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ABSTRACT
In this paper, we address the problem of robust face recogni-
tion using single sample per person. Given only one training
image per subject of interest, our proposed method is able
to recognize query images with illumination or expression
changes, or even the corrupted ones due to occlusion. In
order to model the above intra-class variations, we advo-
cate the use of external data (i.e., images of subjects not
of interest) for learning an exemplar-based dictionary. This
dictionary provides auxiliary yet representative information
for handling intra-class variation, while the gallery set con-
taining one training image per class preserves separation be-
tween different subjects for recognition purposes. Our ex-
periments on two face datasets confirm the effectiveness and
robustness of our approach, which is shown to outperform
state-of-the-art sparse representation based methods.

Categories and Subject Descriptors
I.4.9 [Image Processing & computer vision]: Applica-
tions; I.5.4 [Pattern Recognition]: Applications—Com-
puter Vision; H.3.3 [Information Storage & Retrieval]:
Information Search & Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Face recognition, sparse representation, low-rank matrix de-
composition, affinity propagation

1. INTRODUCTION
Recognizing faces in real-world scenarios not only requires

one to deal with illumination or expression changes, the face
images to be recognized might also be corrupted due to oc-
clusion or disguise. Solving the above task is typically known
as robust face recognition [10]. Although very promising per-
formance has been reported in recent works like [10, 2], their
requirement of collecting a large number of training data
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Figure 1: Illustration of our proposed method. Note
that the gallery set contains only one training image
per subject of interest, while the auxiliary dictionary
to be learned utilizes external data for observing
possible image variants (including occlusion).

might not be practical. If a sufficient amount of training face
images cannot be obtained for modeling intra and inter-class
variations, one cannot expect satisfactory recognition perfor-
mance. For real-world face recognition, one might have only
one training image for each subject of interest (e.g., a mug
shot). Therefore, how to address single-sample robust face
recognition has been a challenging problem for researchers
in related fields.

For single-sample face recognition, Zhu et al. [12] pro-
posed a multi-scale patch based collaborative representation
(PCRC) approach. Since PCRC performs recognition based
on patch-wise reconstruction error, it would be sensitive to
corrupted face images (e.g., images with sunglasses). Re-
cently, the use of external data (i.e., images collected from
subjects not of interest) is considered as an alternative for
solving single-sample face recognition problems. For exam-
ple, Su et al. [9] proposed adaptive generic learning (AGL)
for deriving a discriminant model using external data, while
one training image per subject is available. Inspired by
sparse representation based classification (SRC) [10], Deng
et al. [4] presented extended SRC (ESRC), which consid-
ered external face data as an additional dictionary for mod-
eling intra-class variations. Although both AGL and ESRC
utilized external face data for modeling inter or intra-class
variations, their direct use of external data might not be
preferable, since such data might contain noisy, redundant,
or undesirable information. Without proper selection or pro-
cessing of external data, the direct use of such data does not
necessarily improve the performance.

In this paper, we present a novel approach for solving
single-sample face recognition. In order to model intra-class
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Figure 2: Learning of an exemplar-based auxiliary
dictionary A from external face images for modeling
intra-class variations.

variations, we propose the learning of an exemplar-based
dictionary using external data. Based on the techniques
of affinity propagation [5] and low-rank matrix decompo-
sition [1], the derived dictionary is able to extract repre-
sentative information from external data in terms of image
variants instead of subject identities. Thus, each dictionary
atom corresponds to a particular image variant like illumina-
tion, expression, or occlusion type. As illustrated in Fig. 1,
together with gallery set images (only one per subject of in-
terest), we apply the observed auxiliary dictionary for per-
forming recognition via ESRC [4]. One of the advantages of
our approach is that our dictionary size only depends on the
number of types of image variants, not the size of external
data. Our experiments will verify both the effectiveness and
robustness of our method over state-of-the-art recognition
approaches.

2. A BRIEF REVIEW OF SRC AND ESRC
Proposed by Wright et al. [10], sparse representation

based classification (SRC) performs recognition by taking
each test image y as a sparse linear combination of atoms
in an overcomplete dictionary D = [D1,D2, · · · ,Dk], where
Di contains the training images of class i. SRC calculates
the sparse coefficient α of y by solving:

min
α
‖y −Dα‖22 + λ‖α‖1. (1)

Once (1) is solved, the label j of y is determined by

j = argmin
i
‖y −Dδi(α)‖2 , (2)

where δi(α) is a vector whose nonzero entries are those as-
sociated with class i only. Thus, SRC performs recognition
based on the minimum class-wise reconstruction error, which
implies the query y approximately lies in the column sub-
space spanned by the training images of the associated class.

In practice, the use of SRC is limited due to its need to col-
lect of a large amount of training data as the over-complete
dictionary D. To address this concern, Deng et al. [4] pro-
posed Extended SRC (ESRC) by solving:

min
α,β

∥∥∥∥y − [D, A]

[
α
β

]∥∥∥∥2
2

+ λ

∥∥∥∥[αβ
]∥∥∥∥

1

, (3)

where A is an auxiliary dictionary modeling the intra-class
variants, and β is the associated sparse coefficient. Different

from D, the auxiliary dictionary A in [4] consists of images
collected from external data (i.e., subjects not of interest).
Similar to SRC, ESRC performs recognition by:

j = argmin
i

∥∥∥∥y − [D, A]

[
δi(α)
β

]∥∥∥∥
2

. (4)

Although modeling intra-class variants by utilizing external
data has been shown to achieve improved performance for
undersampled face recognition problems, applying all images
from an external dataset might not be preferable. This is
not only because that redundant or noisy information might
be taken into account, the size of the auxiliary dictionary
A will linearly increase with that of external data, which
would make (4) very computationally expensive to solve.

3. AUXILIARY DICTIONARY LEARNING
3.1 Observing Image Variants

As depicted in Fig. 2, we propose to learn an exemplar-
based dictionary from external face images. To model intra-
class variations during recognition, each dictionary atom is
expected to correspond to a particular type of image variant.
As a result, our goal is to automatically identify different
types of image variants from external data which contains
possible variations (e.g., illumination, expression, or occlu-
sion changes), so that we can extract representative infor-
mation and derive the corresponding dictionary atoms.

We observe that face images with the same type of corrup-
tion/variation have similar distributions in terms of intensity
gradients. Thus, we consider the use of Histogram of Ori-
ented Gradients (HOG) [3] features for describing each im-
age. Since it is not practical to assume the exact number of
variant types to be known in advance, we need an automatic
and unsupervised learning algorithm for solving this task. In
our work, we advance affinity propagation (AP) [5], which
is a unsupervised clustering technique and not requires the
prior knowledge of the cluster numbers. To automatically
identify different types of image variants, we solve the fol-
lowing problem which minimizes the net-similarity (NS) be-
tween different external face images:

NS =

N∑
i=1

N∑
j=1

cijs(ei, ej) (5)

−γ
N∑
i=1

(1− cii)(
N∑

j=1

cij)− γ
N∑
i=1

|(
N∑

j=1

cij)− 1|.

In (5), s(ei, ej) = exp(−‖HOG(ei)−HOG(ej)‖2) mea-
sures the similarity between images ei and ej in terms of
HOG features. The coefficient cij = 1 indicates that ei is
the cluster representative of ej (i.e., ej is assigned to clus-
ter i). Thus, cii = 1 means that ei is the representative
and belongs to its own cluster i. The first term in (5) is to
calculate the sum of similarity between images within each
cluster, while the second term penalizes the case when im-
ages are assigned to an empty cluster (i.e. cii = 0 but with∑M

j=1 cij ≥ 1). The last term in (5) penalizes the cases when
images are assigned to more than one cluster, or not belong
to any of them. We set the parameter γ to +∞ to strictly
avoid the above problems.

It is necessary to verify the effectiveness and practicabil-
ity of this unsupervised strategy for automatically dividing
different image variants into distinct groups (instead of sep-
arating images of different subjects into different clusters).
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Figure 3: Average inter/intra-class similarity (in-
terS/intraS) for the AR database using HOG fea-
tures. The x-axis indicates four types of image vari-
ants, and the y-axis is the similarity value. Note that
intraS measures the similarity between the neutral
image and a particular image variant of the same
subject, and interS is that between a face image and
the most similar one of the same variation but from
a different subject (chosen by Nearest Neighbor).

We statistically verified this observation on the images of
the first session in the AR database [8], and the results are
shown in Fig. 3. From this figure, it can be seen that im-
ages of the same variant type but from different subjects
generally achieved higher similarities than those of different
variations but from the same subject (i.e., interS > intraS in
Fig. 3, except for expression changes in which the two values
are comparable). This supports the use of our approach for
identifying and separating face images into different groups
in terms of their variant types instead of identities.

3.2 Learning Exemplars for Image Variants
After dividing external face images into different groups

in terms of variant types, we need to extract representative
information from each cluster, so that such information (and
the derived auxiliary dictionary) can be utilized for modeling
intra-class variations. To solve this task, we advance low-
rank matrix decomposition (LR) [1] to learn exemplars for
representing each cluster (and thus variant type).

As discussed in [1], LR seeks to decompose an input data
matrix into a low-rank version and a matrix containing the
associated sparse error. Since the resulting low-rank matrix
can be considered as a compact and representative version
of the original input, we advocate the use of LR for learning
exemplars for face image variants in Fig. 2. In our work, we
solve the following optimization problem:

min
Li,Si

‖Li‖∗ + λ ‖Si‖1 s.t. Ci = Li + Si. (6)

In (6), Ci = [e1
i , . . . , e

ni
i ] indicates the set of external face

images grouped in cluster i (ni is the number of images in
it). The nuclear norm ‖Li‖∗ (i.e., the sum of singular values)
approximates the rank of Li, which makes the optimization
problem of (6) convex and thus can be solved by techniques
of augmented Lagrange multipliers (ALM) [1, 7]. As a re-
sult, we choose to decompose Ci into a low-rank matrix
Li = [l1i , . . . , l

ni
i ] and a sparse error matrix Si = [s1i , . . . , l

ni
s ].

It is worth noting that, unlike [2] in which LR was applied to
remove intra-class variations of each subject, our approach
aims at extracting representative intra-class information of
face images by disregarding their inter-class variations.

We now discuss how we learn the auxiliary dictionary by
solving the above LR problems. Supposed that the jth im-
age ej

i is identified as the centroid of cluster i during the
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Figure 4: Example images of the Extended Yale
database (only 16 out of 64 illuminations are shown).

Table 1: Recognition performance on the Extended
Yale B dataset. * denotes that the auxiliary dictio-
nary size of ESRC is the same as ours.

SRC [10] RSC [11] AGL [9] ESRC* [4] Ours

48.4 38.1 50.3 54.7 64.9

aforementioned unsupervised clustering process (see Sec. 3.1),
we consider the corresponding low-rank component lji as
the exemplar lexei for representing that particular type of
image variant. Once all exemplars for all clusters (vari-
ant types) are obtained, we have the auxiliary dictionary
A = [a1, . . . ,aK ] = [lexe1 , . . . , lexeK ].

The advantage of our proposed auxiliary dictionary learn-
ing strategy is two-fold. Firstly, we derive the dictionary
A in an automatic and unsupervised way. Since A con-
tains exemplars describing each type of image variants, it
can be applied to model intra-class variations during recog-
nition. Secondly, the size of A does not grow linearly with
the amount of external data; otherwise it would significantly
increase the computation time for SRC or ESRC. We also
note that, when utilizing external data for learning the aux-
iliary dictionary, we do not require any label/identity infor-
mation from such data. In other words, our method allows
one subject from external data to provide some particular
image variants (e.g., illumination changes), while another
subject for other types of image variants (e.g., occlusion).
This provides additional flexibility and practicability for the
use of external data.

3.3 Performing Recognition
Once the auxiliary dictionary A is learned from external

data, we perform recognition of queries y using ESRC (i.e.,
(3) and (4)). Recall that the gallery set D in (3) contains
only one training image from each subject of interest. Thus,
similar to SRC/ESRC, our recognition rule is also based on
the minimum class-wise reconstruction error.

4. EXPERIMENTAL RESULTS
4.1 Extended Yale B Database

We first consider the Extended Yale B database [6] for our
experiments. This database contains frontal-face images of
38 subjects, each with about 64 images taken under vari-
ous illumination conditions. In our experiment, all images
are converted into grayscale and cropped to 192×168 pixels.
Examples of the images are shown in Fig. 4.

We randomly select 19 from the 38 people as the subjects
of interest (i.e., to be recognized), and the rest as external
data for learning the auxiliary dictionary. For the 19 sub-
jects of interest, we select the neutral face (A+000 E+00)
of each for training (as the gallery), and the remaining 63
images as query images for testing. For the 19 subjects not
of interest), we randomly select 5 images out of the total 64
images for each subject as external data, and thus E con-
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Figure 5: Example images of the AR database. Only
the neural image of each subject is in the gallery set,
and the rest are the queries to be recognized.

Table 2: Recognition results of the AR database for
queries under different scenarios. * denote the use
of the same auxiliary dictionary size.

Expression Illumination Sunglasses Scarf Avg
SRC [10] 77.3 75.6 47.7 17.5 55.4
RSC [11] 81.4 32.7 59.3 34.3 53.1
AGL [9] 62.6 77.0 43.1 27.5 53.0

ESRC* [4] 77.0 82.7 60.2 25.8 62.1
Ours* 78.9 89.1 71.9 36.9 69.6

tains a total of 5× 19 = 85 images. The parameter λ in (3)
is set to 0.15, and we consider the default parameter choices
for AP and LR as their original works do. We perform five
random trials, and compare our method with SRC [10], Ro-
bust Sparse Coding (RSC) [11], AGL [9] and ESRC [4]. For
AGL and ESRC, their gallery and external data selections
are the same as ours. We perform five random trials, and
list the average recognition rates of each in Table 1.

From Table 1, it can be seen that SRC and RSC were not
able to perform recognition well for single-sample recogni-
tion without the use of external data. Compared to AGL
and ESRC which applied the same size of the external/auxiliary
data, our proposed method achieved the highest accuracy.
This supports the use of our derived auxiliary dictionary
for better modeling intra-class variations, and our proposed
method for single-sample face recognition.

4.2 AR Database
The AR database [8] contains over 4,000 frontal images of

126 individuals taken under different variations, including
illumination, expression, and facial occlusion. The AR im-
ages were taken in two separate sessions. For each session,
thirteen images are available for each subject, see Fig. 5 for
example. In our experiment, we choose a subset of AR con-
sisting of 50 men and 50 women as [10] did, and all images
are cropped to 165×120 pixels and converted to grayscale.

Among the 100 subjects, we randomly select 50 from them
to be recognized (25 men and 25 women), and the remaining
50 as external data for auxiliary dictionary learning. For the
subjects of interest, only the first neutral image is used for
training, and the rest 25 images for testing (12 remaining
from the first session and 13 from the second). To learn the
auxiliary dictionary A, we randomly select 2 images from
each subject not of interest, and thus E contains a total of
2× 50 = 100 images.

Similar to our experiments on the Extended Yale B dataset,
we consider SRC, RSC, AGL, and ESRC for comparisons.
We also perform five random trials (for external data selec-
tion) and compare the average recognition results of different
approaches (see Table 2). From this table, we see that our

approach outperformed others for most cases, except for the
case of image variants with expression changes. This is con-
sistent with our observation in Fig. 3, in which inter-class
similarity for facial expression is actually lower than that
for other types of facial variants. Although RSC is partic-
ularly designed for handle such expression variations [11]),
it cannot be generalized well to other variant types such as
illumination or occlusion variations (like ours does). From
the above experiments, the robustness and effectiveness of
our proposed method for single-image face recognition can
be successfully verified.

5. CONCLUSION
We presented a novel ESRC-based approach for solving

single-sample face recognition problems. In order to handle
face images of different variations or occlusions, we learned
an exemplar-based dictionary as the auxiliary dictionary. By
observing external face data, this dictionary was able to au-
tomatically identify and thus model intra-class variations
and corruptions. Together with the gallery set containing
only one training image per subject of interest, our proposed
method was shown to preserve inter-class variations, while
intra-class variations can be well observed. Experimental
results on two face databases confirmed the effectiveness of
our method, which was shown to outperform state-of-the-art
with or without using external face data.
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