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Near-Field Broadband Beamformer
Design via Multidimensional Semi-Infinite

Linear Programming Techniques
Ka Fai Cedric Yiu, Xiaoqi Yang, Sven Nordholm, and Kok Lay Teo

Abstract—Broadband microphone arrays has important appli-
cations such as hands-free mobile telephony, voice interface to per-
sonal computers and video conference equipment. This problem
can be tackled in different ways. In this paper, a general broadband
beamformer design problem is considered. The problem is posed
as a Chebyshev minimax problem. Using the1-norm measure or
the real rotation theorem, we show that it can be converted into
a semi-infinite linear programming problem. A numerical scheme
using a set of adaptive grids is applied. The scheme is proven to
be convergent when a certain grid refinement is used. The method
can be applied to the design of multidimensional digital finite-im-
pulse response (FIR) filters with arbitrarily specified amplitude
and phase.

I. INTRODUCTION

H ANDS-FREE audio devices are popular for video con-
ferences, mobile telephony and computer applications.

Microphone arrays are usually applied to capture speech under
varying acoustic conditions. Most of these applications are
near-field applications, which means the aperture of the array
is about the same size as the distance from a user to the array.
Efficient design methods for near-field broadband beamformer
are therefore essential. The traditional way is to consider the
minimax design of one-dimensional (1-D) or two-dimensional
(2-D) linear phase digital FIR filters via either a linear pro-
gramming technique [1]–[4] or an exchange algorithm [5], [6].
These techniques are implemented on a single grid and require
linear phase.

Recently, more general methods have been considered for the
design of near-field multidimensional digital FIR filters for ar-
bitrary amplitudes and phases. In [7] and [8], the near-field-far-
field reciprocity relationship is derived and applied to design
near-field beamformers via far-field design techniques. Another
interesting approach is presented in [9] which makes use of a
signal propagation vector representing an ideal point source of
acoustic radiation. For situations in which the desired response
is known, multidimensional filter design techniques can be ap-
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plied. In [10], the minimax problem is formulated as a quadratic
programming problem and the SQP method is applied. Another
method has been explored in [11] where the minimax problem is
formulated as a unconstrained nonlinear optimization with the
use of a penalty function. This method is modified later in [12]
by replacing the penalty function with a root-catching method.
However, because of the nonlinearity in these formulations these
methods are not very computationally effective.

As pointed out in [10], a quadratic term appears once the
linear phase assumption is dropped. However, the quadratic
term arises also because the-norm is used as a measure for
the magnitude of a complex number. In order to reduce the
nonlinearity, the real rotation theorem or alternative norms can
be applied instead. In this paper, we use the-norm and the real
rotation theorem [13], [14]. With the use of the-norm or the
real rotation theorem, the minimax problem can be transformed
into an equivalent semi-infinite linear programming problem.
Thus, linear programming techniques can again be used. A
numerical scheme using a set of adaptive grids is proposed.
We then extend the theory described in [15] to show that the
adaptive grid scheme gives convergence to the semi-infinite
linear programming problem. To be more specific, the theory
is extended here to the case with multidimensional arguments
and multiple constraints. Finally, the adaptive grid scheme
is modified further to allow for the inclusion of near-active
constraints only, which greatly reduces the number of linear
constraints as the grid is refined. Numerical results are included
to illustrate the effectiveness and efficiency of the proposed
method.

II. FORMULATION

Let and be the specified desired response
and the actual response of the broadband beamformer, respec-
tively, where is the position vector and is the frequency.
Assume that the array has elements. Let each microphone
signal be sampled at a rate of; and let a -tap FIR filter be
used behind each microphone element. Since we are interested
in the frequency response in the nearfield, reflected waves will
have less effect and are therefore neglected in the present study.
Using a simple spherical model, the transfer function from the
source point to the th element of the broadband beamformer
is given by

(1)
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where is the sound speed. The array response vector is there-
fore given by

(2)

while the filter response vector is written as

(3)

Denote the filter weights by , the actual response is given by

in which denotes the Kronecker product and .
Consider a region in the space-frequency do-

main, where each is a convex set and for .
The minimax design problem can be formulated as

(4)

Expanding the complex functions as

and denote

(5)

(6)

the minimax filter design problem can be rewritten as

(7)

Clearly, if the standard modulus of the complex function is used
to measure the complex number, i.e.,

(8)

a quadratic term arises which increases the nonlinearity of the
problem [10]–[12]. Note that this corresponds to the use of a

-norm to measure the complex number. Another equivalent
way to formulate the problem is to make use of the real rotation
theorem and the design problem can be written as

(9)

If only the angle are used, it is just to
measure the complex number by the maximum of and

, which is equivalent to the use of a -norm [16], [17].
Another norm which has a lot of favorable properties is the
-norm. Similar to the -norm, it bounds the -norm with the

upper and lower bounds as

(10)

Using the -norm, the design problem becomes

(11)

Note that this problem cannot be replicated by any chance of
in (9).

From the formulation (9) and (11), the real and imaginary
parts remain to be linear. Therefore, linear programming tech-
niques are possible to tackle these problems. Define

the design problem (9) is equivalent to the semi-infinite linear
programming problem

(12a)

subject to

(12b)

To convert (11) into a semi-infinite linear programming, one
way is to introduce the variable

and the minimax problem can be converted into

(13a)

subject to

(13b)

(13c)

(13d)

(13e)

An alternative and more flexible way to convert (11) into a
semi-infinite linear programming problem is to control the real
part and the imaginary part separately by introducing two new
variables as

Thus, in matrix notation, the design problem can be formulated
as

(14a)

subject to

(14b)

where

in which and are two different weights for the real and
imaginary parts, respectively.

Assume the optimal is achieved at and the acoustic of
the room has changed slightly. The transfer function becomes
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while the optimal is now achieved at . Assume the
perturbation is small so that , . We
therefore have

(15)

It is advantageous to restrict the size of the weights

(16)

so that any perturbations to the design conditions are not
magnified by the weights significantly. This will also constrain

within bounds. Furthermore, the magnitudes of the weights
should be controlled to avoid the problem of overflow or other
filter realization problems.

The complexity of the linear programming technique is rather
high, especially for very long filter [18]. Therefore, the method
should be applied for off-line design. However, for small per-
turbations to the acoustic, a real-time implementation is pos-
sible. This can be achieved by exploring the simplex algorithm.
If the perturbations are small, a careful sensitivity analysis will
improve the rate of re-convergence to the new optimal solu-
tion significantly. In this way, it is possible to track, e.g., small
movements of the speaker, in real-time after the initial solution
sought.

III. A LGORITHM

For a fixed set of , the design problem (14) is simply
a linear programming problem. Similarly, ifis chosen to be a
fixed set, the design problem (12) is also another linear program-
ming problem. Therefore, a discretization solution method with
adaptive schemes such as [15], [19] and [20] can be used. Ap-
proximating with a uniform grid containing mesh points in
each dimension results in a multi-dimensional grid, denoted by

. In order that the discretization problem obtained is a good
approximation of the original problem, the integer needs
to be large. In order to determine a suitable to solve the
problem, a sequence of adaptive meshes can be applied so that
the mesh is refined gradually. For convergence, an appropriate
refinement scheme is to include all the previous coarse grid
points in the finer meshes. As a result, the solution of solving
the discrete linear programming problem can be proven to con-
verge to the original semi-infinite linear programming problem
as the mesh becomes finer and finer. The proof is given in the
Appendix.

Since a simple replacement ofby leads to a linear pro-
gramming problem with a large number of constraints as the
mesh becomes finer and finer, it is possible to eliminate some
unnecessary constraints and to consider only those near-active
constraints. Although it is not easy to prove this scheme to be
convergent, experiences have shown that this scheme works ex-
tremely well in practice. We shall describe and use this scheme
in the following.

Let the matrix be partitioned by its rows denoted by
, where for the -norm

formulation and in the real rotation formulation de-
pending on how many discrete’s are used. Let

in which for the real rotation formulation and
for the -norm formulation under (14). Define

where , . We consider a modi-
fied problem

(17a)

subject to

(17b)

The number of constraints in the modified problem is much
less than that of the original problem. The scheme proposed in
[15] is extended here to tackle problem (17). The final algorithm
can be summarized as follows.

i) Choose , , and , where is several times
larger than .

ii) Choose a such that , .
iii) Solve the linear programming problem (17) to give.
iv) If is small enough, stop.
Otherwise, , , , go to ii).

IV. NUMERCIAL RESULTS

In the following examples, the weights and are set to
one for the -norm formulation (14). For the real rotation for-
mulation (12), is chosen to have the following eight values

In the near-active constraints algorithm,was chosen such that
. MATLAB version 6 is used and the

library function using the simplex method is applied here.
The desired response function is chosen as a region that would

fit into a multimedia or hands-free mobile phone application.
This will include the frequency range of human voice, and a
range of positions that the microphones intend to receive. To
allow for the delay of the speech to reach the microphones, the
desired response function in the passband region is chosen as

(18)

where is the coordinate for the centre element,
and the sample increment .

It is possible to optimize on the delay, but the choice here will
be very close to the best possible choice. In the stopband region,

in order to filter out the noise. A equispaced
linear array with five elements and a seven-tap FIR filter
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Fig. 1. Configuration of the beamformer.

TABLE I
SUMMARY OF CONVERGENCE FOR THEl -NORM METHOD

behind each element is used. The element spacing is 5 cm
to avoid spatial aliasing for the frequency of interest. In the
examples, and the beamformer is specified on an

-axis parallel with, and meters in front of, the array. This is
depicted in Fig. 1. The passband region is defined as

while the stopband regions are defined as

Note that this is a union of several convex regions, and more
mesh points are allocated to larger regions. A 120120 grid
was used to check for the convergence of the-norm formula-
tion. The following function

(19)

is used to monitor the convergence. For the real rotation formu-
lation, the following function

(20)

is used instead to monitor the convergence, where sixteen
values are used. When , the -norm calculation is
given in Table I and the amplitude response is shown in Fig. 2.
In the table, stands for number of constraints. The near-ac-
tive constraints scheme works quite well in reducing the number
of constraints from 6400 to 2230 on a 4040 mesh. The con-
vergence monitoring function has indicated that the solution
has converged to the solution of the semi-infinite linear pro-
gramming problem up to the machine precision on the reference
grid 120 120. The absolute maximum and minimum of the
weights is 1 and 0.029 83, respectively. By looking at the Lan-
grange multiplier of the linear programming problem, the
coordinates correspond to the set of active linear constraints can
be sought and is shown in Fig. 3. The real rotation calculation
is given in Table II. Note that from the table, the convergence
monitoring function does not converge to zero. It is because

Fig. 2. Optimal design withN = 5, L = 7 andy = 1m.

Fig. 3. Set of active points for the first example.

TABLE II
SUMMARY OF CONVERGENCE FOR THEREAL ROTATION METHOD

the set of is held fixed during the adaptive refinement of the
grid. To refine the at the same time will significantly increase
the number of constraints and hence the size of the linear pro-
gramming problem. The final response is very similar to the one
using -norm is not reproduced here. The absolute maximum
and minimum of the weights is 1 and 0.085 52, respectively.

The comparison between different approaches is given in
Table III. From the table, both the -norm approach and
the real rotation approach perform quite well relative to the
least-squares approach in terms of the passband gain. Moreover,
the real rotation has the smallest passband ripple among these
approaches. However, from comparing Table I and II, the real
rotation approach requires at least twice as many constraints
as the -norm approach, and is therefore many times more
expensive to solve.
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TABLE III
COMPARISONSBETWEEN THE l -NORM METHOD, THE REAL ROTATION

METHOD AND THE LEAST-SQUARESMETHOD

Fig. 4. Off-design performance for weights designed withy = 1 m and
perturbed toy = 0:5 m.

Fig. 5. Off-design performance for weights designed withy = 1 m and
perturbed toy = 1:5m.

In order to study the off-design performance of the design for
source moving, the filter is first designed with and the
source is subsequently displaced to calculate the final amplitude
response. Here, the source location is perturbed to
and and the results are depicted in Fig. 4 and Fig. 5,
respectively. The amplitude responses show that the designed
weights are not sensitive to small perturbations to the source
location.

Finally, the source is placed very near to the beamformer (
) and the number of taps are increased to . The

Fig. 6. Optimal design withN = 5,L = 21 andy = 0:2m.

TABLE IV
COMPARISONSBETWEEN THE l -NORM METHOD AND THE

LEAST-SQUARESMETHOD

Fig. 7. Off-design performance for weights designed withy = 0:2 m and
perturbed toy = 0:3m.

transition region is also shorter so that the stopband regions now
become

The -norm approach is applied and the amplitude response is
shown in Fig. 6. The absolute maximum and minimum of the
weights is 1 and 0.006 51, respectively. The minimax design
is compared with the least-squares design and the comparison
is summarized in Table IV. The off-design performance of the
design is studied by varying the source location back and fore

. The amplitude responses are shown in Fig. 7 and 8. In this
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Fig. 8. Off-design performance for weights designed withy = 0:2 m and
perturbed toy = 0:1 m.

example, the design performs rather well under small perturba-
tions to the source location. Moreover, since the beamformer is
design over a region of passband, super-directivity would not be
incurred despite of the closeness of the element spacing and the
source position.

V. CONCLUSIONS

In this paper, a general broadband beamformer minimax de-
sign problem has been considered. The-norm measure and
the real rotation theorem have been applied to reduce the min-
imax problem to a semi-infinite linear programming problem. A
numerical algorithm using a set of adaptive grids has been pro-
posed. The convergence of this kind of discretization methods
for a general semi-infinite problem with multiple constraints and
multidimensional arguments has been proven. The scheme is
then extended to include only the near-active constraints in the
linear programming problem as the mesh is refined. Since the
linear programming is used instead of the quadratic program-
ming or penalty functions, the nonlinearity of the problem has
been reduced and the method can make use of newly developed
linear programming solvers. It would certainly be of interest to
look at random perturbations to the filter responses as an exten-
sion to the present study.

APPENDIX

VI. DISCRETIZATION METHODS FORSIP

In this section, the method reported in [15] will be extended
for semi-infinite problems with multiple constraints and multi-
dimensional arguments to prove that the adaptive grid scheme
is a convergent method for the semi-infinite problems.

Consider the semi-infinite program (SIP)

where is a closed subset of , is a locally
Lipschitz function, is a
locally Lipschitz function and is a compact set in .

Assume that is a norm in . Let the feasible set be

and the interior of be defined by

and an optimal solution of (SIP) that is assumed to exist.
Let and the following condition hold:

(21)

For such and , , assume that a grid of ,
e.g., has been obtained such that the following
condition is satisfied:

(22)

Then, consider the following discretized problem ):

Let

Lemma 1: Let be given and satisfy (21). If there
is a grid such that (22) holds, then any feasible solution for
( ) is feasible for (SIP).

Proof: Let be feasible for . Then

For , from (22), there exists a such that

By (21), we have

Thus

Therefore, , and hence the conclusion holds.
Remark 1: Let, for example, be contained in a box

and the norm is chosen as the
norm, i.e., .

Assume that we partition the interval into seg-
ments. Let be one grid point in

. Its th component can be given as
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where . If

then the relation (22) is satisfied.
In order that the relation (22) holds, the grid needs to be

chosen to be fine enough, i.e., the number of points inmay
be very large. Hence the number of constraints in is
very large. So it would be inefficient to compute the subproblem

. An adaptive scheme is introduced in [15] and the
references cited therein. For a given , define

We also assume that , is Lipschitz in
such that

(23)
Each is called an -active point (with respect

to ). In general, the points in would be significantly
smaller than that in .Consider the following problem:

where and

Following the proof of Lemma 4.1, it is not difficult to show
the next Lemma.

Lemma 2: Assume that (21), (22) and (23) hold. Then

(24)

The following is a conceptual convergence which generalizes
the result in [15] to semi-infinite problems with multiple con-
straints and multidimensional arguments.

Theorem 1: Suppose that is continuous, and (21), (22), (23)
and the following nonempty interior condition are satisfied:

(25)

Then, for each , there exists such that the sequence
formed by the solutions of satisfies

Proof: It follows from (25) that there exists an
such that

By the continuity of , for any , there exists an
such that

(26)

Choose . Then it is clear that .
Thus there exists a such that for all

. If we choose and according to (22), then
it follows from Lemma 1 that . Choose such
that . So, we have

Thus

(27)

By Lemma 2

(28)

By [(26)–(28)], we have

Let , the proof is complete.
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