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In this paper we present an instant action recognition method, which is able to recognize an action in

real-time from only two continuous video frames. For the sake of instantaneity, we employ two types of

computationally efficient but perceptually important features – optical flow and edges – to capture

motion and shape characteristics of actions. It is known that the two types of features can be unreliable

or ambiguous due to noise and degradation of video quality. In order to endow them with strong

discriminative power, we pursue combined features, of which the joint distributions are different

in-between action classes. As the low-level visual features are usually densely distributed in video

frames, to reduce computational expense and induce a compact structural representation, we propose

to first group the learned discriminative joint features into feature groups according to their correlation,

then adapt the efficient boosting method as the action recognition engine which take the grouped

features as input. Experimental results show that the combination of the two types of features achieves

superior performance in differentiating actions than that of using each single type of features alone. The

whole model is computationally efficient, and the action recognition accuracy is comparable to the

state-of-the-art approaches.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

With the growth of the amount of video data from a variety of
sources (such as surveillance systems and broadcasting industry)
[1], action recognition engines have become a highly demanded
essential tool of video content analysis in applications such as
video retrieval and anomaly detection.

In the literature, there has been a large body of work on action
recognition (e.g. [2,3]), in which different types of features,
representations and classification models are proposed to identify
actions in videos. Readers are referred to [1,4,5] for thorough
survey on existing methods. However, in most of local-feature-
based methods the adopted features are generic, for example,
variants of spatial temporal tensors such as spatio-temporal
interest points (e.g. [6,7]). The discriminative structures
embedded in different types of actions are not fully considered
in the first place. Hence, it sometimes requires a sophisticated
classification model in order to differentiate the distributions of
the same set of generic features over different types of actions.
However, it is known that complex models are usually computa-
tionally expensive and prone to overfitting.
ll rights reserved.
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In addition, although most of state-of-the-art methods
reported impressive performance, the routine of action recogni-
tion requires to extract a large amount of features from a buffered
video of a considerable length. Consequently, an action can only
be recognized after an entire period or even several repetitions of
the actions. This is inadequate to many online applications that
require instantaneous responses such as human computer inter-
action (HCI) and video surveillance. In the literature, there is
strong psychological evidence showing that human usually can
instantly tell what happens in a scene only with a glance (e.g. [8]).
Whereas, this instantaneity property has been rarely considered as
a key criterion in evaluating action recognition engines for online
purpose. As a result, even for state-of-the-art action recognition
methods, if supplied with only a couple of frames, the recognition
accuracy is barely above chance (see example results in Figs. 6
and 8).

In this paper, we attempt to address the two key issues in
action recognition mentioned above: discriminative feature learn-
ing and instantaneity in response. Here, the ‘‘instantaneity’’ has
two aspects of meanings, i.e. fast in speed and being capable of
making decision with a couple of frames. Specifically, the pro-
posed method is able to recognize actions using any two con-
secutive frames of an action video of resolution 160�120 with an
average speed of 0.04 s using an Intel Core i5-2400 3.10 GHz, 4.0G
RAM PC.
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Particularly, we propose to achieve the goal – instant action
recognition – from the following three aspects.

(1) Pursuing discriminative simple features. We employ two
types of computationally efficient (simple) but perceptually
important features – the optical flows [9] and Canny edges [10]
– to capture the motion and shape/structure information in video
sequences, since recent psychophysical studies reveal that neu-
rons in visual area of human brains have multidimensional
functional organization in processing shape and motion informa-
tion [11], and human beings recognize motion/actions from the
‘‘motion pathway’’ and the ‘‘form pathway’’ [12]. It is known that
both features are fast to compute and have small memory
demand, whereas can be unreliable under certain circumstances
[13] (e.g. aperture problem and sensitive to different kinds of
degradations), and motion or shape features alone may have
weak discrimination power. However, the combination of the two
cues can exhibit distinctive stable semantic characteristics as
shown in Fig. 2. Thus, we strongly believe that there always exist
some reliable and inexpensive features which can be further

exploited to serve for certain challenging visual tasks. The key to
the success is how to identify the ‘‘right’’ ones.

Simple features are usually densely distributed in the data
(video sequences in our context), the number of their combination
is even larger. In order to quickly identify those discriminative local
structures from the large search space, we propose a discriminative
feature pursuit scheme based on the FP-tree mining approach [14]
and the Apriori algorithm [15]. The discriminative features
are selected as those maximizing the Kullback–Leibler (KL) diver-
gence between their distributions in the target action class and the
negative ones.

(2) Grouping features for compact representation. Although only
discriminate features are selected during the feature pursuit, they are
chosen independently and the number of selected features is still
large. To further reduce the dimensionality of the action representa-
tions, we propose to group these features within a local range
according to their co-occurrence in observed action video frames.
We adopt spectral clustering techniques to group the features, in
which all pairs of features within a local range are connected into an
undirected graph, and the Phi coefficient [16] is adopted to measure
the association/co-occurrence strength of a pair of features. Through
experiments, we observe that the resulted feature groups give insight
into the dependence structure in the action data.

(3) Learning efficient recognition engines. Boosting is an ensem-
ble learning method, which integrates simple weak learners into a
strong one. It is computationally efficient and yet have compar-
able accuracy to kernel-based methods. In the proposed approach,
we learn boosted decision trees [17] as the recognition engine to
satisfy the instantaneity criterion and achieve competitive recog-
nition performance. However, instead of selecting individual
features, we use feature groups to learn a decision tree. Majority
voting among the features in a group is adopted to train the split
function on the tree nodes. To recognize actions, we learn a
boosting classifier for each action class in a one-vs-all manner.

In the following, we first introduce related work in Section 2.
Then, the method of learning discriminative features is presented
in Section 3. Action classification model and corresponding action
recognition experiments are shown in Section 4. We conclude the
paper in Section 5.
2. Related work

In the literature, there is very limited number of work focused
on recognizing actions in a limited number of frames. Here, we
introduce some related ones. Fei-Fei et al. [8] recognized actions
in single images by integrating scene and object level image
interpretations without leveraging motion cues. However, it is
known that to obtain such high level semantic information from
an image is not only computationally expensive, but also can be
unreliable in general. Wang et al. [18] proposed a hidden condi-
tional random field (hCRF) model, which combines the global and
local features of motion fields to distinguish actions. The local
patch features are clustered into ‘‘parts’’ each of which corre-
sponds to a hidden variable of hCRF. These parts and their
interactions are learned by maximizing the conditional likelihood
of the hCRF on the motion fields of individual video frames.
Schindler and Van Gool also studied the problem of recognizing
actions from a small number of frames (‘‘snippets’’), and achieved
encouraging results [19]. However, both methods require to track
the people in the videos using a bounding-box, which limits their
applications to the constrained or simple environments, like the
Weizmann dataset [20]. Carlsson and Sullivan [21] proposed to
model the actions using the silhouettes of human poses in video
frames containing the actions. However, their method requires to
explicitly extract the boundary of the actors, which is a difficult
problem itself especially for real-world data.

The proposed method differs from these methods in two
important aspects. First, the real-time/online feature explored in
the proposed method is not possessed by other state-of-the-art
methods to our best knowledge. Second, compared to [19,18,21],
in the proposed method, only the action labels of videos are
needed in both the training and test stage without explicit
annotating the bounding-boxes of the actors.
3. Learning discriminative simple features

In this section, we present a method to discover a set of
discriminative simple features from the patches of video frames.
In the following, we will first introduce the feature learning
method, followed by a theoretical explanation of the method.

3.1. Discriminative simple feature pursuit

3.1.1. Feature representation

To reduce computation, we extract features within local
patches of size M � N in pixels. The features in a patch are
quantized into an index set, namely patch index feature. As
illustrated in Fig. 1, the patch is equally divided into an m� n

grid (Fig. 1(e) and (f) shows an example of m¼ n¼ 3.) In each cell,
optical flow and Canny edge features are quantized into a two-
digit index, respectively, each ranging from 1 to 4. The first digit
encodes a cell location in the grid, the second accounts for the
feature’s orientation (see Fig. 1(a)). For example, the cell high-
lighted by a yellow dotted rectangle in Fig. 1(e) is located at the 7-
th cell of the patch, and its optical flow feature is quantized to be
4. Hence, the optical flow index feature of the cell is 74. Similarly,
its shape index feature is 72 (Fig. 1(f)). If considering both shape
and motion, the joint feature index is 742. Then, the patch index

feature is composed by the feature indices of all the cells within it.
If the mean magnitude of the features in a cell is smaller than a
threshold, the feature related to the cell is ignored, and denoted as
‘‘X’’ in Fig. 1(e)–(g).

It should be noted that the reason we adopt the mean
orientation of the optical flow and Canny edge features rather
than their magnitudes is because that the former is generally
more robust than the latter.

3.1.2. The discriminative features

We consider a feature to be discriminative, if it satisfies the
following property: their occurrence frequency is high in the
target action class but low in other classes. Correspondingly, we



Fig. 1. Encoding patch features as indices. (a) Optical flows and Canny edges are quantized into four sections according to their mean orientation indexed by 1–4. (b) A

frame of action ‘‘Running’’. (c) & (d) show its optical flows and Canny edges, respectively. The intensity indicates the magnitudes of the two features. The color in

(c) encodes the optical flow orientation. (e)–(g) illustrate the encoding method of the cells and the patch. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this article.)
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design two measurements for each index feature a for the two
criterion, i.e. the average positive occurrence (APO) RDc

ðaÞ and the
positive-negative occurrence ratio (PNO) uDc=Dc

ðaÞ, as

RDc
ðaÞ ¼

#Dc
ðaÞ

9Dc9
, uDc=Dc

ðaÞ ¼
RDc
ðaÞ

RDc
ðaÞ

ð1Þ

where Dc and Dc denote the patches from the video frames of
positive action class c and the patches from video frames of negative
action classes, respectively. #Dc

ðaÞ is the number of a appears in Dc.
RDc
ðaÞ measures the popularity of a in Dc, and uDc

ðaÞ reflects a’s
occurrence contrast between positive and negative classes, i.e. the
discriminative power. a is identified as a discriminative simple feature

if both RDc
ðaÞ and uDc

ðaÞ are above predefined thresholds.

3.1.3. Discriminative feature pursuit

To learn discriminative features between different video
classes, frame patches are sampled from both the positive video
frames and the negative ones, forming Dc and Dc , respectively. On
each frame, we uniformly extract overlapping image patches
whose centers are 5 pixels away either vertically or horizontally.
Then, patch index features are extracted from both Dc and Dc .

Algorithm 1 describes the discriminative feature pursuit pro-
cedure, in which yR and yu denote the thresholds of the APO and
PNO (refer to Eq. (1)), respectively. To learn discriminative
features, we first employ the FP-growth frequent pattern mining
technique in [14] to mine feature candidates whose occurrence
frequency in Dc is larger than yR. In Step 3, if a patch index feature
a is a subset of another patch index feature a0, we say a is
contained in a0. And the maximal set of a feature set is composed
by the features which are not contained in any other features of
the feature set. Then, in Step 4 we prune the candidates whose
PNOs are smaller than yu.

Algorithm 1. Discriminative simple feature pursuit algorithm.
Input: Positive patch set Dc, negative patch set Dc , yR, yu.
Output: Learned discriminative feature set Fc for action class c.

1.
 Fc ¼ |

2.
 Find all the patch index features whose occurrence

frequency in Dc ðRDc
ðaÞÞ are larger than yR using the

method in [14], denoted as set Fd.

3.
 Find the maximal set Fm from Fd.

4.
 For each patch index feature a in Fm,
(a)
 Compute its occurrence frequency RDc
ðaÞ in Dc .
(b)
 If uDc=Dc
ðaÞ4yu, remove it from Fd and add it to Fc.
(c)
 For each a0AFd also contained in a, if RDc
ða0Þ=RDc

ðaÞoyu,
remove it from Fd
5.
 If Fd is empty, return Fc; Otherwise, iterate from step 3.
Some learned discriminative simple features are illustrated in
Fig. 2(a). In the figure, the discriminative simple features are
learned to discriminate the two action pairs ‘‘Handwaving’’ vs
‘‘Running’’ and ‘‘Jogging’’ vs ‘‘Running’’. As can be observed, the
mined discriminative features of each type capture the semantic
structures of actions from different aspects. For instance, in
Fig. 2(b), the optical flow features differentiate the ‘‘Waving’’
frame from the ‘‘Running’’ frame by the arm motion, whereas
they distinguish the ‘‘Running’’ from ‘‘Waving’’ by the motion of
leg and torso (which generally move horizontally). The Canny
edge features discriminate the two action frames by the poses of
leg contours. The combined features capture the two action
frames’ characteristic differences of motion and shape/pose on
both the arm and leg simultaneously. For the confusing action
frame pair ‘‘Jogging’’ vs ‘‘Running’’ (Fig. 2(c)), the motion feature
alone cannot distinguish them well. However, the edge features
identify the ‘‘Jogging’’ frame using the vertical lines along the
torso, and pick up the slant lines along the leg as discriminative
simple features of the ‘‘Running’’ frame. This may be due to the
motion magnitude difference between the two actions. Compared
to the shape feature, the combined features further include some
new bits around the arms for the ‘‘Running’’ frame. These
observations confirm the enhancement of the discriminative
power brought by combining motion and shape features.

The detection of learned discriminative simple features in a
video frame is also very efficient. Given a video frame, we first
sequentially scan the M � N video patches in a fixed step length,
then extract path index features using the method in Section
3.1.1. Feature detection is then achieved by checking whether the
index set of a feature is contained in the feature index set of
the patch.
3.2. Theoretical underpinning

This section presents theoretical underpinnings of the model
and the algorithms presented in the previous section. Readers



Fig. 2. Mined discriminative simple features (a) and their density maps (b), (c) for two action frame pairs from KTH dataset [22]. A discriminative simple feature

corresponds to a mined subset (highlighted white feature bases) distributed in a frame patch within the purple sliding window. The discriminative simple features are

learned from three types of features, i.e. optical flow (OF), Canny edge (EG) and their combination (OFþEG). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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who are more interested in algorithms and applications can jump
to the next section.

Let A denote the set of all possible local feature configurations of
cells in a patch (patch index features). Given a video frame Ic
containing action instances of class c, it is composed by the instances
of a set of patch index features denoted by Fc,I ¼ fðai,n

I
iÞg

9A9
i ¼ 1, where

ni
I is the number of time ai appears in Ic. Hence, a type of actions can

be characterized by the set of patch index features and the distribu-
tion of the frequencies of these features appearing in the action
frames. In words, given a set of patch index features, an action
instance can be evaluated by the appearing frequencies of its patch
index features. Similar to [23], the set of discriminative patch index
features Ac ¼ faig

9Ac9
i ¼ 1 for action class c can be found by those

maximizing the average log-likelihood ratio

r¼
1

N

XN

j ¼ 1

log
pðIc,j9AcÞ

qðIc,j9AcÞ
¼

1

N

XN

j ¼ 1

log
pððn

Ic,j
ai
Þ
9Ac9
i ¼ 1Þ

qððn
Ic,j
ai
Þ
9Ac9
i ¼ 1Þ

ð2Þ

where pð�Þ is the probability density of the occurrence frequencies of
discriminative patch index features in the video frames containing
action c, and qð�Þ is the distribution of the same features in other type
of actions. n

Ic,j
ai

is the number of ai in Ic,j. N denotes the number of
training video frames of action type c. When N-1, the log-
likelihood ratio converges to the Kullback–Leibler (KL) divergence
between the distributions of the patch index features action type c

and the other actions. Assuming the features are independent, we
have

r¼
1

N

XN

j ¼ 1

X9Ac9

i ¼ 1

log
pðn

Ic,j
ai
Þ

qðn
Ic,j
ai
Þ

ð3Þ

As a result, using the method proposed in Section 3.1.3, we can find
the discriminative features of action c.
4. Action classification model

In this section, we present two efficient action recognition
methods using the learned discriminative features. We first
introduce a frame-based action recognition method, then extend
it to classify actions in videos.
4.1. Frame-based action classification model

We adopt a bag of word (BoG) representation for modeling
actions. The visual words are patch-index-features. Since the
discriminative features are learned independently, there may
exist strong correlation between these features. On the one hand,
the correlated features do not bring extra information for recog-
nizing actions; on the other hand, high-dimensional data cause
overfitting problem [24]. Considering this, we propose to group
the features according to their correlation. A boosting classifier
with decision trees as weak learners is adapted to classify each
action. The input of the decision trees are feature groups rather
than individual features.
4.1.1. Feature grouping

We define correlation between features according to their co-
occurrence, and group correlated features via clustering.

The clustering proceeds by first building a graph to connect
each feature in Ac. The graph nodes are the features, and an edge
between two features is weighted by their co-occurrence score, is
computed as the exponential of Phi coefficient [16] on their co-
occurrence statistics in the training dataset. Particularly, given a
patch set of action class c (Dc), the Phi coefficient between two
features a1 and a2 is computed as

fða1,a2Þ ¼
n11n00�n01n10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn10þn11Þðn01þn00Þðn10þn00Þðn11þn01Þ
p ð4Þ

where n11 is the number of patches that contain both of a1 and a2,
n00 is the number of patches containing neither of them, and n01

and n10 are the numbers of patches containing either of them.
The graph partition method in [25] is employed to segment the

graph into a number of groups. In Fig. 3, we show some instances
of feature groups. It can be observed that the features in the same
group can be closely related to some semantics. For example, the
two features in Fig. 3(a) both account for the head and torso shape
of the people when stretching their hands; and the features in
Fig. 3(e) are grouped together corresponding to the leg motion in
the ‘‘walking’’ action.



Fig. 3. Examples of feature groups. (a)–(e) each shows a number of features in one group.
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4.1.2. Boosted decision trees with grouped features

The Boost framework with decision trees as weak learners are
employed as the classification model due to its computational
efficiency and competitive classification accuracy. However,
instead of using individual features, we learn the split functions
of tree nodes based on the feature groups. We call this model as
boosted trees with grouped features (BTwGF).

The proposed BTwGF are trained in a one-vs-all manner. Let
Hc(I) denote the classifier of action class c. It is composed of a set
of weighted decision trees fhc,ig

nc

i ¼ 1

HcðIÞ ¼
X

i

ac,ihc,iðIÞ ð5Þ

where ac,i is the learned weights of the i-th decision tree hc,ið�Þ.
The action label cn for an action video frame can be determined as

cn ¼ arg max
c

HcðIÞ ð6Þ

In training a decision tree hc,i, on each tree node, we randomly
select a subset of feature groups; for a feature group, we run a
Boolean test on each feature of the group, and the corresponding
split threshold is recorded as the value that maximizes the
information gain. (A datum is assigned to a tree branch according
to the majority voting of these Boolean tests of the features.)
We compute the information gain for each feature group using
the training data at the node. The group with the maximum sum
of information gains is assigned to the tree node, and each
Boolean test threshold of the features are employed to the split
function of the tree node. This step can be considered as a Max

pooling operation on the grouped feature variables. This max-like
behavior is observed in cortical neurons during visual processing
for object recognition, and it implies that this nonlinear neuronal
function induces feature invariance while preserving feature
specificity [26,27]. We stop growing a decision tree when the
information gain is trivial or at a shallow depth (three layers in
our implementation) to ensure its good generalization ability.

The learned trees serve not only as a computational engine,
but also as a discriminative structural representation for actions.
We call them patch-based actionlets. Some example actionlets are
illustrated in Fig. 4. The actionlets can be seen as a type of
discriminative template describing the shape and motion con-
straints for the action. For example, the second example in Fig. 4
is a snapshot of the hand waving action. It shows an actionlet
which contains three nodes accounting for a vertical line in the
leg and an upward motion in the arm. (It should be noted that
there are many actionlets existing in one video frame, however, in
Fig. 4 only shows one actionlet per frame, it is for illustration
purpose.)

4.2. Video-based action classification model

We further extend the frame-based method to recognize
actions using more frames or even whole videos. The assumption
is, if we can get good predictions using some of the frames in a
video, by accumulation, the prediction accuracy can be improved
over the whole video sequence.

For training the video-based model, we use the same method
as the frame-based model mentioned above. Action recognition/
classification on a given video clip is then accomplished by the
following steps. (i) Key frame sampling. Key-frames are sampled
from the video clip every four frames to reduce computational
cost. (ii) Key frame selection. Because the key frames are sampled
without any preference – some snapshots of actions can be
ambiguous, while some are very distinguishable – different
frames provide diverse confidence in judging its action label.
We propose to further select a subset of confident key frames to
participate in recognizing actions as follows. We compute the
confidence score of a frame It as

confðItÞ ¼maxc

P
iac,ihc,iðIÞP

iac,i

(refer to Eq. (5)). If confðItÞ40:6, the key frame It is a confident key

frame. The selected confident key frame set is denoted as K. (iii)
We recognize the action in these confident key frames using the
method in Section 4.1. (iv) The action label cn of the video is
determined by majority voting

cn ¼ arg max
c

X

It AK
HcðItÞ ð7Þ

4.3. Experimental evaluation

Two challenging action datasets are used to evaluate the proposed
method, the YouTube dataset [3] and the UCF sport dataset [28]. The
YouTube dataset is collected from YouTube web site containing 11
types of actions, such as basketball shooting and volleyball spiking.
There are 1595 video sequences in total. For each action type, the
videos are manually divided into 25 groups by the authors of [28]
each of which contains videos of similar background or subclips of a
same video. The UCF sport action dataset is collected from broadcast
television channels such as the BBC and ESPN containing various



Fig. 4. Examples of patch-based actionlets for the KTH dataset [22]. In the first two frames, each decision tree/actionlet has three nodes; the rest have two nodes each.

Fig. 5. Some example frames of (a) the YouTube dataset and (b) the UCF sport action dataset and their density maps of the learned discriminative simple features.

Fig. 6. Results of frame-based action recognition method on YouTube dataset. (a) Confusion matrix of the action recognition accuracy. (b) Recognition accuracy

comparison among the proposed method using joint features (OFþEG), using motion feature (OF), using shape feature (EG), the method in [2] without the feature grouping

(No group) and the methods in [6] (LAP) and [7] (DOL).
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sports videos. The dataset contains only 146 video sequences but
covers ten types of actions including ‘‘diving’’, ‘‘golf swinging’’, etc. We
use it to test the robustness of the proposed method given limited
amount of training data of challenging scenes.

In all the experiments, we set the average positive occurrence
(APO) Eq. (1) threshold to 2; the positive–negative occurrence
ratio (PNO) Eq. (1) threshold of each action is chosen such that
there are K discriminative features mined (K¼700 for YouTube
dataset and 1200 for UCF dataset).

To evaluate the frame-based action classification method, we
divide the videos in a dataset into a training set and a testing set.
Then, video frames are uniformly sampled from the videos in a
fixed step length (e.g. 6) for training and testing. When evaluating
the video-based action classification method, we randomly sam-
ple subclips from the training and testing videos to build the
training and testing datasets.
4.3.1. Evaluation on YouTube dataset

Cross-validation is used to evaluate the proposed method. In
our implementation, the sampled patch size is M¼N¼ 56 and
each patch is divided into a 8�8 grid with m¼ n¼ 7 in pixels
(refer to Section 3.1.1 for notation description). We learn 700
discriminative patch index features for each action class and
cluster them into 300 feature groups using the method in
Section 4.1.1. The distributions of the learned discriminative
simple features are illustrated in Fig. 5(a). It is interesting to note
that (i) most of the features are distributed on the acting subjects;
(ii) some features are located on semantic meaningful context of
the actions. For example, the springboard of the ‘‘Diving’’ action.
The observation confirms that the learned features capture
semantically meaningful parts of the action videos.

Frame-based action recognition performance. Fig. 6 compares the
action recognition accuracy between the proposed method and two
popular methods [22,7] which are based on the spatio-temporal
interest point (STIP) detectors. To test the performance of the STIP
based method, we use the same set of training/testing frames as ours.
The STIPs are clustered into 2000 clusters by the K-means algorithm.
As can be seen, the proposed method outperforms the STIP based
methods. (Extracting STIPs requires usually more than six frames.)

Video-based action recognition performance. The confusion
matrix of the action recognition accuracy is shown in Fig. 7(a).
Fig. 7(b) shows the recognition accuracy changes when testing
the proposed method on video clips of different lengths.
For comparison, the same measure of the methods in [22,7]
is plotted. It can be seen that the recognition accuracy of the
proposed method increases when more video frames are pro-
vided. This demonstrates the accumulation effect of the frame-
based recognition improves the recognition accuracy of videos.

Table 1 shows the comparison result between our method and
a method proposed in [3]. The method in [3] recognizes actions
using a combination of static and motion features, which achieves



Fig. 7. Results of video-based action recognition method on YouTube dataset. (a) Confusion matrix of the action recognition accuracy. (b) Recognition accuracy curves over

different frame length. (c) Comparison of average recognition accuracy with the method in [2].

Table 1
Comparison results on video-based action recognition on the YouTube dataset. The

method in [3] used three types of features: motion, static and hybrid. The feature

number is the average number of detected features in each training video.

Method Ours Method in [3]

Motion Static Hybrid

Accuracy 69.7% 65.1% 63.0% 71.2%

Feature number 3000 400 8000 8400

Table 2
Computational complexity on the YouTube dataset (1st and 2nd rows) and the

UCF dataset (3rd and 4th rows).

Feature

number

Resolution Optical

flow

Canny

edge

Boosting Disc. feature

detection

Total

3300 320�240 0.0464 0.0094 0.0001 0.0764 0.1323

7700 0.1756 0.2315

2700 � 400� 300 0.0624 0.0121 0.0001 0.0735 0.1481

6300 0.1913 0.2659
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the best performance on the YouTube dataset to our knowledge.
The comparison shows that the proposed method achieves a
comparable performance even using fewer number of features.

Computational complexity. Table 2 shows the average compu-
tational time on the YouTube dataset when using different
number of discriminative features. It can be seen that the main
time consumption is spent on feature detection.
4.3.2. Evaluation on UCF sport dataset

Since the number of videos in the dataset is very limited
(about 10 sequences for each action type), for each action class,
we randomly select Roundðminð0:9nN,N�1ÞÞ video sequences for
training the action classification model, and the rest ones for
testing. In the feature grouping, we cluster the 1200 discrimina-
tive patch index features of each action class into 300 groups. The
size of the sampled patches and the grid size are the same as used
in the YouTube dataset. Some example of the discriminative
features are shown in Fig. 5(b).

Frame-based action recognition performance. The confusion
matrix of the action recognition accuracy on UCF dataset is shown
in Fig. 8(a). Although the dataset is complex and of small number of
training data, we still achieve a reasonably good results (an average
recognition accuracy of 60.9%). From the results in Fig. 8(a), we can
see that the action ‘‘Golf Swing’’ and ‘‘Kick’’ are likely to be confused
with ‘‘walking’’. This is because there are many frames of the two
action videos also contain the walking actions. The three actions,
‘‘Diving’’, ‘‘Lifting’’ and ‘‘Swingbar’’, possess the highest classification
accuracy. The comparison of the proposed method with the
methods in [2,22,7] are shown in Fig. 8(b). As can be seen, our
method is more robust and accurate when training set is small.

Video-based action recognition performance. The results are
shown in Fig. 9. The recognition accuracy of our method using
60 frame length clips is 75.0%. It increases when more video
frames are used but begins to drop when over 60 frames. This is
because some actions in this dataset only last for about 40–60
frames. When more frames are provided, some action-irrelevant
video frames also come to vote for the action types, which
deteriorates the action recognition accuracy. (For example, the
golf swing action contains walking or running in the video.
The same case in the soccer videos.) The proposed method
outperforms the method in [28], which uses a template based
method with a recognition accuracy of 69.1%. The method in [28]
needs to annotate a circle of actions in the videos so as to train the
MACH model. Whereas, the proposed method achieves a better
result using less supervision in training.
5. Conclusion

In this paper, we took the ‘‘instantaneity’’ criteria into con-
sideration when building action recognition models and proposed



Fig. 8. Results of frame-based action recognition method on UCF dataset. (a) Confusion matrix of the action recognition accuracy. (b) Recognition accuracy comparison

among the proposed method, the methods in [2,6,7].

Fig. 9. Results of the video-based action recognition results on the UCF dataset. (a) Confusion matrix of the recognition accuracy of proposed method. (b) Recognition

accuracy curves over different frame length. (c) Comparison of action recognition accuracy with the method in [2].
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an efficient action recognition method by pursuing computation-
ally efficient and discriminative simple features from couple of
video frames. And we propose to group correlated features to
improve the compactness of model. The proposed discriminative
features learning method can be generalized to discover distin-
guishing features in other applications.

However, the proposed method has the following limitation. The
discriminative features are learned only as spatial discriminative
configurations of local features, and the recognition of the action is
performed in a frame-based manner. The temporal distribution of
the features are not taken into consideration in both the feature
learning and the action recognition. In the future, we will extend
the proposed method by studying efficient models that incorporate
temporal information so as to enhance the current model.
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