
I
n this article, an overview of advanced convex optimization approaches to 
 multisensor beamforming is presented, and connections are drawn 
between different types of optimization-based beamformers that apply 
to a broad class of receive, transmit, and network beamformer 
design problems. It is demonstrated that convex optimization 

provides an indispensable set of tools for beamforming, enabling 
rigorous formulation and effective solution of both long-stand-
ing and emerging design problems.

INTRODUCTION
Beamforming is a versatile and powerful approach to 
receive, transmit, or relay signals of interest in a spatially 
selective way in the presence of interference and noise. 
Receive beamforming is a classic yet continuously devel-
oping field that has a rich history of theoretical research 
and practical applications to radar, sonar, communica-
tions, microphone array speech/audio processing, bio-
medicine, radio astronomy, seismology, and other areas 
[1]. In the last decade, there has been renewed interest in 
beamforming driven by applications in wireless commu-
nications, where multiantenna techniques have emerged 
as one of the key technologies to accommodate the explo-
sive growth of the number of users and rapidly increasing 
demands for new high data-rate services. 

Recently, there has been significant progress in the field 
of receive beamforming facilitated by convex optimization. 
Motivated by the fact that the traditional adaptive beamforming 
techniques such as minimum variance beamforming lack robust-
ness against even small mismatches in the desired signal steering 
vector [2], [3], several authors proposed robust techniques that are 
based on the concept of worst-case performance optimization; see 
[4]–[11] and references therein. One distinguishing feature of this line of 
work is that, using convex optimization theory, seemingly complex robust 
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design problems formulated in 
[4]–[11] have been recast into 
tractable convex forms and 
 efficiently solved using interior 
point algorithms or other 
appropriate numerical tech-
niques. Beyond the deter-
ministic worst-case robust 
beamformer designs of [4]–[11], 
there has been a recent trend to alternatively use less conser-
vative probabilistically  constrained designs [12] that employ 
convex optimization to solve the resulting chance program-
ming problems. Moreover, both the worst-case and probabilisti-
cally constrained beamforming approaches have been extended 
to the case of designing multiuser receivers for space-time 
coded multiple-input multiple-output (MIMO)  communication 
systems [13], [14]. 

Transmit beamforming is a relatively young and dynamically 
developing research field. Classical beamforming is matched to 
a single steering vector of interest (or, in the case of robust 
beamforming, a “ball” of steering vectors around the “nominal” 
one) and its goal is to ensure that the inner product of the 
beamforming weight vector and the steering vector of interest is 
large, while the inner product of the beamforming weight vec-
tor and all other steering vectors is small (to mitigate interfer-
ence). This paradigm applies to both receive beamforming and 
unicast transmit beamforming towards a single receiver. A relat-
ed but different case is that of multiuser transmit beamforming, 
which arises in the cellular multiuser downlink when the trans-
mitter is equipped with multiple transmit antennas. In this case, 
multiple transmit beamforming weight vectors are used to carry 
different cochannel unicast transmissions, each meant to reach 
the receiver of one user. These vectors are then jointly designed 
to balance the interference between different transmissions. The 
weight vector designed for a given user should have a large 
inner product with the steering vector of this user, and small 
inner products with the steering vectors of all other users. This 
concept was pioneered in [15] and [16] where several early 
downlink beamforming techniques have been developed in the 
context of voice services in a cellular mobile radio network 
where, from the operator’s perspective, the system should pro-
vide an acceptable quality-of-service (QoS) to each user and 
serve as many users as possible, while radiating as low power as 
possible. An important step forward followed in [17], where con-
vex optimization methods were used to solve the problems of 
[15] and [16] and their robust worst-case optimization based 
extensions. As the robust designs of [17] are based on several 
approximations and can be shown to be overly conservative, 
recent follow-up work has pursued less conservative robust 
designs based on convex optimization [18], [19]. To provide 
more flexibility than that of worst-case designs, outage probabil-
ity-constrained downlink beamformers based on chance pro-
gramming have also been recently developed [20]–[22]. 

What if we wish to transmit common information to many 
users? The traditional way of doing this is (semi) blind, in the 

sense that it assumes little if any-
thing regarding the steering 
vectors or even the spatial distri-
bution of users listening to the 
transmission at any given time. 
In traditional radio and TV 
broadcasting, for example, the 
signal is emitted either isotropi-
cally or with a fixed beampattern 

to cover a service area. There are many reasons for this, including 
the fact that analog receivers were passive devices incapable of 
providing feedback to the transmitting station. In modern digital 
wireless networks, particularly those based on subscription or 
offering location-aware services, we often have some level of chan-
nel state information (CSI) at the transmitter. This can be exploit-
ed to boost network reach, coverage, quality of service, and 
spectral efficiency and to minimize interference to other systems 
(thus facilitating cohabitation, as in cognitive radio). This is the 
premise of a recent line of work (starting with [23] and [24]) on 
multicast beamforming using convex optimization tools. Multicast 
beamforming is now part of the current universal mobile telecom-
munications system long-term evolution/enhanced multimedia 
broadcast/multicast service (UMTS-LTE/EMBMS) draft for next-
generation cellular wireless services [25], [66]. Similar ideas are 
currently making their way through fixed wireless and local distri-
bution standardization committees and are likely to influence 
media distribution to wireless hand-held devices. 

Information-theoretic analysis of the relay channel [39] and 
multiple-relay networks [40] has paved the way for more practi-
cal network cooperation schemes. Network beamforming is a 
rapidly emerging area that belongs to the general field of coop-
erative communications [27]. The key idea of network beam-
forming is to use a “virtual array” of relay nodes that retransmit 
properly weighted signals from the source to the destination 
[28], thereby exploiting cooperation diversity. In the simplest 
setting, a distributed network beamformer uses an adaptive 
complex-valued weighting of the received signal, similar to the 
so-called amplify-and-forward protocol. More advanced types of 
relay processing (e.g., based on the decode-and-forward strategy) 
are also possible. An interesting feature of network beamform-
ing is that it can be interpreted as a certain combination of 
receive and transmit strategies. However, the main difference 
between the concept of network beamforming and the more tra-
ditional concepts of receive and transmit beamforming is that 
the relays can hardly exchange information about their received 
signals, so that beamforming is performed in a distributed fash-
ion. There has been a rapidly growing activity in this area over 
the last two years. Following [28], a number of new concepts 
and methods have been proposed, see [29]–[38] and references 
therein. These include multiuser and bidirectional extensions of 
the original approach of [28] and new beamforming strategies 
such as a filter-and-forward approach [33], [34]. Convex optimi-
zation techniques have been extensively used in these works to 
obtain computationally attractive (exact or approximate) solu-
tions to originally difficult design problems. 

BEAMFORMING IS A VERSATILE AND 
POWERFUL APPROACH TO RECEIVE, 
TRANSMIT, OR RELAY SIGNALS-OF-
INTEREST IN A SPATIALLY SELECTIVE 

WAY IN THE PRESENCE 
OF INTERFERENCE AND NOISE.
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The main goal of this article 
is to present a systematic over-
view of the current state of the 
art of advanced optimization-
based beamforming and to 
explore interrelationships 
between different types of 
beamformers that apply to a broad class of practically important 
receive, transmit, and network beamforming problems. While 
the focus of this article is on applications in wireless communi-
cations, several designs considered here are also applicable in 
quite different application contexts, such as MIMO radar. 

NOTATION 
Uppercase and lowercase bold letters denote matrices and vec-
tors, respectively. E5 # 6,  Tr 1 # 2 ,  1 # 2T,  and 1 # 2H  stand for the 
statistical expectation, trace of a matrix, transpose, and 
Hermitian transpose, respectively. I is the identity matrix. || # || 
denotes the Euclidean norm of a vector or the Frobenius norm 
of a matrix. ( denotes the Schur-Hadamard (element-wise) 
matrix or vector product, diag 1a 2  stands for a diagonal matrix 
whose diagonal entries are the elements of vector a, and lmax 1 # 2  
stands for the principal eigenvalue of a matrix. 

RECEIVE BEAMFORMING
The output signal of a narrowband receive beamformer can be 
written as 

 x 1t 2 5wHy 1t 2 ,
where w is the N 3 1 vector of beamformer complex weight 
coefficients, y 1t 2  is the N 3 1 complex snapshot vector of array 
observations, and N  is the number of antenna array sensors. 

The array observation vector can be modeled as 

 y 1t 2 5 s 1t 2 1 n 1t 2 ,
where s 1t 2  and n 1t 2  are the 
desired signal and the interfer-
ence-plus-noise components of 
y 1t 2 , respectively. In the point 
signal source case, s 1t 2 5 s 1t 2as 

where s 1t 2  and as are the desired signal waveform and its steering 
vector (spatial signature), respectively. 

If as and the true array covariance matrix R ! E5y 1t 2yH 1t 2 6  
are perfectly known, then the optimal weight vector can 
be straightforwardly obtained by means of maximizing the 
signal-to-interference-plus-noise ratio (SINR) [1]; see Figure 1. 
In the finite sample case, the true array covariance 
matrix is  unavailable and, therefore, its sample estimate 
R̂5 11/J 2a J

t51
y 1t 2yH 1t 2 5 11/J 2 YYH  is used instead of R 

where Y ! [y 11 2 , c, y 1J 2 4  is the beamformer training data 
matrix and J  is the number of snapshots available. Then, the 
optimal weight vector can be approximately computed by solv-
ing the following convex problem [1]–[3] 

 min
w

 wHR̂w     s.t.     wHas5 1. (1)

The solution to (1) can be expressed in the following familiar 
closed form [1]: 

 w5 bR̂21as, (2)

where the scalar b5 1as
HR̂21as 221 does not affect the beam-

former output SINR. The beamformer in (2) is usually referred 
to as the sample matrix inversion (SMI)-based minimum vari-
ance (MV) technique. 

The fact that the sample array covariance matrix R̂ is used 
instead of R in (1) is known to dramatically affect the perfor-
mance of (2) as compared to the optimal beamformer in the 
case when the desired signal component is present in the train-
ing samples [2], [3]. Note that the latter case is typical for multi-
antenna wireless communications and passive source 
localization. Such a performance degradation caused by signal 
cancellation is commonly termed as signal self-nulling. It 
becomes especially strong in practical scenarios, when the 
knowledge of as is imperfect as well [3]. 

One of the most popular ad hoc approaches to improve 
the robustness of the SMI-based MV technique and to avoid 
signal self-nulling is the diagonal loading (DL) method [2], 
[41] whose key idea is to regularize the solution of (1) by 
adding the quadratic penalty term gwHw  to the objective 
function, where g  is a preselected DL factor. The resulting 
loaded SMI (LSMI) beamformer amounts to replacing the 
sample covariance matrix R̂ in (2) by its diagonally loaded 
counterpart, gI1 R̂. 

The main shortcoming of the traditional DL approach is that 
there is no easy and reliable way of choosing the DL factor g. 
Note that any fixed choice of g can be only suboptimal, because 
the optimal choice of g is known to be scenario-dependent [2], 

[FIG1] Illustration of receive adaptive beamforming: Polar plot 
of adapted beampattern. The beamformer output SINR is 
maximized by means of enhancing the desired signal by the 
beampattern mainlobe and rejecting the interferers by 
beampattern nulls.
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NETWORK BEAMFORMING IS A RAPIDLY 
EMERGING AREA THAT BELONGS TO 

THE GENERAL FIELD OF COOPERATIVE 
COMMUNICATIONS.
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[4]. To avoid the aforementioned drawbacks of the standard DL 
technique, more theoretically rigorous robust MV beamforming 
algorithms have been recently proposed in [4]–[8] based on 
worst-case designs. 

The key idea of the beamformer developed in [4] and, inde-
pendently, in [7], is to explicitly model the steering vector 
uncertainty as d ! a|s2 as where a|s and as are the actual and 
presumed signal steering vectors, respectively; and to assume 
that the Euclidean norm of d is upper-bounded by a known 
constant e. This corresponds to the case of spherical uncertain-
ty; a more general ellipsoidal uncertainty model has been con-
sidered in [7] and [8]. 

The essence of the approach of [4] is to add robustness to 
the standard MV beamforming problem (1) by using a distor-
tionless response constraint that must be satisfied for all mis-
matched signal steering vectors in the given spherical 
uncertainty set. With such a constraint, robust MV beamform-
er design has been formulated in [4] as the following optimiza-
tion problem: 

 min
w

 wHR̂w  s.t.  |wH 1as1 d 2 | $ 1  4 ||d|| # e. (3)

Note that the constraint in (3) warrants that the distortion-
less response will be maintained in the worst case, i.e., for the 
particular choice of d that corresponds to the smallest value of 
|wH 1as1 d 2 | provided that ||d|| # e. Towards converting (3) to 
convex form, it has been shown in [4] that, for reasonably small 
size of the uncertainty region, e # |wHas|/||w||, 

 min
||d||#e

|wH 1as1 d 2 |5 |wHas|2 e||w||.  (4)

Using (4) and taking into account that the objective function 
in (3) remains unchanged when w undergoes an arbitrary phase 
rotation, it has been shown in [4] that (3) can be converted to 
the following convex form: 

 min
w

wHR̂w  s.t.  wHas $ e||w||1 1, (5)

where the constraint in (5) also implicitly constrains wHas to be 
real valued and positive. The problem in (5) belongs to the class 
of second-order cone programming (SOCP) problems that can 
be easily solved (with complexity comparable to that of the SMI-
based MV beamformer) using standard and highly efficient con-
vex optimization software [42], [43] or, alternatively, using 
Newton-type algorithms [7], [8], [44]. It can be proved [4] that 
the constraint in (5) is active, i.e., it is satisfied with equality. 
Interestingly, the robust design in (5) admits an adaptive DL 
interpretation; see “Adaptive DL Interpretation of the Robust 
Beamformer (5)” to appreciate this link. 

EXTENSIONS OF WORST-CASE 
BEAMFORMER DESIGNS
One useful extension of the robust beamformer (5) has 
been developed in [6]. In this work, a more general case is 

considered where, apart from the steering vector mis-
match, there is a nonstationarity of the beamformer train-
ing data. This nonstationarity is characterized in [6] by the 
matrix D  that models the mismatch in the data matrix Y, 
and it is proposed to combine the robustness against inter-
ference nonstationarity and steering vector errors using 
the ideas similar to that of [4] and [7]. Correspondingly, 
the objective function in (3) can be modified as 

 max7D7#h  7 1Y1D 2Hw 7 2,

where h  is some known upper bound on the norm of the 
matrix D. 

It has been shown in [6] that the resulting modified problem 
can be converted to the following convex form: 

 min
w

 7YHw 7 1h 7w 7 s.t. wHas $ e 7w 7 1 1. (8)

Note that, similar to (5), the problem in (8) belongs to the class 
of SOCP problems and, hence, it can be easily solved. 

Another useful extension of the approach of [4] and [7] has been 
developed in [12]. The authors of [12] argue that, although the 
worst-case beamformer designs are known to result in quite robust 
techniques, they might be overly conservative because the actual 
worst operational conditions may occur in practice with a very low 
(or even zero) probability. This motivated the authors of [12] to 
develop an alternative approach to robust beamforming that pro-
vides the robust ness only against “likely” spatial signature errors. 

ADAPTIVE DL INTERPRETATION OF 
THE ROBUST BEAMFORMER (5) 
Taking into account that the constraint in (5) is active and 
using the Lagrange multiplier method, the solution of (5) 
can be found by minimizing the Lagrangian function [8] 

 L 1w, l 2 5wHR̂w2l 1wHas2 e||w||2 1 2 ,
where l is the Lagrange multiplier. Computing the gradi-
ent of L 1w, l 2  and equating it to zero yields 

  R̂w1le
w

||w||
5las. (6)

Since rescaling the weight vector by an arbitrary constant 
does not affect the output SINR, (6) can be transformed to 

  aR̂1
e

7w 7 Ibw5 as, (7)

where, for the sake of simplicity, the same notation w 
used for the rescaled weight vector as for the original one 
in (6). 

From (7), it can be seen that the robust beamformer (5) 
belongs to the class of adaptive DL techniques because its DL fac-
tor e/ 7w 7  depends on 7w 7  and, therefore, is scenario-depen-
dent. In contrast to the fixed DL approach, such adaptive 
diagonal loading optimally matches the DL factor to the radius e 
of the uncertainty sphere.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on May 18,2010 at 12:24:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [66]   MAY 2010

Using this philosophy, the probabilistically constrained counterpart 
of the problem (3) can be written as [12] 

 min
w

wHR̂w    s.t.    Pr5|wH 1as1 d 2 | $ 16 . p, (9)

where d is assumed to be a random mismatch vector drawn 
from some known distribution, Pr5 # 6  is the probability opera-
tor whose explicit form can be obtained from the statistical 
assumptions on the steering vector errors, and p is some pre-
selected probability threshold. In contrast to the deterministic 
constraint used in (3) (that requires the distortionless response 
to be maintained for all norm-bounded mismatch vectors in 
the uncertainty sphere), the soft (probabilistic) constraint in 
(9) maintains the distortionless response only for the mis-
match vectors d whose probability is sufficiently high, while 
ignoring the values of d that are unlikely to occur. Therefore, 
the constraint in (9) can be interpreted as an outage probabili-
ty constraint maintaining this probability ( pout5 12 p) low. 

It has been shown in [12] that for both circularly symmetric 
Gaussian and for the worst-case distribution of the steering vec-
tor mismatch, the chance programming problem in (9) can be 
tightly approximated by means of deterministic SOCP problems. 
The worst-case distribution (for given covariance) of the mis-
match vector turns out to be discrete. This result entails an 
intermediate restriction (strengthening) of the outage con-
straint; see [12] for details. Interestingly, the resulting problems 
are mathematically quite similar to (5). However, an important 
advantage of the probability-constrained beamformers of [12] 
with respect to their worst-case counterparts of [4] and [7] is 
that the former beamformers enable to explicitly quantify the 
parameters of the uncertainty region in terms of the beamform-
er outage probability. This streamlines the choice of e. 

Further convex optimization-based extensions of the robust 
beamformers discussed in this section have been recently pro-
posed. In [9], a semidefinite programming (SDP) approach has 
been developed to extend the beamformers of [4] and [7] to a more 
general (than the spherical and ellipsoidal) class of uncertainty 
models. Several broadband generalizations of [4] have been pro-
posed in [10] and [11]. Extensions of the approaches of [4] and [12] 
to the problem of designing robust multiuser MIMO receivers have 
been developed in [13] and [14], respectively. 

Before moving on, it is instructive to summarize three dif-
ferent approaches towards beamforming under uncertainty, 
using the relatively simple case of receive beamforming as an 
example: see “Beamforming Under Uncertainty.” 

TRANSMIT BEAMFORMING

DOWNLINK BEAMFORMING
For notational convenience, we consider a single base station 
equipped with N  antennas, transmitting individual narrowband 
data streams to a set of M  users, each having a single antenna. 
Note that all results in this section generalize straightforwardly 
to scenarios with multiple cells, see [17]. The signal transmitted 
at the base station is given by 

 y 1t 2 5 a
M

m51
sm 1t 2wm, (10)

where sm 1t 2  and wm are the transmitted signal intended for 
user m and the beamforming vector for this user, respectively. 
The signal received at user m is given by 

 xm 1t 2 5 hm
Hy 1t 2 1 nm 1t 2 , (11)

where hm is the downlink channel vector of user m and nm 1t 2  
is additive noise with power sm

2 . 
A basic (and meaningful from the network operator’s per-

spective) formulation of the downlink beamforming problem is 
to impose a constraint on the received SINR of each user and 
minimize the total transmitted power subject to these con-
straints; this is often referred to as SINR balancing. The formu-
lations considered below can be extended to systems using dirty 
paper coding, see e.g., [54] and references therein, which also 
provide connections to information-theoretic results on the rate 
region. When the channel vectors hm are known, the resulting 
optimization problem can be written as 

 min 5wm6m51
M a

M

m51
7wm 7 2  

  s.t. 
|wk

Hhk|
2

a
M

l2k
|wl

Hhk|
21sk

2

$ gk  4 k5 1, c, M, (12)

where gk denotes the desired minimum SINR for user k. As 
neither the objective function nor the constraints change if the 
beamforming vectors undergo a phase rotation [17], this prob-
lem can be formulated as a SOCP program 

 min5wm6m51
M a

M

m51
7wm 7 2  

  s.t.  1wk
Hhk 2 2 $ gka

M

l2k
|wl

Hhk|
21gksk

2
  4 k5 1, c, M, (13)

where wk
Hhk is real valued and positive. 

In practical cases, instantaneous CSI is often unavailable. If 
the channels instead are assumed to be randomly fading with 
known second-order statistics Rm 5 E[hmhm

H 4, the SINR balanc-
ing problem can be written as 

 min 5wm6m51
M a

M

m51
7wm 7 2 

  s.t.  
wk

HRkwk

a
M

l2k
wl

HRkwl1sk
2

$ gk  4 k5 1, c, M. (14)

Note that the previous case of known instantaneous channels 
corresponds to setting Rm5 hmhm

H. Note also that here the qual-
ity of service (QoS) constraints are expressed in terms of the 
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ratio between the average signal power and the average interfer-
ence plus noise power. For receive beamforming, where the sig-
nal of interest and the interference pass through independently 
fading channels, such a constraint provides a (tight) lower 
bound on the average SINR. This follows from Jensen’s inequal-
ity, since 1/x is a convex function. See also [45] and [46] for 
outage bounds and other results related to this measure of 
SINR. For downlink beamforming, the physical channel for the 
intracell interference is the same as for the desired signal, but 
the above results still hold approximately, since the effective 
channels (including beamforming) will be approximately uncor-
related in the numerator and denominator for any good choice 
of beamformers—at least if the number of antennas is suffi-
ciently large. 

The problem in (14) is a nonconvex quadratic program; in 
general, such problems can be NP-hard. However, the specific 
problem formulation (14) exhibits much extra structure that 
allows it to be solved efficiently. One possibility is to use the idea 
of semidefinite relaxation [47]. Defining the matrices 
Wm ! wmwm

H  and noting that wl
HRkwl5 Tr 1RkWl 2 , the problem 

(14) can be transformed to 

 min 5Wm6m51
M a

M

m51
Tr 1Wm 2

  s.t.  Tr 1RkWk 2 2gka
M

l2k
Tr 1RkWl 2 $ gksk

2,  

        Wk f 0, rank 1Wk 2 5 1, k5 1, c, M, (15)

where A f 0 means that A is positive semidefinite. The key in 
this transformation is that it explicitly reveals and isolates the 
nonconvex part of the problem. Except for the rank-one con-
straints rank 1Wk 2 5 1 (k5 1, c, M), the remaining problem 
is convex. Dropping these constraints (thus generally enlarging 
the feasible set), one obtains a relaxed SDP problem, which is 
convex and far easier to solve. 

There are at least three possible interpretations of this semi-
definite relaxation 

With the rank constraints  ■ rank 1Wk 2 5 1, (15) is complete-
ly equivalent to (14). This problem can become a relaxed ver-
sion of (14) only when the matrices Wk are allowed to have 
any rank. 

It can be shown that the semidefinite relaxation of (15) is  ■

the Lagrange dual of the Lagrange dual of (14). 
If we allow the beamforming vectors to be randomly  ■

time-varying with covariance matrix Wk5 E[wkwk
H 4,  the 

optimal choice of Wk is given by the semidefinite relaxation 
of (15). One possible practical implementation of such a 
scheme is to use a space-time code with the corresponding 
transmit covariance matrix.
For general nonconvex quadratic programs, semidefinite 

relaxation can only be used to obtain a lower bound on the 
 optimal objective function and possibly determine an approxi-
mate solution to the original problem, such as in the multicast 
beamforming problem described below. However, in the specific 

case of (15) with dropped rank constraints, it turns out that the 
ostensible relaxation is not a relaxation, i.e., the “relaxed” prob-
lem is exactly equivalent to the original problem. In other 
words, it can be shown that the solution to (15) with dropped 
rank constraints always yields rank-one matrices Wk, which 
directly provides the solution to (14) using Wk5wkwk

H. In opti-
mization terminology, this result shows that strong duality 
holds for problem (14), i.e., that the dual of (14) has the same 
optimal objective as the primal problem. This result is not so 
surprising, considering that there are also several other algo-
rithms available to solve problem (14); see [15] and [48]. These 
algorithms are not based on the convex reformulation of (15) 
but rather on rewriting the problem into an equivalent virtual 
uplink problem, that can be solved using fixed point iterations 
[49] (see “Connection Between Lagrange Duality and Virtual 
Uplink”). From practical experience, the algorithm in [48] is 
preferable compared to the semidefinite reformulation in terms 
of computational speed, at least so long as (15) with dropped 
rank constraints is solved using general purpose SDP software 
like [42]. 

FURTHER MODIFICATIONS AND EXTENSIONS
Several modifications and extensions have been proposed to the 
SINR balancing problem (14). For multicell scenarios, the prob-
lem can be extended to not only find the jointly optimal set of 
transmit beamformers but also to determine to which base sta-
tion each user should be assigned to. See Figure 2 for an illus-
tration. Surprisingly enough, this mixed combinatorial and 
nonconvex quadratic problem can be solved easily; see [50] and 
[51]. The trick is to conceptually view all the base stations as a 
single virtual base station that jointly transmits to all users, and 
solve the corresponding beamforming problem. By making the 
channel covariance matrices for the virtual base station block 

BEAMFORMING UNDER UNCERTAINTY 
Worst-case design: • 

min
w wHR̂w  s.t.  |wH 1as1 d 2 | $ 1  4 7d 7 # e.

Probabilistic design: • 

min
w

wHR̂w     s.t.    Pr5|wH 1as1 d 2 | $ 16 . p.

Interpretation: In a long sequence of “trials” (i.i.d. draws of d), 
acceptable performance is guaranteed in p 3 100% of cases; 
signal outage happens with probability (at the rate of) less than 
12 p. 

Expectation-based design: • 

min
w

wHR̂w    s.t.     E5|wH 1as1 d 2 |6 $ t.

The latter only requires knowledge of the second-order 
statistics (instead of the distribution) of h:5 as1 d, which 
is convenient. The flip side is that this formulation offers 
no outage performance guarantee in general. For this rea-
son, expectation-based design is the “last resort” way of 
dealing with uncertainty. 
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diagonal, the solution will not benefit from using coherent 
transmission from several base stations (in contrast to so-called 
coherent coordinated multipoint transmission schemes that 
recently have been proposed for use in IMT-advanced), and it 

can be shown that the optimal beamforming vectors will only be 
nonzero in a subvector corresponding to one of the base sta-
tions. One proof is based on the simple observation that the cor-
responding optimal matrices Wk  in the semidefinite 
reformulation will be both block diagonal and rank one, which 
is only possible if only one of the blocks is nonzero. 

An alternative is to exploit the virtual uplink formulation 
and use general results from the theory of standard interference 
functions [49]. Algorithmically, this conceptual idea can be 
implemented with a computational complexity that is only K  
times larger than in the case with a given base station assign-
ment, where K  is the number of base stations. Unfortunately, to 
our knowledge, there is no convex formulation of the resulting 
optimization problem, which however can still be solved very 
efficiently using the virtual uplink formulation and a fixed-point 
iteration, see [48]. An alternative solution using quasi convexity 
is described in [53]. 

An advantage of the semidefinite relaxation technique is that 
it is very easy to add more constraints to the problem formula-
tion. For example, the transmit power of the individual antenna 
elements can be constrained; see [17]. As long as the correspond-
ing constraints on the matrices Wk are linear (or convex), the 
problem can be solved efficiently. However, there are in general 

Introducing the dual variables qk for the constraints in (14), 
the Lagrangian can be written as 

 L 1wk, qk 2 5 a
M

m51
7wm 72

 2 a
M

k51
qkawk

H
Rk

gk
wk2 a

M

l2k
wl

HRkwl2sk
2b

and minimizing with respect to wk results in the dual problem 

 max5qk6 a
M

k51
qksk

2

 s.t. I 2
qkRk

gk
1 a

M

n2k
qnRn f 0,  4 k5 1,c , M .  (16)

From the definition of positive definiteness, the constraints hold 
if and only if 

 uHaaM

n2k
qnRn1 I2

qkRk

gk
bu $ 0 

for all vectors u, i.e., (16) can be written as 

 max5qk6 a
M

k51
qksk

2
 
       s.t.   max

uk

uk
HqkRkuk

uk
Haa

M

n2k
qnRn1 Ibuk

#gk,  4 k51, c,  M.

 (17)

For a given fixed set of uk, it is easy to see that the optimal qk is 
the unique set of values where all constraints are fulfilled with 
equality. In particular, this equivalence must hold for the uk that 
maximize each constraint, so the solution to (17) is given by the 
fixed point of 

 
max

uk
     

uk
HqkRkuk

uk
Ha a

M

n Z  k
qnRn1 Ibuk

5gk,   4 k5 1, c, M.
 

(18)

The so-called virtual uplink problem associated with (14) is 
given by 

 min5qk, uk6 a
M

k51
qksk

2

      

 s.t.  
uk

HqkRkuk

uk
Haa

M

n Z  k
qnRn1Ibuk

$gk,   4 k51, c,  M (19)

where qk and uk can be interpreted as transmit powers and 
receive beamformers, respectively, in this virtual uplink beam-
forming problem. A similar argument shows that the opti-
mum is given by the fixed point of (18). From the so-called 
complementarity conditions, it can be seen that the optimal 
uk will only differ from the optimal wk in (14) by a scaling. 
From standard convexity theory [52], the dual of (16), i.e., (15) 
with dropped rank constraints has the same optimal objective 
as (16), which means that the proofs in [17] and [48] that (19) 
and (14) are equivalent also show the equivalence to (15) with 
dropped rank constraints. See also [54] for further discussions 
on these connections. Note that replacing the objective func-
tion in (19) by a

M

k51
qk will not affect the optimal uk. It is 

common to first normalize all channels corresponding to 
sk

25 1 to get a more esthetic formulation of the virtual uplink 
problem (19). 

CONNECTION BETWEEN LAGRANGE DUALITY AND VIRTUAL UPLINK

[FIG2] Illustration of downlink beamforming, where one base 
station transmits to two mobiles and another base station 
transmits to a third mobile, using the strategy (14).
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no guarantees that strong duali-
ty holds (i.e., that the optimal 
matrices Wk are rank one) when 
additional convex constraints 
are included. Strong duality has 
been proven only for certain 
 special cases. For example, indi-
vidual power constraints per 
antenna are considered in [54], 
where an efficient algorithm based on a generalization of the vir-
tual uplink duality is developed. In [55] it is shown that an indefi-
nite constraint of the form wk

HCkwk5 0 or wk
HCkwk $ 0 can be 

added for each user, where the matrices Ck  are indefinite 
Hermitian matrices, and strong duality still holds for the result-
ing optimization problem. Such constraints may, for example, be 
used to enforce solutions with increased path diversity in code-
division multiple access (CDMA) scenarios, or to constrain the 
relative power transmitted to surrounding cells. This result has 
recently been generalized in [56], where both aforementioned 
types of indefinite constraints and so-called soft-shaping interfer-
ence constraints of the form a

M

m51
wm

HSkmwm # tk with positive 
semidefinite matrices Skm are considered. It is shown that the 
semidefinite relaxation of the corresponding optimization prob-
lems has a rank-one solution in a certain number of cases, for 
example when there are up to two indefinite constraints for each 
user, or when there are up to two soft-shaping constraints for the 
system. The proofs are constructive, showing how a given high-
rank solution can be converted into a solution with lower rank, 
under certain conditions. 

Just as for the receive beamforming problem, many papers 
have been devoted to robust extensions that can cope with uncer-
tainties in the channel knowledge, due to estimation errors, feed-
back quantization or delays between channel estimation and the 
actual transmission, for example. Most references consider worst-
case strategies given bounds on the errors. Errors in the channel 
covariance matrices are considered in [17] and [19] where the 
true covariance matrix is modeled as Rm1Dm with a known 
bound 7Dm 7 # em on the error term. Replacing the numerator 
and denominator in (14) by a lower and upper bound, respective-
ly, as proposed in [17], results in a kind of diagonal loading of the 
matrix Rk in the numerator and denominator of the constraints 
in (14). Unfortunately, this approach is very conservative and the 
resulting optimization problem often does not even have a feasi-
ble solution. A less conservative approach is proposed in [19], 
wherein the worst-case matrix Dm for each constraint is found by 
solving the dual problem, and the resulting beamforming prob-
lem is solved using the semidefinite relaxation technique. 
Numerical experiments in [19] indicate that the obtained solution 
is always rank one, but no proof of this empirical observation is 
available. An alternative outage probability based approach is pro-
posed in [20], where the matrices Dm are assumed to be Gaussian 
distributed and the SINR constraints are required to hold with a 
certain probability. Again, semidefinite relaxation is used to solve 
the problem and the numerical results in [20] indicate that the 
solution always is rank one. 

Robustness against uncer-
tainties in the channel vectors 
hm  has been considered in 
[18], [57], and [58] using a 
QoS constraint expressed in 
terms of the MSE instead of 
SINR. For exactly known chan-
nel vectors, such an MSE con-
straint is equivalent to an SINR 

constraint. For partial CSI, on the other hand, MSE con-
straints provide a conservative lower bound on the SINR, as 
shown in [18]. Stochastic error models have also been consid-
ered where the channel vector uncertainties are assumed to be 
Gaussian distributed. In [57], the average MSE is optimized 
subject to a constraint on the total transmitted power, whereas 
in [21], a prespecified outage level on the MSE is used. 

MULTICAST BEAMFORMING
Consider a base station or wireless access point that uses N  
antennas to transmit common information to a pool of M  users, 
each equipped with a single receive antenna. This problem state-
ment corresponds to the case of single-group multicast (or, 
equivalently, broadcast) beamforming. Let hm be the N 3 1 com-
plex downlink channel vector of user m and w be the N 3 1 
complex beamforming vector. The objective is to design w in 
such a way that the inner product of w  and each hm 
(m5 1, c, M ) is large, while the norm of w is small. This 
 philosophy is rather different from the robust receive or unicast 
transmit beamforming paradigms, because the different hms 
need not be clustered in a small neighborhood and the 

[FIG3] Illustration of multicast beamforming: Polar plot of a 
multicast transmit beampattern. Multicast subscriber locations 
are denoted by red crosses. Unlike receive beamforming or 
single-user transmit beamforming, the multicast beampattern 
comprises multiple lobes, each generally serving a group of 
users. Unlike multiuser transmit beamforming that uses multiple 
beampatterns, each carrying a different unicast stream, here a 
single beampattern that carries a common information stream is 
used. Notice that the lobe serving the lower-left group has 
higher peak magnitude, to compensate for a higher path loss 
experienced by distant users.
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 resulting adapted transmit beampattern has multiple main 
lobes; see Figure 3. 

Formally, such a design may be stated as the following opti-
mization problem [23] 

 min
w
7w 7 2  

 s.t.   |wHhm|2 $ sm
2 gm  4 m5 1, c, M , (20)

where sm
2  is the additive noise power at user m, and gm is the 

desired signal-to-noise power ratio (SNR) at user m. The right-
hand side of each inequality in (20) can be absorbed in hm, 
yielding |wHh|m|2 $ 1 with h|m ! hm/"sm

2 gm.  Dropping the 
tilde sign for brevity yields the following QoS formulation: 

 min
w
7w 7 2  

 s.t.   |wHhm|2 $ 1  4 m5 1, c, M. (21)

Note that this formulation has a certain similarity to (12) as in 
both cases the total transmit power is minimized subject to QoS 
constraints. However, contrary to (12), a single weight vector is 
used in (21). 

An alternative formulation to the one in (21) arises from an 
information theory standpoint. Intuitively, if one transmits a 
single information-bearing signal to be decoded by a group of 
users, the attainable information rate that can be decoded by all 
interested users is determined by the weakest link, i.e., the user 
with the smallest SNR. This suggests the following “democratic” 
max-min-fair formulation: 

 max
w

min
m[51, c, M6 |w

Hhm|2 s.t. 7w 7 2 # P,

where P  is an upper bound on the allowable transmission 
power. Without loss of generality, we may absorb P in the chan-
nel vectors and henceforth set P5 1. It is also easy to see that 
an optimal solution will use all available power, hence we may 
replace the power inequality with equality. 

It is important to note that beamforming does not generally 
attain the multicast channel capacity—this may require a high-
er-rank transmit covariance. The capacity-attaining strategy, 
however, is often impractical for a number of reasons, including 
the complexity of multistream Shannon (de)coding, and incom-
patibility with existing and emerging standards. Beamforming, 
on the other hand, is simple to implement and often attains a 
significant fraction of multicast capacity [24]. 

Interestingly, it can be shown that the QoS and the max-
min-fair formulations of multicast beamforming are equivalent 
up to scaling [24], and the scaling constant can be easily deter-
mined. Furthermore, multicast beamformer design naturally 
yields the optimal information-theoretic transmission strategy 
as a by-product, as we will see in the sequel. 

How difficult is the multicast beamforming problem? It is 
certainly clean cut, and easy in the case of a single user: by 
virtue of the Cauchy-Schwartz inequality, an optimal solu-
tion is simply a scaled version of the user’s steering vector. 
When we add more users, the situation becomes less clear. At 
this point, it is instructive to turn to the QoS formulation to 
gain insight. Notice that the quadratic constraints 
|wHhm|2 $ 1 are non convex. This implies that we are dealing 
with a nonconvex optimization problem, as the first clue. 
Going one step further, let us visualize the structure of the 
feasible set in the QoS formulation. Towards this end, we will 
consider the special case where all vectors are real valued and 
N5 2. Figure 4 illustrates the intricate structure of the 
“playing field” in this simplified scenario, and the picture is 
not pretty. Whereas we could perhaps characterize the poten-
tially interesting vertices when M  is small, this seems daunt-
ing for large M. It has been shown in [24] that the multicast 
beamforming problem is in fact NP-hard for M $ N; it con-
tains the partition problem as a special case. In plain words, 
this means that we have to give up hope of exactly solving an 
arbitrary problem instance at reasonable complexity. This 
motivates the pursuit of approximate solutions that can 

[FIG4] Peeking through shattered glass: Geometry of the 
feasible set in the real-valued two-dimensional case (N = 2 
transmit antennas; w and 5hi6i51

M  are real valued). (a) M = 4 
and (b) M = 40. The axes correspond to the elements of w. 
Every constraint 1wThi 22 $ 1 excludes a strip perpendicular 
to hi and passing through the origin. The nonconvex 
feasible set is shown in blue, while the infeasible set is 
shown in red. Notice that both are symmetric with respect 
to reflection (changing the sign of both elements of w). 
Since the norm of w is also invariant with respect to 
change of sign, there are two optimal solutions for w 
indicated by the yellow circles. As the number of users/
constraints (M) increases, the glass tends to shatter in a 
larger number of smaller pieces that are further away from 
the origin, as illustrated in (b).
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approach optimal performance at moderate complexity. 
Towards this end, a convex approximation strategy based on 
semidefinite relaxation is considered next. 

Using |wHhm|25 Tr 1wwHhmhm
H 2  and defining Rm ! hmhm

H, 
we may recast the max-min fair problem as follows: 

 max
w

min
m[51, c, M6 Tr 1wwHRm 2      s.t.   Tr 1wwH 2 5 1. (22)

By change of variable X ! wwH, we may further restate (22) as 

 max
X

min
m[51, c, M6 Tr 1XRm 2

 s.t. Tr 1X 2 5 1, X f 0, rank 1X 2 5 1. (23)

Following the idea of semidefinite relaxation, we can drop the 
nonconvex rank constraint rank 1X 2 5 1 to approximate (23) by 
an SDP problem. Notice that this relaxation “restores” up to full 
covariance rank, yielding the capacity-optimal transmit covari-
ance [24], [59] [cf. first-principles definition of multicast capaci-
ty, using Tr 1XRm 2 5 Tr 1Xhmhm

H 2 5 hm
HXhm, and monotonicity 

of log 1 # 2 ]. 
Once the relaxed problem is solved, the only direct claim 

one can make is that the resulting objective topt is no less than 
the optimal max-min value of the original NP-hard problem 
(since by dropping a constraint we expanded the feasible set). 
In many (but not all) cases, it turns out that the associated 
Xopt is rank one, which means that our relaxation was not a 
relaxation after all (see also the earlier discussion for downlink 
beamforming). If Xopt is rank one, then we can find wopt for the 
original problem simply by taking the principal component of 
Xopt. When Xopt has higher rank, there is more work to be done 
in “rounding” Xopt to a rank-one matrix—simply taking the 
principal component is not the best strategy. The prevailing 
rounding strategy is based on randomization: drawing i.i.d. 
random vectors from a zero-mean multivariate Gaussian of 
covariance Xopt and picking the best one. Details can be found 
in [24]. Note that randomization can be theoretically justified 
in this context—it is possible to bound the gap to the optimal 
solution of the original NP-hard problem. On this issue, see 
[47], [60], and [61]. 

At the end of the day, one is interested in how well the overall 
relaxation-randomization algorithm works in practice. The answer 
is that it works very well [24], although, for the case of a single-
group multicast, there are now better and simpler algorithms 
available as a result of considerable follow-up work [62], [63]. The 
power of convex optimization/approximation lies in its generality; 
for example, it can handle the case of multiple (interfering) multi-
cast groups [64]–[66] and additional convex constraints. 

FURTHER EXTENSIONS
Robust multicast beamforming has been dealt with in [64]. 
Bridging the ground between multiuser downlink and multi-
cast beamforming, the general case of multiple interfering mul-
ticast groups has been studied in [62], [65], and [66], and 
cross-layer multicast beamforming and admission control in 

[62]. Instead of (exact or approximate) instantaneous CSI, it is 
possible to use long-term average CSI in the form of estimated 
channel correlation matrices R̂m, albeit only average QoS guar-
antees can be offered in this case. Going one step further, [67] 
considered the case when the only information available for 
the channel vectors is their prior distribution. This is naturally 
modeled as a mixture distribution—e.g., a Gaussian mixture 
comprising components centered at different locations and 
with varying spread. Such a model can capture subscriber clus-
tering in malls, campuses, or other urban “hotspots.” In this 
case, similarly to the receive and downlink beamforming tech-
niques of [12] and [20], the pertinent design criterion is the 
beamformer outage probability. While outage probability mini-
mization also turns out to be NP-hard, an effective approxima-
tion is again possible [67]. It is worth noting that this last 
approach is particularly appealing in practice, because the mix-
ture model can be built using historical data and/or field mea-
surements around local points of interest. 

RELAY NETWORK BEAMFORMING
Let us now consider a wireless network that consists of a 
source, a destination, and N  relay nodes as shown in Figure 5. 
Assume that due to the poor quality of the channel between the 
source and destination, they cannot communicate directly with 
each other, but the destination cooperates with the N  single-
antenna relay nodes to receive the information transmitted by 
the source node and retransmitted by the relays. We use fi and 
gi  to denote the channel complex coefficients between the 
source and the ith relay and between the ith relay and destina-
tion, respectively. In earlier network beamformer designs [28], 
is has been assumed that the instantaneous CSI is perfectly 
known at the destination or relays. However, this assumption is 
often violated in practical scenarios with randomly fading chan-
nels. To avoid the need to know instantaneous CSI, fi and gi 
can be modeled as random variables [29], and it can be assumed 
that their joint second-order statistics are known at the desti-
nation node that uses this knowledge to compute the relay 
complex weight coefficients and feed them back to the relay 
nodes. Alternatively, such second-order CSI may be available at 
the relay nodes rather than destination. In the latter case, each 
relay has to compute its own weight coefficient. 

[FIG5] A relay network.
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During the first step of a two-step amplify-and-forward pro-
tocol, the source transmits the signal "P0 s to the relays, where 
s is the information symbol, P0 is the source transmit power, 
and without loss of generality it is assumed that E5|s|26 5 1. 
The received signal at the ith relay is given by 

 xi5"P0 fi s1ni, (24)

where ni is the noise at the ith relay whose variance is known to 
be sn

2. In the second step, the ith relay transmits yi, which is an 
amplified and phase-steered version of its received signal and 
can be written as 

 yi5wi xi . (25)

Here, wi is the complex relay beamforming weight that is used 
by the ith relay to adjust the phase and the amplitude of the 
corresponding signal. 

Interestingly, network beamforming can be viewed as a cer-
tain combination of receive and transmit beamforming as the 
same weights are used for the signal reception and transmis-
sion. Moreover, network beamforming is distributed as each 
relay node knows only its own received signal, and does not 
know the signals received by the other relay nodes. 

The signal received by the destination is given by 

 z5 a
r

i51
gi yi1 n, (26)

where n is the receiver noise whose variance sn
2  is known. 

Using (24) and (25), we can rewrite (26) as 

 z5"P0a
r

i51
wi fi gi s   1     a

r

i51
wi gini1 n. (27)

To optimally calculate the relay weight coefficients, the destination 
SNR has to be maximized subject to some power constraints. To 
illustrate the application of convex optimization to this problem, 
let us consider the individual relay power constraints. Then, the 
following optimization problem has to be solved: 

 max
w

SNR    s.t.   Pi # Pi  4 i5 1, c, N , (28)

where Pi and Pi are, respectively, the actual and maximum 
allowable transmit powers of the ith relay. As in (14), we use the 
ratio of expected signal power to expected noise power as a mea-
sure of SNR. In [29], it has been shown that this is given by 
1wHRw 2 / 1sn

2 1wHQw 2  and Pi5Dii|wi|
2  where w ! 3w1, c, 

wN 4T,  f ! [f1, c, fN 4T,  g ! [g1, c, gN 4T,  Q ! sn
2E5ggH6, 

R ! P0 E 5 1 f( g 2 1 f( g 2 H6, D ! P0 diag 1 3E 5 |f1|
2 6, c, 

E5 |fN|26 4 2 1sn2 I, and Dii is the ith diagonal entry of D. 
Hence, the problem in (28) can be rewritten as 

 max
w

wHRw
sn

2 1wHQw
        s.t.     Dii|wi|

2 # Pi  4 i5 1, c, N.

Defining X ! wwH, this optimization problem can be rewrit-
ten as 

 max
X

Tr 1RX 2
sn

2 1 Tr 1QX 2
 s.t.   DiiXii # Pi 4 i5 1, c, N; rank 1X 2 5 1, X f 0,

where Xii is the ith diagonal entry of X. Following the idea of 
semidefinite relaxation and dropping the nonconvex rank-one 
constraint, the latter problem can be relaxed as 

 max
X, t

t

 s.t.     Tr 1X 1R2 tQ 2 2 $ sn
2t,  

       Xii # Pi/Dii  4 i5 1, c, N;  X f 0. (29)

Note that, for any fixed value of t the set of feasible X  in (29) 
is convex; it follows that the optimization problem in (29) is 
quasi convex. 

Solving (29), one can obtain the maximum achievable SNR 
(which is the maximum value of t, denoted as tmax). To solve (29), 
the following key observation [52] has been used in [29]. If, for 
some given SNR value t, the convex feasibility problem 

 find X
 s.t.    Tr 1X 1R2 tQ 2 2 $ sn

2t,  
  Xii # Pi/Dii  4 i5 1, c,  N;  X f 0 (30)

is feasible, then tmax $ t. Conversely, if (30) is not feasible, 
then tmax , t.  Based on this observation, one can check 
whether the optimal value tmax of the quasi-convex problem 
(29) is smaller or greater than any given value t. In [29], it 
has been proposed to use a simple bisection algorithm for 
solving (29), where (30) has to be solved at each step of this 
algorithm. Let us start with some preselected interval [tl tu 4  
that is known to contain the optimal value tmax, the problem 
(30) is then solved at the midpoint t5 1tl1 tu 2 /2. If (30) is 
feasible for this value of t, then tl5 t  is set; otherwise tu5 t 
is chosen. This procedure is repeated until the difference 
between tu and tl  is smaller than some preselected thresh-
old d.  (See “Summary of the Network Beamforming 

signal component

} }

total noise, nT

SUMMARY OF THE NETWORK BEAMFORMING ALGORITHM  
Step 1: Properly set the initial values of tl and tu. 
Step 2: Set t:5 1tl1 tu 2 /2 and solve (30). 
Step 3: If (30) is feasible, then tl:5 t; otherwise tu:5 t. 
Step 4:  If tu2 tl , d, then go to Step 5; otherwise go to 

Step 2. 
Step 5:  Find the weight vector from the principal eigenvec-

tor of the resulting matrix Xopt. 
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Algorithm’’ for pseudocode 
of the overall solution.)

Numerical examples in [29] 
have shown that, similar to the 
case of downlink beamforming, 
the so-obtained solution Xopt is 
always rank one and, therefore, 
no randomization is needed to 
obtain the beamforming weight 
vector. However, no proof of 
this empirical observation is available in [29]. 

One suitable choice of the initial values of tl and tu is 0 and 
SNRmax 1Pmax 2 , respectively, where SNRmax 1Pmax 2  is the maxi-
mum achievable SNR under the total relay power budget 
Pmax5 a

N

i51
Pi. It has been shown in [29] that 

 SNRmax 1Pmax 2 5Pmaxlmax 1G 2 , (31)

where G ! 1sn
2I1PmaxD21/2QD21/2 221D21/2RD21/2. 

The results of [28] and [29] are applicable only when the 
relays are fully synchronized at the symbol level and when the 
source-to-relay and relay-to-destination channels are frequen-
cy flat. When these channels are frequency selective or the 
time synchronization between the relays is poor, the signal 
replicas passed through different relays and/or channel paths 
will arrive to the destination node with different delays. This 
will result in inter-symbol-interference (ISI). 

To combat such ISI, two different approaches have been 
presented in the literature. In [33] and [34], a filter-and-for-
ward protocol has been introduced for frequency selective relay 
networks, and several related network beamforming techniques 
have been developed. In these techniques, the relays deploy 
finite impulse response (FIR) filters to compensate for the 
effect of source-to-relay and relay-to-destination channels; that 
is, the burden of mitigating ISI is put on the shoulders of the 
relay nodes. One of these techniques can be viewed as an exten-
sion of (29) because it is based on maximizing the destination 
QoS (measured in terms of SINR) subject to the individual 
relay power constraints. The latter technique is also based on a 
combination of bisection search and convex feasibility 
 problem-solving. 

Another beamforming approach developed in [35] for asyn-
chronous but flat-fading relay networks, suggests the relay pro-
cessing to be simple (i.e., to follow the amplify-and-forward 
protocol), while the source and destination nodes carry the 
main burden of mitigating ISI. Viewing an asynchronous flat-
fading relay network as an artificial multipath channel (where 
each channel path corresponds to one particular relay), the 
authors of [35] use the orthogonal frequency division multiplex-
ing (OFDM) scheme at the source and destination nodes to deal 
with this artificial multipath channel. 

Convex optimization has also found its application to mul-
tiuser (i.e., multiple-source, multiple-destination) network 
beamforming techniques. In [30], a network of relays is used to 
establish communication between multiple source destination 

pairs. The relays amplify and 
phase adjust the signal they 
receive from all transmitting 
sources by multiplying it with a 
complex beamforming weight. 
To obtain the optimal value of 
beamforming weights, the total 
relay transmit power is mini-
mized subject to QoS con-
straints on the received SINRs 

at the destinations. It is then shown that using semidefinite 
relaxation, this power minimization problem can be turned into 
a convex SDP problem. In light of the results of [68], when the 
number source-destination pairs is less than or equal to three, 
the semidefinite relaxation approach is always guaranteed to 
have a rank-one solution, and therefore, in this case it is not a 
relaxation but exact transformation of the original problem (note 
here some similarity to the downlink beamforming case, where 
the resulting solution after semidefinite relaxation yields rank-
one matrices as well). 

Considering the same problem as in [30], the authors of 
[36] use additional constraints to enforce the signals 
received by the destinations be all in-phase. This will turn 
the aforementioned constrained total relay power minimi-
zation problem into an SOCP problem. As SOCP problems 
can be solved with much lower computational complexity 
than SDP problems, the approach of [36] to peer-to-peer 
network beamforming is computationally less expensive 
than that of [30]. The price for this computational com-
plexity improvement is a small increase in the relay trans-
mitted power. 

Convex optimization has also proven instrumental in appli-
cation to the design of beamformers for two-way (bidirectional) 
relay networks. Such beamformers have been developed in [32] 
for three-node two-way networks with one multiantenna relay 
node and two single-antenna transceivers, and in [31] and [38] 
for multiple-node two-way networks with all single-antenna 
nodes involving two transceivers and multiple relays. 

CONCLUSIONS AND FUTURE DIRECTIONS
In this article, we have presented an overview of the current 
state of the art of advanced optimization-based beamforming 
with application to the receive, transmit and network beam-
former design problems. Connections have been drawn between 
different types of optimization-based beamformers, and it has 
been demonstrated that convex optimization is an indispensable 
toolbox for beamformer designs. 

Promising future research directions include beamformer 
designs for frequency-selective scenarios; incorporating practi-
cal communications engineering aspects, such as synchroniza-
tion, modulation, and coding; and real-time beamformer weight 
optimization to account for time-selective fading and other 
sources of temporal variation in the operational environment. 
Robustness issues will likely remain high in the research 
 agenda, in light of erroneous/delayed/quantized CSI  encountered 
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in practical systems. This is especially true for network beamform-
ing that is still in its infancy. Computationally efficient implemen-
tations of beamforming techniques are critical for applications of 
beamforming in practical systems, and it can be foreseen that this 
field will keep benefiting from advances in convex optimization 
theory—including relevant work towards real-time convex optimi-
zation [69].
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