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Abstract—In this paper, a novel feature extraction method
based on intrinsic image decomposition (IID) is proposed for hy-
perspectral image classification. The proposed method consists of
the following steps. First, the spectral dimension of the hyperspec-
tral image is reduced with averaging-based image fusion. Then,
the dimension reduced image is partitioned into several subsets
of adjacent bands. Next, the reflectance and shading components
of each subset are estimated with an optimization-based IID
technique. Finally, pixel-wise classification is performed only on
the reflectance components, which reflect the material-dependent
properties of different objects. Experimental results show that,
with the proposed feature extraction method, the support vector
machine classifier is able to obtain much higher classification
accuracy even when the number of training samples is quite small.
This demonstrates that IID is indeed an effective way for feature
extraction of hyperspectral images.

Index Terms—Feature extraction, hyperspectral image, image
fusion, intrinsic image decomposition (IID), support vector ma-
chines (SVMs).

I. INTRODUCTION

HYPERSPECTRAL images are images of high spectral
dimensionality. Every pixel in a hyperspectral image con-

tains hundreds of spectral channels that correspond to the de-
tailed spectrum of reflected light. The rich spectral information
of hyperspectral images can be used for accurate classification
of different materials and thus has been widely used in many
practical applications such as monitoring of the environment
[1] and precision agriculture [2].

For hyperspectral image classification, supervised classifiers
such as Bayesian estimation method [3], decision tree [4],
neural networks [5], [6], support vector machines (SVMs) [7],
[8], sparse representation [9], [10], genetic algorithm [11], and
kernel-based techniques [12]–[14] have demonstrated very
good performances in terms of high classification accuracies.
However, when very limited labeled information is available,
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most of these spectral classifiers are still not able to obtain
satisfactory classification accuracies [15]. The reason is that
although the high spectral resolution of hyperspectral images
gives the possibility to detect and distinguish various objects
with an improved accuracy, the large dimensionality of the data
in the spectral domain also leads to difficulties in computer
processing. Specifically, as the dimension of the data space be-
comes higher, the number of training samples needed to depict
the statistical behavior of the data also increases exponentially,
which indicates the “Hughes” phenomenon [16]. Moreover, a
high spectral dimensionality also means that the computational
burden of image classification will be quite large. To solve these
problems, many feature extraction methods have been proposed
to reduce the spectral dimension of the hyperspectral data while
preserving the class separability of different objects [17]–[20].
Typical feature extraction methods such as principal component
analysis (PCA) [21], independent component analysis (ICA)
[22], and linear discriminant analysis [23], [24] have been
widely used in commercial software.

In addition, the spectral characteristics, which are the pri-
mary discrimination features in hyperspectral images, spatial
attributes have also been demonstrated to be very useful in
increasing the classification accuracy. In recent years, feature
extraction and classification methods that make full use of
the spatial contextual information of hyperpsectral imagery
have been studied extensively [25]–[33]. Specifically, spectral–
spatial feature extraction and classification techniques aim at
assigning each image pixel to one class by considering both
its own spectral values and the spatial information extracted
from its neighborhood. For instance, Benediktsson et al. de-
fined an adaptive neighborhood for each pixel by multiple
morphological operations such that the closest neighborhood
information could be preserved in the morphological features
[18], [34]–[36]. Another type of spectral–spatial classification
method is based on the integration of pixel-wise classification
and segmentation of hyperspectral images [37]–[39]. Aside
from the two types of spectral–spatial classification methods
aforementioned, other powerful tools that make full use of
the spatial information of the hyperspectral image have also
been proposed for hyperspectral image classification. These
approaches include minimum spanning forest [40], conditional
random fields [41], edge-preserving filters [19], [42], hyper-
graph [43], tensor representation [17], empirical mode decom-
position [44], [45], anisotropic diffusion [46], [47], and joint
collaborative representation [48].

Intrinsic image decomposition (IID) is a challenging prob-
lem in computer vision that aims at modeling the perceiving

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2242 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 4, APRIL 2015

function of human vision to distinguish the reflectance and
shading of the objects from a single image [49]. Since the
intrinsic components of an image reflect different physical
characteristics of the scene, e.g., reflectance, illumination, and
shading, many classic computer vision and pattern recognition
problems such as image segmentation [50] and object detection
[51] can benefit from the IID technique.

Based on the idea of IID, the pixel values of hyperspectral
images are determined by two factors: The spectral reflectance,
which is determined by the material of different objects, and
the shading component, which consists of light and shape-
dependent properties. Since the second factor is not directly
related to the material of the object, IID is adopted in this paper
to remove useless spatial information preserved in the shading
component of the hyperspectral image. Specifically, the IID-
based feature extraction method proposed in this paper consists
of the following steps: First, averaging-based image fusion is
adopted to reduce the spectral dimension of the hyperspectral
data. Second, an optimization-based IID method [52] is applied
to decompose the dimension reduced hyperspectral data into
intrinsic components, and only the reflectance components of
the image are preserved for classification.

Experiments performed on different images captured by
different hyperspectral sensors demonstrate the high accuracies
of the proposed method. More importantly, the experimental
results show that the proposed method can still obtain very
high classification accuracies when the number of training
samples is relatively small. Taking one of the most widely
used hyperspectral remote sensing data as an example, i.e., the
University of Pavia ROSIS data, the proposed method can lead
to an overall classification accuracy of 97.92% when only 0.4%
of the scene are used as labeled training samples.

Compared with the existing spectral–spatial classification
methods, the main novelties and contributions of this paper lie
in the following two aspects.

1) IID is applied for feature extraction of hyperspectral
images for the first time. The proposed method shows
the advantage of using the perceiving function of human
vision, i.e., the ability to separate reflectance and shading
components from a single image, for feature extraction of
hyperpsectral images.

2) Instead of making full use of the spatial information,
the proposed method aims at removing useless spatial
information in the hyperspectral image such as shading
and image noise. Compared with some existing feature
extraction methods [18], [19], this paper shows that
IID is a better solution in terms of higher classification
accuracies.

The remainder of this paper is organized as follows. In
Section II, IID and related works are reviewed. Section III
descries the proposed IID-based feature extraction method. The
experimental results are presented in Section IV, and finally,
conclusions are given in Section V.

II. IID

In the tenth century, one perceiving function of human vision
is noted by the scientist Alhazen as follows: “Nothing of what

Fig. 1. Two intuitive examples of IID. From left to right: (a) and (d) two
input color images, (b) and (e) reflectance components, and (c) and (f) shading
components.

is visible, apart from light and color, can be perceived by pure
sensation, but only by discernment, inference, and recognition,
in addition to sensation” [53]. In 1978, the “intrinsic images”
problem is defined based on Alhazen’s observations [54], and
this problem has recently gathered a great interest in the com-
puter vision field. Specifically, the “intrinsic images” problem
can be represented by the following equation:

Ii = RiSi (1)

where RiSi calculates the multiplication of the two metrics
Ri and Si element by element; i refers to the ith pixel,
Ii = (Iir, Iig, Iib), Ri = (Rir,Rig,Rib), r, g, and b refer to
the red, green, and blue channels of a color image, respec-
tively. The aforementioned equation shows that a color image
I [see Fig. 1(a) and (d)] can be decomposed into its spectral
properties, known as reflectance R [see Fig. 1(b) and (e)],
and its illumination and shape-dependent properties S [see
Fig. 1(c) and (f)], such as shadows, specular highlights, and
inter-reflectance.1 Specifically, from Fig. 1(c) and (f), it can
be shown that the pixel values in the shading component are
usually determined by the shape and texture of the objects, and
the illumination of the scene, which is not directly related to
the materials of different objects. By contrast, as shown in the
close-up view of Fig. 1(b), the discriminative colors of Mead-
ows (red) and soil (hazel) actually represent the spectral sig-
natures of different materials, which directly refer to different
materials. A similar observation can be found for Fig. 1(e). For
hyperspectral images, which have more than 100 data channels,
it is easy to imagine that a much more informative spectral
representation of different materials will be obtained and thus
more classes are able to be discriminated with the reflectance
R. Motivated by this observation, this paper aims at extracting
the spectral reflectance R of a hyperspectral image, in which
the influence of the shading component S, i.e., illumination
of the scene and texture of the objects are removed. Based on

1The intrinsic components presented in this paper are produced using the
method of Shen et al. [52].
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Fig. 2. Schematic of the proposed feature extraction method.

our knowledge, although IID has been successfully applied in
computer vision [50], [55], our work is the first attempt to use
the approach for feature extraction of hyperspectral images.

From (1), it can be seen that estimating R and S based
on I is an unconstrained problem. Although many solutions
have recently been proposed for this problem [52], [55], it is
still considered as a challenge in computer vision research.
Generally speaking, heuristic cues, extra constraints [49] or
user intervention [52], [55] have to be exploited in order to
estimate the intrinsic components. For example, one of the
earliest image IID methods is based on the retinex algorithm,
which assumes that large derivatives in the image are always
attributed to reflectance changes, whereas smaller derivatives
are usually due to shading changes in a scene [56]. In addition
to the retinex-based methods, many other powerful tools have
been proposed in recent years such as sparse representation [57]
and the nonlocal method [58] to recover intrinsic components
from a single image.

In this paper, an optimization-based IID method [52] is
adopted for intrinsic decomposition of hyperspectral images be-
cause of the following reasons: First, it has been demonstrated
in [52] that the optimization-based method is robust for images
captured under different conditions, both indoor or outdoor.
Second, no classification and complex mathematical models
are required for the optimization-based method, and thus, the
algorithm used in [52] can be easily extended for processing
hyperspectral images that usually have more than three data
channels. Here, the optimization-based IID method is briefly
reviewed. Specifically, the method is based on the following
weight function that models the reflectance value of one pixel
as a weighted average of its adjacent reflectance values, i.e.,

Ri=
∑
j∈ωi

αijRj , αij=e−[(Yi−Yj)
2/σ2

iY)+A(Ii,Ij)
2/σ2

iA] (2)

where ωi is a local window of (2r + 1)× (2r + 1) pixels
around pixel i, in which r is the radius of the window; αij

measures the similarity of the intensity value and the spectral
angle between pixel i and j; for images with multiple channels,
Y represents the intensity image, which is calculated by aver-
aging all the bands of the image; Ri = (Rir,Rig,Rib), Rj =
(Rjr,Rjg,Rjb), A(Ii, Ij) = arcos(IirIjr + IigIjg + IibIjb)
denotes the angle between the pixel vectors Ii and Ij ; σ2

iA and
σ2
iY are the variances of the angle and pixel values in the local

window ωi, respectively. From the two terms of αij , i.e., (Yi −
Yj)

2/σ2
iY and A(Ii, Ij)

2/σ2
iA, it can be seen that the method

of Shen et al. [52] is based on a simple assumption: neighboring
pixels in a local window having both similar intensity and

chromaticity usually should have similar reflectance values. In
other words, it assumes that the changes of shading values will
lead to the proportional changes of its red, green, and blue color
channel values. Under this assumption, the shading component
could be separated from the input image. Based on (1) and (2),
the resulting shading S and reflectance R components can be
obtained by optimizing the following energy function:

E(R,S)=
∑
i∈I

⎛⎝Ri−
∑
j∈ωi

αijRj

⎞⎠2

+
∑
i∈I

(Ii/Si−Ri)
2. (3)

For a complete description of the optimization method, we refer
the reader to [52].

III. PROPOSED APPROACH

Fig. 2 shows the schematic diagram of the proposed feature
extraction method, which consists of the following steps: First,
the dimension of the hyperspectral image is reduced with
averaging-based image fusion. Then, the dimension reduced
data is partitioned into several subgroups of hyperspectral
bands. Finally, each subgroup is decomposed with IID to obtain
the resulting spectral feature used for classification.

A. Spectral Dimension Reduction

The first step, i.e., spectral dimension reduction has two
major objectives: 1) the spectral dimension of the hyperspectral
image could be reduced; and 2) the dimensionally reduced
data is still directly interpretable in a physical sense. Although
dimension reduction methods such as PCA and ICA can be
considered to fulfill the first objective, these methods cannot
ensure that the band-reduced hyperspectral image pixels are
still interpretable in a physical sense. In other words, after PCA
or ICA decomposition, the pixels of the dimension reduced
image will not be related to the reflectance of the scene.
Aside from the transformation-based methods aforementioned,
feature selection and clustering-based band reduction methods
[59], [60] can ensure the reduced features directly interpretable
in a physical sense. However, these types of band selection
and reduction-based methods usually require time-consuming
clustering or optimization process. Therefore, this paper applies
a simple image fusion method, i.e., the averaging method for
the dimension reduction of hyperspectral data. Specifically,
the N dimensional hyperspectral data set is first divided into
M groups of equal size. The number of bands is denoted by
N1, N2, . . . , NM in subgroup 1, 2, . . . ,M , respectively, with
M being the total number of bands in the dimension reduced
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Fig. 3. Intuitive example of averaging-based image fusion for noise removal.
From left-top to right-bottom: (a)–(g) first to seventh hyperspectral bands and
(h) fused image of these bands obtained by averaging.

data. Then, the averaging-based image fusion is applied sepa-
rately on each subgroup and the resulting fused bands are used
for further processing

Ĩm =

∑Nm

n=1 I
n
m

Nm
(4)

where m refers to the mth subgroup, Inm is the nth band in the
mth subgroup of the original hyperspectral image, Ĩm is the
mth fused band. For example, Fig. 3 shows the first to seventh
bands of the Indian Pines image and their corresponding fused
image obtained by averaging. It can be seen that image noise
can be effectively removed by calculating the average of adja-
cent bands. Generally, ideal noise-free adjacent hyperspectral
bands are highly correlated, and image noise is independently
and identically distributed. In this situation, averaging of highly
correlated pixels can yield a pixel that is similar to its noise-
free value. Furthermore, since the neighboring hyperspectral
bands are usually highly correlated, the fused image obtained
by averaging [see Fig. 3(h)] is also able to preserve most of
useful information in the original bands [see Fig. 3(a)–(g)].
In [19], the averaging method has been demonstrated a good
performance in improving the classification accuracy while
reducing the spectral dimension of hyperspectral images.

B. Group IID

For IID of hyperpsectral images, a group decomposition
scheme is proposed here. As shown in Fig. 2, the dimension
reduced image Ĩ is first partitioned into several subgroups of
adjacent bands as follows:

Îk =

{(
Ĩ(k−1)Z+1, . . . , Ĩ((k−1)Z+Z)

)
, k = 1, 2, . . . ,

⌊
M
Z

⌋
(ĨM−Z+1, . . . , ĨM ), k =

⌈
M
Z

⌉
�=

⌊
M
Z

⌋
(5)

where Îk refers to the kth group, �M/Z� is the largest integer
not greater than M/Z, and �M/Z� is the smallest integer not
less than M/Z, Z represents the number of bands in each sub-
group. Then, these subgroups are respectively decomposed with
the optimization-based IID method [52]. Specifically, based on
the descriptions in Section II, the intrinsic components Rk

Fig. 4. Two examples for IID of hyperspectral images. (a) and (d) False
color composites of the input hyperspectral images. (b) and (e) Reflectance
components obtained by the proposed method. (c) and (f) Estimated shading
components obtained by the proposed method.

and Sk can be obtained by minimizing the following energy
function:

E(Rk,Sk)=
∑
i∈̂Ik

⎛⎝Rk
i −

∑
j∈ωk

i

αk
ijR

k
j

⎞⎠2

+
∑
i∈̂Ik

(
Îki
Sk
i

−Rk
i

)2

(6)

where Îki = (Îki1, Î
k
i2, . . . , Î

k
iZ), Rk

i = (Rk
i1,R

k
i2, . . . ,R

k
iZ),

Rk
j = (Rk

j1,R
k
j2, . . . ,R

k
jZ), Z is the number of bands in each

subgroup, αk
ij = e

−[(Yk
i −Yk

j )
2
/σ2

iYk
+A(̂Iki ,̂I

k
j )

2
/σ2

iAk
], Yk repre-

sents the intensity image, which is calculated by averaging all
the bands in the kth subgroup Îk, A(̂Iki , Î

k
j ) denotes the angle

between the pixel vector Îki and Îkj , and σ2
iAk and σ2

iYk are the
variances of the angle and pixel values in the local window ωk

i ,
respectively. Finally, the reflectance components of different
subgroups are combined together to obtain the resulting IID
feature, i.e., an M -dimensional feature matrix R used for pixel-
wise classification

R =

⎛⎜⎝
R1

R2

. . .
RM

⎞⎟⎠ . (7)

For example, Fig. 4(a) shows the color composite of three
adjacent fused bands obtained in Section III-A. Fig. 4(b) and (c)
shows the corresponding intrinsic components estimated by
the proposed IID method. As shown in this figure, the in-
trinsic decomposition step has two obvious advantages. First,
some invisible information occluded by shadows can be esti-
mated reasonably [compare the middle and bottom box area
of Fig. 4(a)–(c)]. Second, some texture information that are
not directly related to the material spectra of objects can be
effectively removed [compare the top box area of Fig. 4(a)–(c)].
Similar phenomenon can be observed by performing the exper-
iment on another hyperspectral image [see Fig. 4(d)–(f)].
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Fig. 5. Color composites of three hyperspectral images and their corresponding reference classification maps. From left-top to right-bottom are the University
of Pavia, Salinas, and Indian Pines data sets, respectively.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Sets: Three remote sensing hyperspectral data sets,
i.e., the Indian Pines image, the University of Pavia image, and
the Salinas image, are utilized in our experiments.

The University of Pavia image capturing the University of
Pavia, Italy was recorded by Reflective Optics System Imaging
Spectrometer (ROSIS). This image contains 115 bands of size
610 × 340 with a spatial resolution of 1.3-m per pixel and a
spectral coverage ranging from 0.43 to 0.86 μm. Before the
classification, 12 noisy channels were removed, which is a
standard preprocessing approach before hyperspectral image
classification [15], [25].

The Salinas image was captured by the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) sensor over Salinas
Valley, California, and it has a spatial resolution of 3.7-m per
pixel. The Salinas image contains 224 bands of size 512 × 217
and 20 water absorption bands (no. 108–112, 154–167, and 224)
were discarded before classification.

The Indian Pines image was acquired by the AVIRIS sensor.
It captures the agricultural Indian Pine test site of Northwestern
Indiana and contains 220 bands of size 145 × 145. Twenty wa-
ter absorption bands (no. 104–108, 150–163, and 220) were re-
moved before hyperspectral image classification. Furthermore,
the spatial resolution of the Indian Pines image is 20-m per
pixel, and the spectral coverage is ranging from 0.4 to 2.5 μm.
Fig. 5 shows the color composites of the three images and
their corresponding reference classification maps, which are all
available online.2

2http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes

2) Evaluation Metrics: In order to evaluate the performance
of image classification, three objective quality indexes, i.e.,
overall accuracy (OA), average accuracy (AA), and Kappa
coefficient are utilized for objective evaluation. Specifically, the
OA index refers to the percentage of pixels that are correctly
labeled in the classification. The AA index measures the mean
of the percentage of correctly labeled pixels for each class.
Finally, the Kappa coefficient calculates the percentage of cor-
rectly classified pixels corrected by the number of agreements
that would be expected purely by chance.

B. Influence of Parameters

For the proposed feature extraction method, the number
of features (M) and the size of subgroup (Z) should be
determined for group intrinsic decomposition. The influence
of the two parameters M and Z are analyzed by evaluating
the accuracy and efficiency of SVM classification on the three
data sets. In the experiments, the reference data of different
images is first partitioned into a parameter training set (the
number of samples is 50% of the reference) and a validation set.
Then, the training samples used for supervised classification
are selected randomly, which account for 10% (Indian Pines),
4% (University of Pavia), and 2% (Salinas) of the parameter
training set, respectively. Finally, the OA, AA, and Kappa
obtained by the proposed method with different M and Z are
measured by comparing the classification result with the param-
eter training set. It should be mentioned that the SVM classifier
is utilized as the spectral classifier because its performance is
robust to the dimension of data. In related works such as [22],
the SVM method was considered to provide the best pixel-
wise classification results for a particular hyperspectral data
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Fig. 6. Experimental results. From top to bottom are the results for the University of Pavia, Salinas, and Indian Pines data sets, respectively. Each row records the
(first column) overall classification accuracy, (second column) average classification accuracy, (third column) Kappa coefficient of agreement, and (fourth column)
computing time of the proposed method with respect to different number of features M and different size of subgroups Z.

Fig. 7. (a) Overall classification accuracy, (b) AA, (c) Kappa coefficient of agreement, and (d) computing time of the proposed method with respect to different
value of r.

set. Here, the SVM classifier is implemented in the library
for SVMs [61]3 by using the Gaussian kernel with fivefold
cross validation, which is a standard setup [15]. As shown in
Fig. 6, when M = 3, the accuracies of the proposed method are
relatively low. This means that when the number of features M
is very small, useful discriminative information will be lost in
the spectral downsampling process. Furthermore, according to
Fig. 6, it is shown that the proposed method can obtain stable
and high accuracies when the size of subgroup is less than four.
This phenomenon can also be observed for the results of the

3Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

other two data sets. Moreover, from the fourth column of Fig. 6,
it is shown that the computing time of the proposed feature
extraction method increases when the number of features is in-
creasing and the size of the subgroup is decreasing, which leads
to a tradeoff between computing efficiency and classification
accuracy. In this paper, M = 32 and Z = 4 are set to be de-
fault parameters because they can give both high classification
accuracies and an acceptable computing burden. Aside from M
and Z, the radius of the local window r used for IID is also an
important parameter that should be considered. Fig. 7 shows
the OA, AA, Kappa, and computing time for the proposed
classification method with different value of r. It can be seen
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Fig. 8. Classification results (University of Paiva image) obtained by (a) and (g) the SVM method, (b) and (h) the EMP method, (c) and (i) the LMLL method,
(d) and (j) the EPF method, (e) and (k) the IFRF method, and (f) and (l) the SVM-IID method. The number in the parentheses refers to the overall classification
accuracy given in percent. The number of training samples is 4% and 0.4% of the reference data for (a)–(f) and (g)–(l), respectively. (a) SVM (90.17). (b) EMP
(96.62). (c) LMLL (97.27). (d) EPF (97.18). (e) IFRF (98.09). (f) SVM-IID (99.54). (g) SVM (77.47). (h) EMP (78.20). (i) LMLL (90.47). (j) EPF (86.15).
(k) IFRF (88.58). (l) SVM-IID (97.92).

that high classification accuracy and fast implementation can be
obtained when the radius of local window r is fixed as 2 pixels.
Therefore, in this paper, r = 2 is the default parameter setting
used for the IID method. Here, the classification performance
of the proposed feature extraction method is evaluated using
the three data sets, i.e., University of Pavia, Salinas, and Indian
Pines. The classification maps and accuracies of the proposed
approach, as well as for five hyperspectral image classifica-
tion techniques, are shown in Figs. 8–10 and Tables I–III.
Among these methods, the SVM method is implemented in
the LIBSVM library [61]. For the extended morphological
profiles (EMP)-based method [18], the morphological profiles
are constructed using the first four principal components, a
circular structural element, a step size increment of two, and
four openings and closings. The logistic regression and multi-
level logistic (LMLL)-based method [26] is a recently proposed
spectral–spatial classifier, which is based on graph-cut theory.
The edge-preserving filtering (EPF)-based method [42] and
image fusion and recursive filtering (IFRF) [19]-based methods
are recently proposed spectral–spatial classification methods
that aim at making full use of the spatial information with EPF
techniques. For these methods, the default parameters given
in [19], [26], [42] are adopted, respectively. For the proposed
IID-based feature extraction method, the parameters given in
Section IV-B, i.e., M = 32, Z = 4, and r = 2 are adopted in
the following experiments.

C. Classification Results of Different Methods

As shown in the first three columns of Tables I–III, two
experiments are performed on the University of Pavia, Salinas,
and Indian Pines images, respectively. Specifically, in the first
experiment, the training samples were randomly selected to ac-
count for 4%, 2%, and 10% of the reference data, respectively.
In the second experiment, only 0.4%, 0.2%, and 4% of the refer-
ence data were selected as training samples for the three images.
As shown in Table III, it should be noticed that the training sam-
ples were randomly selected to account for half of the reference
data for some minor classes when the total number of reference
pixels in these classes is smaller than 1/N of the total number
of training samples, which account 10% or 4% of the reference
data, where N is the number of classes, which is equal to 16 for
the Indian Pines image. As shown in Figs. 8(a)–(f)–10(a)–(f),
as compared with other spectral–spatial classification meth-
ods such as the EMP, LMLL, EPF, and IFRF methods, the
SVM-IID-based method always performs better in terms of
the highest overall classification accuracies, i.e., obtaining the
highest accuracies in all cases, 97.75%, 99.62%, and 99.69%.
More importantly, as shown in (g)–(l) of Figs. 8–10, other
spectral–spatial classification methods may not perform satis-
factory when there is a very limited number of training samples
used. For example, for the University of Pavia image, the EMP,
EPF, and IFRF methods can improve the accuracy of SVM
about only 1%, 9%, and 11%, respectively, when there has only
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Fig. 9. Classification results (Salinas image) obtained by (a) and (g) the SVM method, (b) and (h) the EMP method, (c) and (i) the LMLL method, (d) and (j) the
EPF method, (e) and (k) the IFRF method, and (f) and (l) the SVM-IID method. The number in the parentheses refers to the overall classification accuracy given in per-
cent. The number of training samples is 2% and 0.2% of the reference data for (a)–(f) and (g)–(l), respectively. (a) SVM (88.17). (b) EMP (96.74). (c) LMLL (93.61).
(d) EPF (95.22). (e) IFRF (98.73). (f) SVM-IID (99.50). (g) SVM (78.69). (h) EMP (85.35). (i) LMLL (90.06). (j) EPF (86.34). (k) IFRF (93.08). (l) SVM-IID (98.52).

Fig. 10. Classification results (Indian Pines image) obtained by (a) and (g) the SVM method, (b) and (h) the EMP method, (c) and (i) the LMLL method, (d) and (j) the
EPF method, (e) and (k) the IFRF method, and (f) and (l) the SVM-IID method. The number in the parentheses refers to the overall classification accuracy given in per-
cent. The number of training samples is 10% and 4% of the reference data for (a)–(f) and (g)–(l), respectively. (a) SVM (79.94). (b) EMP (92.45). (c) LMLL (92.40).
(d) EPF (94.26). (e) IFRF (96.86). (f) SVM-IID (97.67). (g) SVM (70.32). (h) EMP (83.75). (i) LMLL (88.63). (j) EPF (88.19). (k) IFRF (92.19). (l) SVM-IID (96.43).
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TABLE I
CLASSIFICATION ACCURACIES (UNIVERSITY OF PAVIA IMAGE) IN PERCENTAGE FOR THE DIFFERENT METHODS AS AN AVERAGE AFTER

100 REPEATED EXPERIMENTS. NUMBER IN PARENTHESIS INDICATES THE STANDARD VARIANCE OF THE REPEATED EXPERIMENTS

TABLE II
CLASSIFICATION ACCURACIES (SALINAS IMAGE) IN PERCENTAGE FOR THE DIFFERENT METHODS AS AN AVERAGE AFTER 100 REPEATED

EXPERIMENTS. NUMBER IN PARENTHESIS INDICATES THE STANDARD VARIANCE OF THE REPEATED EXPERIMENTS
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TABLE III
CLASSIFICATION ACCURACIES (INDIAN PINES IMAGE) IN PERCENTAGE FOR THE DIFFERENT METHODS AS AN AVERAGE AFTER 100 REPEATED

EXPERIMENTS. NUMBER IN PARENTHESIS INDICATES THE STANDARD VARIANCE OF THE REPEATED EXPERIMENTS

0.4% of the reference data for training [compare Fig. 8(h), (j),
and (k) with Fig. 8(g)]. Similar observations can be made for
the Salinas and Indian Pines data sets. For example, for the
Indian Pines image, the EMP, LMLL, and EPF methods cannot
obtain accuracy higher than 90% when the number of training
samples is 4% of the reference data. In other words, tradi-
tional spectral–spatial classification methods have the common
limitation that they tend to produce smaller improvements in
classification accuracies when the number of training samples
is smaller. By contrast, as shown in (l) of Figs. 8–10, the SVM-
IID-based method can improve the accuracies of SVM even
more (77.47% to 97.92% for the University of Pavia, 78.69%
to 98.52% for the Salinas, and 70.32% to 96.43% for the Indian
Pines) with only a small number of labeled samples.

In order to evaluate the performance of different methods
more objectively, the classification experiments have been re-
peated 100 times to estimate the mean and standard vari-
ance of the OA, AA, and the Kappa coefficient (Kappa) (see
Tables I–III). From the top subtable of Tables I–III, it can
be observed that, with the proposed SVM-IID method, the
OA, AA, and Kappa for SVM can be always increased sig-
nificantly (17%–19%) for the three images. More importantly,

the SVM-IID method always outperforms other methods more
significantly for the OA and Kappa indexes when there is a
small number of training samples (see the bottom subtable of
Tables I–III). Specifically, with the SVM-IID method, the OA,
AA, and Kappa of SVM can be increased about 17%–22% for
the three images. Although the SVM-IID method not always
ranks as first for the AA index, the AA differences between
the SVM-IID method and the method ranking as first (see
Table III) is very small. Finally, Table IV shows the resulting
p values obtained in the Paired Student’s t-test for the accura-
cies obtained by different methods. Specifically, the p values
denote the statistical significance of the difference between the
two overall accuracies obtained by two different methods, i.e.,
(SVM&SVM-IID), (EMP&SVM-IID), (EPF&SVM-IID), and
(IFRF&SVM-IID). As shown in the table, the p values obtained
in the Paired Student’s t-test between the proposed method and
other methods are usually much smaller than 0.01. It means
that the improvement of OA obtained by the SVM-IID method
can be always considered as statistically significant (at the 99%
level). Therefore, it is able to convince that the mean and stan-
dard variance are meaningful in revealing the real performance
of different methods. Furthermore, the Paired Student’s t-test
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TABLE IV
p VALUES OBTAINED IN THE PAIRED STUDENT’S t-TEST BETWEEN THE PROPOSED SVM-IID METHOD AND

OTHER METHODS, I.E., SVM, EMP, LMLL, EPF, AND IFRF METHODS. aE − b REFERS TO a× 10−b

TABLE V
COMPUTING TIME (IN SECONDS) OF DIFFERENT CLASSIFICATION

ALGORITHMS FOR THE INDIAN PINES IMAGE OF SIZE 145× 145× 200

also has been performed for other quality indexes, i.e., AA,
and Kappa, which demonstrate that the improvements of these
accuracies are also meaningful (statistically significant at the
99% level) for all experiments.

D. Computational Complexity

Here, the computing time of different classification methods
are compared. Experiments are performed using MATLAB on
a Computer with 3.5-GHz CPU and 8-GB memory. Table V
records the computing time of the different classification meth-
ods (for the SVM, EMP, EPF, IFRF, and SVM-IID methods,
which are based on the SVM classifier, the time of fivefold cross
validation is included for a fair comparison). From this table, it
can be seen that the computing time of the proposed method
(48.0 s) is acceptable in comparison to the SVM method using
original hyperspectral data (100.7 s) and the EPF method,
which is based on the postprocessing of SVM (101.9 s). How-
ever, it is not computationally efficient compared with other
methods such as LMLL, EMP, and IFRF. The reason is that
the optimization-based IID method requires many iterations to
find the optimal solutions. To solve this problem, designing a
faster implementation of SVM-IID with GPU programing will
be investigated.

V. CONCLUSION

In this paper, IID has been proposed for feature extraction of
hyperspectral images for the first time. Compared with other
widely used spectral–spatial classification methods, experi-
ments carried out on three real hyperspectral data showed the
outstanding performance of the SVM-IID method in terms of
classification accuracies, particularly when the number of train-
ing samples is relatively small. The reason is that the IID can
effectively remove useless spatial information such as shading
and texture that are not directly related to the material of differ-
ent objects. However, it should be mentioned that, although the
proposed method can obtain high classification accuracies with
a small number of training samples, it is not computationally
efficient compared with other feature extraction methods. This
paper primarily aims at showing that IID, which models the
perceiving function of human vision, works well for hyper-
spectral image feature extraction. Designing a more effective
technique for IID of hyperspectral images will be a topic of

future research. Furthermore, whether IID can be applied for
other hyperspectral applications will also be investigated.
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