrage constraints are

I∑

i=1

ai j pi ≤ 0, j = 1, . . . , J, (3)

I∑

i=1

ai j pi ≥ 0, j = 1, . . . , J. (4)
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Indeed, any violation of either (3) or (4) creates an arbitrage opportunity of buying
or short-selling the corresponding tranche for the expected net profit. There might be an
infinite number of probability distributions (p1, p2, . . . , pI ) satisfying no-arbitrage
constraints (2) or (3), (4) or no distributions at all. Many researchers and market
participants tried to consider different criteria for choosing the “best” distributions,
or trying to find parametric distributions satisfying the aforementioned constraints.
Intuitively, the distribution should be quite smooth since it corresponds to movement
from a “good” market state (λ is low) to a “bad” market state (λ is high). Therefore,
high variations in the probability distribution, as the market state slightly changes,
may seem counterintuitive. Moreover, since the only information used by the model
is the current CDO prices, then the model should be insensitive to the considered
number of market states or other regularization coefficients. Therefore, some of the
desirable distribution properties are “smoothness”, lack of noise, and robustness to
changes to model parameters, such as the number of market states and regularization
coefficients.

One of the earlier work (Hull and White 2006) proposes solving the following
optimization problem to find the “best” probability distribution:

Problem A

min
p

(D(p) + S(p))

subject to

probability distribution constraints

I∑

i=1

pi = 1, (5)

pi ≥ 0, i = 1, . . . , I. (6)

where D(p) is a deviation term

D(p) =
J∑

j=1

(
I∑

i=1

pi ai j

)2

, (7)

and S(p) is a smoothing term

S(p) = c
I−1∑

i=2

[
pi+1 + pi−1 − 2pi

0.5(λi+1 − λi−1)

]2

. (8)

The deviation term D(p) penalizes deviations from zero of the net expected payoff
of every tranche. The smoothing term S(p) imposes the penalty for every three con-
secutive points on the distribution not laying on the same line. The coefficient c is
a regularization coefficient, which has to be chosen by trial and error. Although this
model is rarely used in the literature and usually for comparison reasons with other
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approaches; moreover, the authors of this method developed other techniques [see, for
instance, Hull and White (2010)] to find probability distributions, we use this problem
formulation for demonstration purposes only. Specifically, we show that using our
methodology we might be able to avoid the typical flaws of Problem A such as the
sensitivity of optimal solution to smoothing term coefficient c and the the number of
considered market states I .

Remark 1 Although the implied copula model received criticism in the literature, we
want to point out that it is quite flexible. Specifically, for any particular market state i , a
market participant may assign different hazard rates of obligors depending on his view
on the creditworthiness of each company. Moreover, he can use its own idiosyncratic
default random variables for each specific obligor, which also may be time-dependent.
Thus, as long as the expected net cashflows can be calculated for each obligor in the
pool of assets in each market state, the model still applies. Such flexibility may allow
to mark-to-market other baskets of similar products, and extract more information
from the CDO prices and what the changes of prices may reflect.

3 Maximum entropy principle for recovering probability distributions

As mentioned in the previous section, there might be an infinite number of probabil-
ity distributions (p1, . . . , pI ) satisfying no-arbitrage constraints (2) for exact tranche
quotes or (3), (4) for bid and ask quotes. Besides the aforementioned criterion which
chooses the distribution with the minimized sum of squared deviations of tranche pay-
offs from “perfect fit” (7) and smoothing term (8), other possible approaches have been
proposed in the literature, see for instance (Bahra 1997; Jackwerth 1999; Monteiro et
al. 2008).

This paper considers entropy, a measure of uncertainty of random variable. In
discrete case, the entropy is formally defined as follows.
Definition 1 The entropy H(p) of discrete probability distribution vector p =
(p1, . . . , pI ) is defined by

H(p) = −
I∑

i=1

pi ln pi (9)

To obtain the most unbiased probability distribution, i.e., the most uncertain distribu-
tion among those satisfying the available information, one would choose the distrib-
ution with maximum entropy. This logic lies behind the maximum entropy principle.
The Maximum Entropy Principle [first introduced by Shannon Shannon (1948)] is pop-
ular in information theory. This principle is actively used in financial applications for
recovering probability distributions; see for instance (Avellaneda 1998; Avellaneda
et al. 2001; Golan 2002; Meyer-Dautrich and Wagner 2007; Miller and Liu 2002;
Dempster et al. 2007; Nedeljkovic et al. 2010). The essence of the maximum entropy
principle is that, with a given data and non-data information about the distribution
(specified through equations and constraints), we maximize the entropy which selects
the most “uncertain” distribution. Therefore, we find the most “unbiased” distribution
given the available information about the distribution.
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To find the most uncertain distribution of market states in the aforemen-
tioned implied copula model we use the maximum entropy principle with no-
arbitrage constraints. In other words, the following optimization problem needs to be
solved:

Problem B

min
p

−H(p)

subject to

no-arbitrage constraints

I∑

i=1

ai j pi ≤ 0 , j = 1, . . . , J, (10)

I∑

i=1

ai j pi ≥ 0 , j = 1, . . . , J, (11)

probability distribution constraints

I∑

i=1

pi = 1 , (12)

pi ≥ 0, i = 1, . . . , I. (13)

Note that Problem B contains only data information about the probability dis-
tribution of market states provided by CDO prices and no-arbitrage assumptions.
But the observed prices may not fully reflect the information about the distribution
of market states. In other words, other non-data information may be incorporated
into the entropy maximization problem such as the shape of distribution, smooth-
ness, bounds, etc. For example, one may reasonably assume that the probability
distribution should be unimodal or two-modal. Although, the explanations of such
assumptions might be arguable, the results provided by the corresponding models
may still be worth to consider as they reflect the effect of adding various non-data
information.

Problem B is an optimization problem with convex objective and linear constraints;
thus, it can be solved to optimality using standard optimization solvers. In order to
be able to solve entropy maximization problem with extra non-data information, it
is desirable that this information can be incorporated in terms of linear constraints.
Next section introduces a class of functions (CCC functions) which can be embed-
ded as linear constraints and also may help to incorporate an additional information
about the nature of the distribution of market states in the corresponding optimization
problem.
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4 Modeling default probabilities with CCC distributions

In this section, we introduce a class of convex-concave-convex (CCC) distributions and
demonstrate its application to the modeling of probability distributions of market states
(hazard rates) with single and multiple humps. CCC is a wide class of distributions
including normal, log-normal, gamma, and F distributions. Below we give several
definitions that specify the class of CCC distributions. For the sake of readability, the
definitions and further discussion are made for unimodal CCC distributions, meaning
that they contain one hump. Generalization to multiple humps is straightforward: one
needs to combine unimodal CCC functions on separate intervals.

Definition 2 (convex-concave-convex Function) Let f : X → R, where X ⊆ R. We
call function f (x) convex-concave-convex (CCC) if only if there exist wl , wr ∈ R

such that wl ≤ wr and the following inequalities hold:

1. Convexity on (−∞, wl) ∩ X : f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) for
all x1, x2 ∈ (−∞, wl) ∩ X and all λ ∈ [0, 1];

2. Concavity on [wl , wr ] ∩ X : f (λx1 + (1 − λ)x2) ≥ λ f (x1) + (1 − λ) f (x2) for
all x1, x2 ∈ [wl , wr ) ∩ X and all λ ∈ [0, 1];

3. Convexity on (wr ,+∞) ∩ X : f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) for
all x1, x2 ∈ (wr ,+∞) ∩ X and all λ ∈ [0, 1].

Figure 1 shows an example of CCC function, which is convex function from the
beginning to the point wl , then it is concave to the point wr , and then it is again convex
to the end. The class of continuous CCC distributions can be specified in terms of
Definition 2.

Definition 3 (CCC distribution in continuous case) A continuous random variable
with probability density function f : X → R belongs to the CCC class of continuous
distributions if function f (x) is CCC function.

When the function f : X → R is defined on the finite set X , it is convenient to
express definition of CCC function only in term of points of the set X (other than λ).

0 20 40 60 80 100
0

10

20

30

40

Fig. 1 Example of a CCC function, the first inflection point wl = 30 and the second inflection point
wr = 50
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We provide an equivalent alternative definition of CCC function with such a property
and show its equivalence to Definition 2.

Definition 4 (convex-concave-convex function) Let f : X → R, where X ⊆ R. We
call function f (x) convex-concave-convex (CCC) if only if there exist wl , wr ∈ R

such that wl ≤ wr and the following inequalities hold:

1. Convexity on (−∞, wl)∩ X : (x2 − x1) f (x3) ≤ (x2 − x3) f (x1)+ (x3 − x1) f (x2)

for all x1, x2, x3 ∈ (wr ,+∞) ∩ X such that x1 ≤ x2 ≤ x3 for all x1, x2, x3 ∈
(−∞, wl) ∩ X such that x1 ≤ x2 ≤ x3;

2. Concavity on [wl , wr ] ∩ X : (x2 − x1) f (x3) ≥ (x2 − x3) f (x1) + (x3 − x1) f (x2)

for all x1, x2, x3 ∈ [wl , wr ) ∩ X such that x1 ≤ x2 ≤ x3;
3. Convexity on (wr ,+∞)∩ X : (x2 − x1) f (x3) ≤ (x2 − x3) f (x1)+(x3 − x1) f (x2)

for all x1, x2, x3 ∈ (wr ,+∞) ∩ X such that x1 ≤ x2 ≤ x3.

Definitions 2 and 4 are equivalent. Indeed, if x1 = x2, then both definitions are the
same. If x2 
= x1, then there is a one-to-one correspondence between parameters λ

(in Definition 2) and x3 (in Definition 4) given by an equation x3 = λx1 + (1 − λ)x2
which establishes the equivalence of formulas in both definitions. A discrete class of
CCC distributions with a finite number of atoms can specified in terms of Definition 4.

Definition 5 (CCC distribution in discrete case) Let X = {d1, . . . , dI } ⊂ R be a
finite set such that d1 < d2 < . . . < dI and f : X → [0, 1] be a probability measure
function i.e.

∑I
i=1 f (di ) = 1. Then probability measure f belongs to CCC class of

discrete distributions if the function f satisfies Definition 4 of CCC function.

Observe that in case of finite set X = {d1, . . . , dI } ⊂ R, the probability measure
function f : X → R immediately satisfies Definition 4 if conditions 1–3 of Defini-
tion 4 hold only for every three consecutive points di−1, di , di+1 (i = 2, . . . , I − 1).
This observation can be summarized in Proposition 1.

Proposition 1 (CCC distribution in discrete case) Let X = {d1, . . . , dI } ⊂ R be a
finite set such that d1 < d2 < . . . < dI and f : X → [0, 1] be a probability measure
function i.e.

∑I
i=1 f (di ) = 1. Then f belongs to CCC class of discrete distributions

if there exist indices 1 ≤ wl , wr ≤ I such that f satisfies the following inequalities:

1. Convexity on (−∞, dwl )∩ X: (di+1−di ) f (di−1)+(di −di−1) f (di+1) ≥ (di−1−
di+1) f (di ), for all i : 1 < i < wl ;

2. Concavity on [dwl , dwr ]∩ X: (di+1 −di ) f (di−1)+(di −di−1) f (di+1) ≤ (di−1 −
di+1) f (di ), for all i : wl < i < wr ;

3. Convexity on (dwr ,+∞)∩X: (di+1−di ) f (di−1)+(di −di−1) f (di+1) ≥ (di−1−
di+1) f (di ), for all i : wr < i < I .

The proof of the Proposition 1 is straightforward. Further, we assume that the distance
between every two consecutive points di , di+1 for i = 1, . . . , I − 1 is the same. In
this case, Proposition 1 simplifies to Corollary 1:

Corollary 1 Let X = {d1, . . . , dI } ⊂ R be a finite set d1 < d2 < . . . < dI such that
the distance between every two consecutive points di , di+1 for i = 1, . . . , I − 1 is the
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same and f : X → [0, 1] be a probability measure function i.e.
∑I

i=1 f (di ) = 1.
Then probability measure f belongs to CCC class of discrete distributions if there
exist indices 1 ≤ wl , wr ≤ I such that function f satisfies the following inequality
conditions:

1. Convexity on (−∞, dwl ) ∩ X: f (di−1) + f (di+1) ≥ 2 f (di ), for all i : 1 < i <

wl;
2. Concavity on [dwl , dwr ]∩X: f (di−1)+ f (di+1) ≤ 2 f (di ), for all i : wl < i < wr ;
3. Convexity on (dwr ,+∞)∩X: f (di−1)+ f (di+1) ≥ 2 f (di ), for all i : wr < i < I .

The class of discrete CCC distributions introduced in this section can be applied to
the modeling of default probabilities p1, . . . , pI corresponding to default intensities
λ1, . . . , λI . This can be done by assuming that a probability measure function f defined
on the finite set X = {λ1, . . . , λI } (λ1 < λ2 < . . . < λI ) as f (λi ) = pi for i =
1, . . . , I , belongs to CCC class of discrete distributions specified by Definition 5. This
implies that probabilities p1, . . . , pI should satisfy inequalities 1–3 in Proposition 1.
For simplicity, we assume that the distance between every two consecutive default
intensities λ1, . . . , λI is the same. Then there exist indices 1 ≤ wl , wr ≤ I such that
default probabilities p1, . . . , pI should satisfy linear inequalities:

Convexity of the left slope:

pi−1 + pi+1

2
≥ pi , i = 2, ..., wl − 1 , (14)

Concavity of the hump:

pi−1 + pi+1

2
≤ pi , i = wl + 1, ..., wr − 1 , (15)

Convexity of the right slope:

pi−1 + pi+1

2
≥ pi , i = wr + 1, ..., I − 1 . (16)

Inequalities (14)–(16) can be incorporated into an optimization problem as additional
linear constraints (further referred to as CCC constraints) assuring that distribution
of default intensities is found in the class of CCC distributions. By adding the CCC
constraints to Problem B with points wl , wr as additional variables, we obtain the
following optimization problem.

Problem C

min
wl ,wr ,p

−H(p)

subject to (17)
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no-arbitrage constraints

I∑

i=1

ai j pi ≤ 0 , (18)

I∑

i=1

ai j pi ≥ 0 , (19)

probability distribution constraints

I∑

i=1

pi = 1 , (20)

pi ≥ 0, i = 1, . . . , I . (21)

CCC constraints:
constraint on inflection points

wl ≤ wr , wl ∈ {1, . . . , I }, wr ∈ {1, . . . , I }, (22)

convexity of the left slope

pi−1 + pi+1

2
≥ pi , i = 2, ..., wl − 1 , (23)

concavity of the hump

pi−1 + pi+1

2
≤ pi , i = wl + 1, ..., wr − 1 , (24)

convexity of the right slope

pi−1 + pi+1

2
≥ pi , i = wr + 1, ..., I − 1 , (25)

The formulation of Problem C cannot be implemented using standard solvers since
the CCC constraints are dependent on variables wl , wr . For this reason, for any pair
wl , wr we denote Problem C(wl , wr ) as Problem C with fixed values wl , wr . To
obtain the solution of Problem C, we can solve Problem C(wl , wr ) for all possi-
ble pairs of integers wl , wr such that 1 ≤ wl ≤ wr ≤ I , and then choose the
solution with maximum entropy among all these solutions. The total number of
subproblems (Problem C(wl , wr )) which need to be solved is �(I 2). If I is rel-
atively small, then Problem C can be solved using this procedure in a reasonable
amount of time. For larger values of I , the solution may not be obtained in a rea-
sonable time as the number of subproblems increases quite fast. For that reason, we
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provide a heuristic algorithm for solving Problem C. It is based on solving Prob-
lem B first and then solving a sequence of Problem C(wl , wr ) for different pairs of
(wl , wr ).

Here is the formal description of the proposed heuristic algorithm. Explanations
are provided after the formal description.

Algorithm:
Step 0. Initial optimal solution.

– Solve Problem B and denote its solution obtained for optimization problem by p∗.
– Initialize wl = wr = argmax{p∗

i : i = 1, . . . , I }2, k = 0, H0 = ∞.

Step 1. Solve Problem C(wl , wr )

– Set k = k + 1, exi t_ f lag = 0.
– Solve Problem C(wl , wr ) and obtain the optimal solution p∗

k and Hk = H(p∗
k ).

Step 2. Shifting wr to the right

– If wr < I and Hk ≤ Hk−1, then set wr = wr + 1, exi t_ f lag = 1, and go to
Step 1.

Step 3. Initialization of shifting wl to the left

– If wl > 1, then set wl = wl − 1.
– If wl = 1, then stop the algorithm, and p∗

k−1 is an approximation of the optimal
solution.

Step 4. Solve Problem C(wl , wr ) (the same as Step 1)

– Set k = k + 1.
– Solve Problem C(wl , wr ) and obtain the optimal solution p∗

k and Hk = H(p∗
k ).

Step 5. Shifting wl to the left

– If wl > 1 and Hk ≤ Hk−1 then set wl = wl − 1, exi t_ f lag = 1,and go to Step 4.
– If exi t_ f lag = 1, then go to Step 1.
– If (wl = 1 or Hk > Hk−1) and exi t_ f lag = 0, then stop the algorithm, and p∗

k−1
is an approximation of the optimal point.

The idea of this algorithm is that we step-by-step change inflection points wl , wr

and solve Problem C(wl , wr ). In Step 0, we solve Problem B and obtain an optimal
solution p∗. Then, we set wl = wr = argmax{p∗

i : i = 1, . . . , I }. In other words,
we find the maximum component of optimal vector p∗ and make wl , wr equal to its
index. In Step 1, we solve Problem C(wl , wr ) with these wl , wr and obtain the optimal
point and its objective value. Then, we shift wr to the right, if it is possible, making
wr = wr + 1. After that we go to Step 1 and again solve Problem C(wl , wr ) to obtain
the optimal point and its objective value. Then we compare this objective value with
the previous one obtained in Step 1 (Hk and Hk−1). The procedure stops when the
new objective value is greater then the previous one (Hk > Hk−1), or wr = I . In

2 If the maximum is not unique, the algorithm should be performed for eash point in the set argmax{p∗
i :

i = 1, . . . , I }, and then the solution with the smallest objective value should be chosen.
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Fig. 2 Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads obtained by
solving Problem A for 100 and 300 decision variables, and different smoothing term coefficients c

Steps 3–5 we run the same procedure, but now we shift wl to the left. The procedure
also stops when the new objective value is larger then the previous one (Hk > Hk−1),
or wl = 1. If during the steps 1 through 4, the smaller objective value is found by
shifting wr or wl , then these steps should be performed again. In other words, we shift
the points wr and wl to reach local optimality. Finally, the algorithm returns p∗

k−1,
which is an approximation of the optimal point. We do not prove that this algorithm
provides an optimal solution to Problem C. The case study shows that this algorithm
provides reasonable solutions and works quite fast.

Remark 2 Although Fig. 1 illustrates a unimodal CCC function, not all CCC
functions have unimodal structure. Intuitively, convexity and concavity constraints
can be viewed as the bounds which help to regularize “smoothness” of the cal-
ibrated probability distribution, but they cannot guarantee certain increasing or
decreasing intervals assumed by unimodality. To ensure unimodality (or multi-
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Fig. 3 Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads obtained by
solving Problem A for 500 and 1,000 decision variables, and different smoothing term coefficients c

modality) one can easily incorporate extra constraints on probability distribution
into the proposed optimization problems. For example, if the probability dis-
tribution (p1, . . . , pI ) needs to be nondecreasing (nonincreasing) from points s
to t , the extra constraints would be pi ≤ pi+1, (pi ≥ pi+1),∀i = s, . . . , t-1.
In our computational experiments all CCC distributions have unimodal (two
modal) structure, so we do not need to incorporate extra constraints to ensure
unimodality.

5 Case study

We implement the proposed methodology using real-life data, solve the corresponding
optimization problems (Problem A, Problem B, Problem C), illustrate and discuss
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Fig. 4 Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads. The plots depict
the solutions of Problem B and Problem C obtained with the heuristic algorithm for 6 cases with 100, 200,
300, 500, 800, 1,000 decision variables

the obtained results. We use Portfolio Safeguard (2008) in MATLAB and Run-File
Text Environment to solve the optimization problems (MATLAB and PSG Run-File
text files are posted at the following link3). The provided files can be used for both
simulating the expected cash flow matrices based on given tranche quotes and solving
the corresponding optimization problems. Appendix 1 contains information on running
the case study with PSG. We run the case study on a Windows XP machine with Intel
Core 2 CPU @2GHz processor.

We use the data on iTraxx (Europe) index which is composed of the most liquid
125 CDS (Credit Default Swap) referencing European investment grade credits. The
number of tranches in the iTraxx index is six (J = 6). To get the net expected cash

3 http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/cs_calibration_copula/.
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Fig. 5 Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads obtained by using
proposed heuristic algorithm for solving Problem C for 100, 200, 300, 500, 800, 1,000 decision variables

flow matrices
(
ai j

) j=1,...,J
i=1,...,I ,

(
ai j

) j=1,...,J

i=1,...,I
, for each market state i we simulated the

times to default of 125 companies in the iTraxx index and calculated the net cash
flow for each tranche. The required matrices are composed by the averages of net
cash flows simulated 10,000 times. As assumed by the implied copula model, the
time to default of each company in market state i is exponentially distributed with
parameter λi . We use λ1 = 10−8 (almost no companies default before T ), λI = 100
(almost all companies default immediately), and choose λi in such a way that the
distances between two consecutive ln(λi ) are equal [similar to Hull and White (2006)]:
ln(λi ) = ln(10−8) + (i − 1)(ln(100) − ln(10−8)/(I − 1). The tranche payments are
assumed to be made quarterly, the recovery rate in case of default is 40 % and the annual
risk free rate is 4 %. More details on the simulation procedure and the calculation of
net cash flows based on time to defaults of obligors can be found in (Hull and White
2006). The figures illustrate the implied probability distribution vectors (p1, . . . , pI )

obtained by solving the corresponding optimization problems, where pi correspond
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Fig. 6 Distributions of the collateral hazard rate implied by 5, 7 and 10-year iTraxx tranche spreads obtained
by solving Problem B (upper chart) and Problem C (lower chart) using heuristic algorithm for 100 decision
variables

to the point (ln(λi ), pi ), i = 1, . . . , I . For comparison reasons, the distributions are
drawn as continuous functions and scaled to make areas under the corresponding
graphs to be equal.

Figures 2, 3 depict the plots of probability distributions of hazard rates (market
states) implied by 5-year iTraxx index tranche quotes given in Table 1. The distri-
butions are obtained by solving Problem A for six different values of smoothing
term coefficient c = 100, 101, 102, 103, 104, 105 and I = 100, 300, 500, 1, 000.
The corresponding matrices

(
ai j

) j=1,...,J
i=1,...,I are simulated using mid-prices (the aver-

age between bid and ask quotes). Observe that the probability distributions are sensi-
tive to the parameters c and I . Intuitively, in a good model the calibrated probability
distribution should not significantly depend on the number of considered hazard rates
and the smoothing term coefficient as they contain no additional information about the
market states. Figure 4 presents the probability distributions obtained by solving the
entropy maximization problem with no-arbitrage constraints (Problem B), and with
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Fig. 7 Distributions of the collateral hazard rate implied in 5-year iTraxx tranche spreads for different
dates obtained by solving Problem B with 100 decision variables

CCC constraints for the same dataset and values I = 100, 200, 300, 500, 800, 1, 000.
The only difference from previous settings is that the expected net cash flow matri-

ces
(
ai j

) j=1,...,J
i=1,...,I ,

(
ai j

) j=1,...,J

i=1,...,I
are simulated for bid and ask quotes, not mid quotes.

We use the proposed heuristic algorithm to incorporate CCC constraints described at
the end of Section 4; although, for small values of I the Problem C can be solved
exactly by solving O(I 2) variants of Problem C(wl , wr ) and choosing the solution
with maximum entropy. The optimization time for Problem B varies from 0.01 sec.
for I = 100 to 0.06 sec. for I = 1, 000; for heuristic with CCC constraints time
varies from 0.36 sec. for I = 100 to 600 sec. for I = 1, 000. Note that the optimal
probability distributions are not visibly sensitive to parameter I (Fig. 5 ) and imposing
CCC constraints does not change significantly the shape of implied density functions.
However, irregularities are streamlined.

In the next set of computational experiments the probability distributions are
calibrated using the entropy approach (Problem B and the proposed heuristic for
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Fig. 8 Distributions of the collateral hazard rate implied in 5-year iTraxx tranche spreads for different
dates (10/31/07-upper chart, 6/30/08-lower chart) obtained using the maximum entropy principle with
two-hump CCC model

Problem C) with CCC constraints and the same iTraxx index quotes (Table 1), but
with different maturities (5, 7, 10 years). These experiments may show whether the
homogeneity assumption proposed in the implied copula model is reasonable. Specif-
ically, the model assumes that in each market state the obligors’ hazard rates are the
same for all obligors in the CDO pool and they do not depend on the contract period.
Therefore, since the set of obligors is the same, the calibrated probability distribu-
tions should also be similar (ideally, they should coincide). We simulated the matrices
(
ai j

) j=1,...,J
i=1,...,I ,

(
ai j

) j=1,...,J

i=1,...,I
of expected net cash flows using the prices from Table 1

for 5, 7 and 10-year iTraxx contracts for I = 100. Figure 6 plots the graphs of optimal
solutions obtained by solving Problem B and Problem C using the proposed heuristic
algorithm. The graphs are visibly similar and show little dependence on the length of
the contract period.
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Fig. 9 Distributions of the collateral hazard rate implied by 5, 7 and 10-year iTraxx tranche spreads at two
different dates. The distributions were found by solving Problem B with 100 decision variables

The data analyzed in the previous computational experiments are the market quotes
for 5, 7, 10-year iTraxx index on 20 December, 2006. At that time, the credit derivatives
market was flourishing and expanding very fast. The market became very unstable in
the next couple of years, which should also be reflected in the implied probability
distribution of market states. Intuitively, the market states corresponding to worse
credit environments should have higher probabilities to be realized. Figure 7 shows
the graphs of probability distributions of market states calibrated from prices of 5-year
iTraxx contract on 4 different dates: 10/31/07, 12/31/07, 6/30/08 and 9/30/08. We also
use I = 100 and the same simulation procedure to get the net expected cash flow
matrices. The optimal distributions are obtained by solving Problem B (I = 100).
Observe that the plots look intuitively reasonable: as time goes by and the market
becomes more unstable, higher chances of bad default environments get reflected in
the corresponding implied probability distribution functions in the appearance of a
second hump. We could not solve Problem C since it becomes infeasible because
of the second hump in the solution of Problem B. It means that the assumption on
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unimodality of probability distribution of market states may not be reasonable. In this
case, we solve two-hump CCC model. Namely, we solve Problem C for two CCC
humps for any fixed set of inflection points and choose the solution with maximum
entropy. Observe that for two-hump CCC model only 3 inflection points need to be
fixed; thus, to solve Problem C with two-hump CCC constraints, we need to solve
O(I 3) subproblems similar to Problem C(wl , wr ). Since we use I = 100 the CPU
time for subproblem is less than a second, we are able to identify the exact solution in
a reasonable time. Figure 8 plots the results. We use different coloring to emphasize
the convexity and concavity regions of the corresponding implied distributions.

The last set of computational experiments aim to test how reasonable is the homo-
geneity assumption proposed in the implied copula model when the market of credit
derivatives is unstable. Figure 9 shows the calibrated probability distributions obtained
by solving Problem B using the 5, 7, 10-year iTraxx index prices on 10/31/07, 6/30/08.
The results suggest that the homogeneity assumption does not work well and may need
to be modified to better reflect the nature of underlying assets as, for example, it is
discussed in Remark 1.

6 Conclusion

In this paper, we have considered a class of functions, so-called CCC functions, which
can be used to calibrate unimodal or multimodal probability distributions. In situations
where a discrete probability distribution is being recovered by solving optimization
problem, we showed that the CCC class can be incorporated as a set of linear con-
straints. The application of proposed methodology is demonstrated for the problem of
calibrating probabilities of credit environments (market states) in the implied copula
CDO pricing model. For the computational experiments we used the historical prices
of iTraxx Europe index during stable and unstable times of credit environments, and
compared our methodology with the one proposed by Hull and White (Hull and White
(2006)). We also demonstrated how to apply two-hump CCC model, discussed its
implications and other potential generalizations.

Appendix 1: running case study with portfolio safeguard (PSG)

PSG has several syntax formats for running optimization problems in MATLAB envi-
ronment:

– Optimization subroutines for optimizing nonlinear functions. Subroutines (e.g.,
“riskprog”) use as a parameter the name of a nonlinear function (e.g. “entropyr”),
which is optimized.

– General PSG format.

With PSG optimization language in general format, the problem solving typically
involves three main stages:

1. Mathematical formulation of a problem with a meta-code using PSG nonlinear
functions. Typically, a problem formulation involves 5–10 operators of a meta-
code. See in the end of the Appendix 1 the PSG meta-code for Problem C(wl , wr ).
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2. Preparation of data for the PSG functions in an appropriate format. For instance,
the meansquare error function is defined by the matrix of loss scenarios. One of
those matrices should be prepared if we use this function in the problem statement.

3. Solving the optimization problem with PSG using the predefined problem
statement and data for PSG functions. The problem can be solved in sev-
eral PSG environments, such as MATLAB environment and Run-File (Text)
environment.

Further we present the PSG meta-code for solving Optimization Problem C(wl ,wr ).
The meta-code, data and solutions can be downloaded from the link at the bottom of
this page4.

Meta-Code for Optimization Problem C(wl , wr )

1 Problem: problem_CCC, type = minimize
2 Objective: objective_h, linearize = 1
3 entropyr_h(matrix_h)
4 Constraint: constraint_a, lower_bound = vector_bl, upper_bound = vector_b
5 linearmulti_a (matrix_a)
6 Constraint: constraint_aeq, lower_bound = 1, upper_bound = 1
7 linearmulti_aeq (matrix_aeq)
8 Box_of_Variables: lowerbounds = 0
9 Solver: VAN, precision = 5

Here is a brief description of the presented meta-code. We boldface the important
parts of the code. The keyword minimize tells a solver that the Problem C(wl , wr ) is a
minimization problem. The keyword Objective is used to define the objective function.
The objective function (17), that is a Shannon entropy function, is defined in lines 2,3
with the keyword entropyr and the data matrix, located in the file matrix_h.txt. Each
constraint starts with the keyword Constraint. The constraints (18), (19) and (22)–
(25) are the system of linear inequalities, defined in lines 4,5 with the keyword linear-
multi. The coefficients for these linear inequalities are given in the file matrix_a.txt.
The probability distribution constraint (20) is defined in lines 6,7 with keyword lin-
earmulti and the matrix of unit coefficients, located in the file matrix_aeq.txt. The
Box_of_Variables in line 8 sets the non-negativity constraints (21).
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