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Abstract: A fuzzy test for testing statistical hypotheses about an imprecise
parameter is proposed for the case when the available data are also imprecise.
The proposed method is based on the relationship between the acceptance
region of statistical tests at level β and confidence intervals for the param-
eter of interest at confidence level 1 − β. First, a fuzzy confidence interval
is constructed for the fuzzy parameter of interest. Then, using such a fuzzy
confidence interval, a fuzzy test function is constructed. The obtained fuzzy
test, contrary to the classical approach, leads not to a binary decision (i.e. to
reject or to accept the given null hypothesis) but to a fuzzy decision showing
the degrees of acceptability of the null and alternative hypotheses. Numer-
ical examples are given to demonstrate the theoretical results, and show the
possible applications in testing hypotheses based on fuzzy observations.

Zusammenfassung: Aufbauend auf der Beziehung zwischen Konfidenzin-
tervallen für Parameter von stochastischen Modellen und statistischen Tests
für Parameterhypothesen, wird eine Verallgemeinerung für den Fall unschar-
fer Daten und zugehörigen unscharfen Konfidenzintervallen vorgeschlagen.
Die zugehörigen verallgemeinerten Tests liefern unscharfe Entscheidungen
mit Graden von Annahmen bzw. Ablehungen von Hypothesen. Numerische
Beispiele aus der Lebensdaueranalyse zeigen die Anwendbarkeit von solchen
statistischen Tests für unscharfe Beobachtungen.

Keywords: Confidence Interval, Fuzzy Parameter, Fuzzy Test, Fuzzy Ran-
dom Variable, Lifetime Testing, Testing Statistical Hypotheses.

1 Introduction
Hypothesis testing and confidence intervals play a prominent role in classical statistical
texts. In the classical theory of parametric statistical inference there is a relationship be-
tween the totality of parameter values for which the null hypothesis is accepted and the
structure of the confidence intervals. Namely, a family of acceptance regions for a statis-
tical test about a parameter θ, at level β, is equivalent to a certain family of confidence
intervals for the parameter, at confidence level 1− β. If the value of the parameter spec-
ified by the null hypothesis is contained in the 1 − β confidence interval then the null
hypothesis cannot be rejected at level β, and if it is not contained in the 1− β confidence
interval then the null hypothesis can be rejected at level β.

As an early study, we can mention the work by Press (1966), in which he compared
two well known procedures proposed for the Behrens-Fisher problem, based on compar-
ing the expected length of the confidence intervals they yield. Finner (1994), based on the
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duality between tests and confidence sets, introduced a method to derive one-sided con-
fidence bounds following the rejection of a null hypothesis with two-sided alternatives.
Bolviken and Skovlund (1996) investigated the structure and characteristics of confidence
intervals obtained by inverting some Monte Carlo tests. Dümbgen (1998) introduced
some goodness-of-fit tests and studied their application to nonparametric confidence sets.
Holm (1999) by introducing the concept of confidence directional sets, studied the con-
struction of multiple confidence sets related to stage-wise multiple tests. Mukerjee and
Reid (2001) compared some test statistics via expected lengths of associated confidence
intervals based on their asymptotic behaviors. The topic of relation between testing hy-
potheses and confidence intervals has been studied also from a practical point of view. For
example, Brandstätter and Kepler (1999) argued to replace significance testing by confi-
dence intervals in psychological methodology. Tryon (2001) described an integrated,
alternative inferential confidence interval approach to testing for statistical difference,
equivalence, and indeterminacy that is algebraically equivalent to standard testing sta-
tistical hypotheses. Beaulieu-Préost (2006) provided the conceptual tools necessary to
implement an approach based on confidence intervals, and demonstrated why such an ap-
proach is an interesting alternative to an approach based on hypothesis testing. For a brief
technical review on the relationship between testing hypotheses and confidence intervals,
the reader is referred to Casella and Berger (2002, p. 444) and Lehmann and Romano
(2005, p. 72).

In this paper, we wish to apply this point of view to fuzzy environment to propose a
fuzzy test for testing hypotheses about a fuzzy parameter of a statistical model, based on a
fuzzy confidence interval for the fuzzy parameter. The problems of testing fuzzy hypothe-
ses and fuzzy confidence intervals have been devised independently by many authors. But,
up till now, these two problems, i.e. testing statistical hypotheses and confidence intervals
in fuzzy environment, have been separately considered in the literature. Some of the main
approaches to such problems are briefly reviewed below.

Grzegorzewski and Hryniewicz (1997) reviewed some methods in testing statistical
hypotheses in fuzzy environment, pointing out their advantages or disadvantages and
practical problems. Grzegorzewski (2000, 2009) suggested some fuzzy tests for testing
statistical hypotheses based on vague data in parametric and non-parametric populations.
Arnold and Gerke (2003) studied testing fuzzy linear hypotheses in linear regression mod-
els. Filzmoser and Viertl (2004) presented an approach for testing hypotheses at the basis
of fuzzy values by introducing the fuzzy p-value, (see also Parchami, Taheri, and Mash-
inchi, 2010 for a p-value based approach to the problem of testing fuzzy hypotheses).
Montenegro, Colubi, Casals, and Gil (2004), using a generalized metric for fuzzy num-
bers, proposed a method to test the fuzzy mean of a fuzzy random variable (abbreviated as
FRV). Parchami, Mashinchi, Yavari, and Maleki (2005) studied a fuzzy version of some
process capability indices when specification limits are fuzzy rather than precise, and ob-
tained fuzzy confidence intervals for such indices. Wu (2005) proposed decision rules
based on FRVs that are used to accept or reject the null and alternative hypotheses about
a fuzzy parameter using the concepts of degrees of optimism and pessimism. González-
Rodrı́guez, Montenegro, Colubi, and Gil (2006b) introduced a bootstrap approach to the
one-sample test of mean for imprecisely valued sample data. Hryniewicz (2006) inves-
tigated the problem of the interpretation of the results of statistical tests in terms of the
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theory of possibility. In this work, the concept of p-value was given a new possibilistic
interpretation and was generalized for the case of imprecisely defined statistical hypothe-
ses and vague statistical data. Viertl (2006, 2011) investigated some methods to construct
confidence intervals and statistical tests for fuzzy data. Akbari and Rezaei (2009) in-
vestigated a bootstrap method for inference about the variance based on fuzzy data. Wu
(2009) and Chachi and Taheri (2011) proposed some approaches to construct fuzzy con-
fidence intervals for the unknown fuzzy parameter. Arefi and Taheri (2011) developed an
approach to test fuzzy hypotheses upon a fuzzy test statistic for vague data. González-
Rodrı́guez, Colubi, and Gil (2012) developed a one-way ANOVA test approach for fuzzy
observations in which the fuzzy observations are treated as functional data of a functional
Hilbert space. The reader is referred to the work by Taheri (2003) for a general review on
statistical methods in fuzzy environment.

The aim of this work is to introduce a new approach to the problem of testing statistical
hypotheses for fuzzy data using the relationship between confidence intervals and testing
hypotheses. To do this we employ the method of constructing fuzzy confidence intervals
for fuzzy parameters investigated by Chachi and Taheri (2011).

The rest of this paper is organized as follows. In the next section, some basic con-
cepts that will be used in the sequel are recalled. Sections 3 and 4 provide statement
and formalization of the problem of constructing fuzzy tests for vague data and impre-
cise parameters, respectively. Numerical examples are given in Section 5 to clarify the
theoretical results, and to show possible applications of testing hypotheses about a fuzzy
parameter based on fuzzy observations. In the final section, we make some concluding
remarks.

2 Preliminaries

2.1 Fuzzy Arithmetic

In this paper let R, the set of all real numbers, be the universal set which is endowed
with a topological structure. A fuzzy subset (briefly, a fuzzy set) Ã of R is defined by its
membership function Ã : R → [0, 1]. For each α ∈ (0, 1], the α-level set of Ã is defined
by Ãα = {x ∈ R : Ã(x) ≥ α}, and Ã0 is the closure of the set {x ∈ R : Ã(x) > 0}. The
fuzzy set Ã is called a fuzzy number if each Ãα is a nonempty closed bounded interval
for all α ∈ (0, 1]. The α-level set of each fuzzy number Ã is usually denoted by Ãα =
[Al

α, A
u
α], where Al

α = inf{x ∈ R : A(x) ≥ α} and Au
α = sup{x ∈ R : A(x) ≥ α}.

A wide class of fuzzy sets in F(R) (the set of all fuzzy numbers of R), which is rich
and flexible enough to cover most of the applications, is the class of so-called LR-fuzzy
numbers Ñ = (n, l, r)LR with central value n ∈ R, left and right spreads l, r ∈ R,
decreasing left and right shape functions L,R : R+ → [0, 1], with L(0) = R(0) = 1.
Typically, the LR-fuzzy number Ñ could be shown by the following membership function
(Zimmermann, 2001)

Ñ(x) =

{
L(n−x

l
) if x ≤ n ,

R(x−n
r
) if x > n .
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We can easily obtain the α-level sets of Ñ as

Ñα = [N l
α, N

u
α ] = [n− L−1(α)l, n+R−1(α)r] , ∀α ∈ [0, 1] .

A special kind of LR-fuzzy numbers are the triangular fuzzy numbers denoted by Ã =
(a, al, ar)T . The membership function and the α-level sets of a triangular fuzzy number
Ã are

Ã(x) =

{
x−(a−al)

a l
if a− al ≤ x < a ,

(a+ar)−x
a r

if a ≤ x ≤ a+ ar ,

Ãα = [Al
α, A

u
α] = [a− (1− α)al, a+ (1− α)ar] , ∀α ∈ [0, 1] .

Using the extension principle, arithmetic operations on fuzzy numbers are defined by

(Ã⃝ B̃)(z) = sup
x,y:x◦y=z

min{Ã(x), B̃(y)} ,

where ⃝ is any kind of the extended arithmetic operations ⊕, ⊖, ⊗, and ⊘, and ◦ is any
kind of the arithmetic operations +, −, ×, and /. It is well-known that if Ã and B̃ are two
fuzzy numbers, then Ã⊕ B̃ is also a fuzzy number and (Ã⊕ B̃)α = [Al

α+Bl
α, A

u
α+Bu

α],
for all α ∈ (0, 1] (for more details, see e.g. (Zimmermann, 2001)).

A well-known ordering of fuzzy numbers, used in the sections below for defining
hypotheses about a fuzzy parameter, is defined as (Wu, 2005):

1. Ã = ( ̸=)B̃, if Al
α = (̸=)Bl

α and Au
α = (̸=)Bu

α for any α ∈ (0, 1].

2. Ã ≼ (≺)B̃, if Al
α ≤ (<)Bl

α and Au
α ≤ (<)Bu

α for any α ∈ (0, 1].

3. Ã ≽ (≻)B̃, if Al
α ≥ (>)Bl

α and Au
α ≥ (>)Bu

α for any α ∈ (0, 1].

2.2 Fuzzy Random Variables (FRVs)
Let (Ω,A) be a measurable space where Ω is a set of all possible outcomes of an experi-
ment and A is a σ-algebra of subsets of Ω (the set of all possible events) and (R,B) be the
Borel measurable space. Throughout this paper, we assume that all random variables have
the same probability space (Ω,A, P ), where P is a probability measure on the measurable
space (Ω,A).

The set valued function f : Ω → P(R) (where P(R) is the power set of R) is called
measurable if and only if {(x, y) : y ∈ f(x)} is A × B-measurable (Aumann, 1965). If
f̃ : Ω → F(R) is a fuzzy-valued function then f̃α is a set-valued function for all α ∈ [0, 1]
where f̃α(ω) = {x ∈ R|f̃(ω)(x) > α} (Nguyen, 2006). The fuzzy-valued function f̃ is
called measurable if and only if f̃α is (set-valued) measurable for all α ∈ [0, 1]. The
fuzzy-valued function X : Ω → F(R) is called a FRV if X is measurable. It is shown
that, the fuzzy-valued function X : Ω → F(R) is a FRV if and only if X l

α : Ω → R
and Xu

α : Ω → R are two real valued random variables for all α ∈ (0, 1] (where ∀ω ∈
Ω; X (ω)α = [X l

α(ω), X
u
α(ω)]) (Puri and Ralescu, 1986; Kruse and Meyer, 1987).
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A fuzzy number E(X ) ∈ F(R) is called the (fuzzy) expectation of X , if E(X )α =
[EX l

α, EXu
α] for all α ∈ (0, 1]. It is proved that under some conditions, E(X ) exists and

it is a unique fuzzy number in F(R) (Feng, 2000).
A FRV X is called a normal (Gaussian) FRV if X = E(X ) ⊕ Ξ, where Ξ is a

(usual) normal random variable with mean 0 and variance σ2, i.e. Ξ ∼ N(0, σ2) (Puri
and Ralescu, 1985). For a normal FRV X , we have X l

α ∼ N(EX l
α, σ

2) and Xu
α ∼

N(EXu
α, σ

2), for all α ∈ (0, 1] (Feng, 2000). Let θ̃ = E(X ). Then we say that
X is distributed as N (θ̃, σ2), and write X ∼ N (θ̃, σ2), if X is a normal FRV with
X = E(X )⊕ Ξ = θ̃ ⊕ Ξ (Wu, 2005).

FRVs X and Y are called identically distributed if X l
α and Y l

α, and Xu
α and Y u

α are
identically distributed, for all α ∈ (0, 1]. They are called independent if each random
variable in the set {X l

α, X
u
α : α ∈ (0, 1]} is independent of each random variable in the

set {Y l
α, Y

u
α : α ∈ (0, 1]} (Kruse and Meyer, 1987; Wu, 2005, 2009).

We say that X = (X1, . . . ,Xn) is a normal fuzzy random sample of size n, if the Xi’s
are independent and identically distributed normal FRVs, for all i = 1, . . . , n. In this case
we write (X1, . . . ,Xn)

iid∼ N(θ̃, σ2). Let (X1, . . . ,Xn)
iid∼ N(θ̃, σ2), then (X l

1α, . . . , X
l
nα)

iid∼
N(θlα, σ

2) and (Xu
1α, . . . , X

u
nα)

iid∼ N(θuα, σ
2) for all α ∈ (0, 1], where θ̃α = [θlα, θ

u
α] (Wu,

2005, 2009).

3 Statement of the Main Problem
In this paper, by developing the concept of fuzzy confidence intervals and using the one-
to-one relationship between tests and confidence intervals, it may be convenient to define
fuzzy statistical tests based on fuzzy confidence intervals. Therefore, the results of a
fuzzy statistical test can alternatively be stated in terms of the corresponding fuzzy con-
fidence interval. In such a case, we may use, for example, the degree of membership of
the null hypothesized fuzzy parameter in the fuzzy confidence interval as the degree of
acceptability of the null hypothesis.

In the following, first, we briefly review the correspondence between confidence inter-
vals and testing hypotheses in classical statistical inference (Lehmann and Romano, 2005,
Chapter 3). Then, we use such a relationship in fuzzy environment, when the observations
and the parameter of interest are fuzzy rather than crisp.

3.1 The Relationship between Testing Hypotheses and Confidence
Intervals: The Classical Approach

Consider the problem of testing the null hypothesis H(θ0) : θ = θ0 versus an alternative
hypothesis. For each θ0, let A(θ0) denotes the acceptance region of a level β test of the
hypothesis H(θ0) : θ = θ0. If S(x) = {θ : x ∈ A(θ)} then

θ ∈ S(x) ⇐⇒ x ∈ A(θ) , (1)

and hence
Pθ {θ ∈ S(X)} ≥ 1− β , for all θ. (2)
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Thus, based on the relation (1), any family of level β acceptance regions leads to a family
of confidence sets at confidence level 1−β. Conversely, given any class of confidence sets
S(x) satisfying (2), let A(θ) = {x : θ ∈ S(x)}. Then the sets A(θ0) are level β acceptance
regions for testing the hypothesis H(θ0) : θ = θ0, and the confidence sets S(x) show for
each θ0 whether for the particular observed x the hypothesis H(θ0) is accepted or rejected
at level β.

So, a confidence set can be viewed as a statement about testing hypothesis H(θ),
which exhibits the values for which the hypothesis is accepted, i.e. {θ : θ ∈ S(x)} (or
{θ : IS(x)(θ) = 1}, where IA(·) stands for the indicator function of a set A) and those for
which it is rejected, i.e. {θ : θ ̸∈ S(x)} (or {θ : 1 − IS(x)(θ) = 1}). Therefore, we can
summarize the test function for testing hypothesis H0(θ0) : θ = θ0 versus some H1 as

φ(x; θ0) =
{
0 if θ0 ∈ S(x) (or IS(x)(θ0) = 1) ,

1 if θ0 ̸∈ S(x) (or IS(x)(θ0) = 0) ,

where, “0” and “1” stand for acceptance and rejection of the null hypothesis, respectively.
The above test function is a rule stating that the null hypothesis can be rejected if the
confidence interval does not contain the hypothesized value of the parameter, and cannot
be rejected if the interval contains the hypothesized value.

Example 1. Let X1, . . . , Xn be iid from the normal distribution N(θ, 1) with an unknown
mean θ. A confidence interval at confidence level 1 − β for θ of the form S(X) = [X̄ −
1√
n
z1−β

2
, X̄ + 1√

n
z1−β

2
] can easily be derived, where zβ is the β-quantile of the standard

normal distribution, i.e. Φ(zβ) = β. Assume in a random sample with size n = 25,
x̄ = 0.75 is observed and we want to test H0 : θ = 0.5 versus H1 : θ ̸= 0.5 at level
β = 0.05. Since S(x) = [0.358, 1.142], therefore, the test function is derived as

φ(x; 0.5) =
{
0 if IS(x)(0.5) = 1,
1 if IS(x)(0.5) = 0.

In this case, based on the observed value of x̄, we accept the null hypothesis at level
β = 0.05.

3.2 The Relationship between Testing Hypotheses and Confidence
Intervals: The Fuzzy Environment

Now, we are going to use the relationship between confidence intervals and testing hy-
potheses in the case where the parameter of interest as well as available data are fuzzy,
and hypotheses of interest are statements about an imprecise parameter. In this case, as
we shall see, the fuzzy confidence set can be viewed as a statement about testing the hy-
pothesis H : θ̃ = θ̃0, which exhibits the values for which the hypothesis is accepted with
degree C(θ̃0), i.e. {θ̃0 ∈ C̃(X ) : C(θ̃0) > 0} and those for which it is rejected with degree
1−C(θ̃0), i.e. {θ̃0 ∈ C̃(X ) : 1−C(θ̃0) > 0}, where C̃(X ) is a fuzzy confidence interval
for the fuzzy parameter of interest (Chachi and Taheri, 2011).

In this paper, we will introduce some procedures for testing the following hypotheses:

1. H0 : θ̃ = θ̃0 versus H1 : θ̃ ̸= θ̃0.
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2. H0 : θ̃ = θ̃0 versus H1 : θ̃ ≻ θ̃0.

3. H0 : θ̃ = θ̃0 versus H1 : θ̃ ≺ θ̃0.

Note that, in the above framework, the possible values of the parameter of interest are
expressed as linguistic variables, which may be treated as fuzzy perceptions of the usual
unknown parameter θ (Kruse and Meyer, 1987; Grzegorzewski, 2009).

4 The Proposed Procedure
In this section, based on fuzzy confidence intervals, we investigate some procedures to
provide fuzzy tests for testing hypotheses of a fuzzy parameter for fuzzy data. The proce-
dures derive the degrees of acceptability of the null and the alternative hypotheses, which
are explained for the case that the data are observations of a normal fuzzy random sample
with unknown fuzzy mean θ̃ and known variance σ2, i.e. X1, . . . ,Xn

iid∼ N(θ̃, σ2).

1. Testing H0 : θ̃ = θ̃0 versus H1 : θ̃ ̸= θ̃0

Step 1. First we transform the original testing problem

H0 : θ̃ = θ̃0 versus H1 : θ̃ ̸= θ̃0 , (3)

into a set of crisp testing problems concerning α-levels of the fuzzy parameter. For each
α-level, based on the samples Xl

α = (X l
1α, . . . , X

l
nα) and Xu

α = (Xu
1α, . . . , X

u
nα), the

following classical testing problems are solved at level β

H0 : θ
l
α = θl0α versus H1 : θ

l
α ̸= θl0α , (4)

H0 : θ
u
α = θu0α versus H1 : θ

u
α ̸= θu0α , (5)

where θ̃α = [θlα, θ
u
α] and θ̃0α = [θl0α, θ

u
0α].

Step 2. We obtain the 1 − β confidence intervals for the crisp parameters θlα and θuα for
each α ∈ (0, 1], denoted by [L1(Xl

α), L2(Xl
α)] and [U1(Xu

α), U2(Xu
α)], respectively.

Step 3. We test the hypotheses (4) and (5) by investigating if the two-sided 1 − β confi-
dence intervals [L1(Xl

α), L2(Xl
α)] and [U1(Xu

α), U2(Xu
α)] contain θl0α and θu0α, respectively.

In fact, the test functions can be shown to be the following:

φ(Xl
α; θ

l
0α) =

{
0 if θl0α ∈ [L1(Xl

α), L2(Xl
α)] ,

1 if θl0α ̸∈ [L1(Xl
α), L2(Xl

α)] ,

φ(Xu
α; θ

u
0α) =

{
0 if θu0α ∈ [U1(Xu

α), U2(Xu
α)] ,

1 if θu0α ̸∈ [U1(Xu
α), U2(Xu

α)] .

Example 2. Let X1, . . . ,Xn
iid∼ N(θ̃, σ2), with unknown fuzzy mean θ̃ and known crisp

variance σ2. Then, we have X l
1α, . . . , X

l
nα

iid∼ N(θlα, σ
2) and Xu

1α, . . . , X
u
nα

iid∼ N(θuα, σ
2).
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Therefore, the two-sided symmetric confidence intervals for parameters θlα and θuα, at
confidence level 1− β, can easily be derived as

ST

(
Xl

α

)
=

{
θlα :

∣∣∣∣√n(X̄ l
α − θlα)

σ

∣∣∣∣ ≤ z1−β
2

}
=

[
X̄ l

α − σ√
n
z1−β

2
, X̄ l

α +
σ√
n
z1−β

2

]
, (6)

ST (Xu
α) =

{
θuα :

∣∣∣∣√n(X̄u
α − θuα)

σ

∣∣∣∣ ≤ z1−β
2

}
=

[
X̄u

α − σ√
n
z1−β

2
, X̄u

α +
σ√
n
z1−β

2

]
, (7)

where, X̄j
α = n−1

∑n
i=1X

j
ih for j = l, u.

So, the test functions for testing hypotheses (4) and (5) are obtained as

φ(Xl
α; θ

l
0α) =


0 if θl0α ∈

[
X̄ l

α − σ√
n
z1−β

2
, X̄ l

α + σ√
n
z1−β

2

]
,

1 if θl0α ̸∈
[
X̄ l

α − σ√
n
z1−β

2
, X̄ l

α + σ√
n
z1−β

2

]
,

φ(Xu
α; θ

u
0α) =


0 if θu0α ∈

[
X̄u

α − σ√
n
z1−β

2
, X̄u

α + σ√
n
z1−β

2

]
,

1 if θu0α ̸∈
[
X̄u

α − σ√
n
z1−β

2
, X̄u

α + σ√
n
z1−β

2

]
.

1

X̄
Conf. Bounds

X̄
l
0 − σ√

n
z

1−β
2

X̄
l
0 +

σ√
n
z

1−β
2

X̄
u
0 +

σ√
n
z

1−β
2

X̄
u
0 − σ√

n
z

1−β
2

X̄
l
α +

σ√
n
z
1−β

2

X̄
l
α − σ√

n
z
1−β

2

X̄
u
α − σ√

n
z
1−β

2

X̄
u
α +

σ√
n
z
1−β

2

X̄ − σ√
n
z
1−β

2

X̄ +
σ√
n
z
1−β

2

α

Figure 1: Graphical representation of the confidence bound constructed from the class of
two-sided (1− β) confidence intervals in Step 4.

Step 4. We aggregate the results in Step 3, in order to construct a fuzzy test. The purpose
of this aggregation is to obtain a fuzzy confidence interval which helps us to derive a fuzzy
test based on the degree of membership of each fuzzy parameter θ̃ in the fuzzy confidence
interval. To do this, first, the values of α for which the null hypotheses (4) and (5) are
accepted or rejected, need to be categorized. In order to categorize the values of α easily,
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1
θ̃0

X̄
Conf. Bounds

θ̃0

θ̃0

α

X̄
u
0 +

σ√
n
z

1−β
2

X̄
u
0 − σ√

n
z

1−β
2

X̄
l
0 +

σ√
n
z

1−β
2

X̄
l
0 − σ√

n
z

1−β
2

Figure 2: The hypothesis H0 : θ̃ = θ̃0 is completely accepted.

we utilize the confidence bound constructed from the confidence intervals in (6) and (7),
as shown in Figure 1. To construct this plot, by beginning from 0 to 1, we put together the
confidence intervals in (6) and (7) in such a way that every confidence interval receives
α as its height. Now, by considering the membership function of the fuzzy parameter θ̃0
and comparing it with the confidence bound, we can determine the values of α for which
the null hypotheses in (4) and (5) are accepted or rejected (see Figures 2, 3, and 4).

Remark 1. Suppose we want to test H0 : θ̃ = θ̃0 where θ̃0 is the fuzzy parameter shown
in Figure 2. It is clear that for each α ∈ [0, 1], θl0α ∈ ST (Xl

α) and θu0α ∈ ST (Xu
α). In this

case, since we accept the null hypotheses (4) and (5) for each α ∈ [0, 1], it is reasonable
that the hypothesis H0 : θ̃ = θ̃0 should completely be accepted. On the other hand,
consider the case of testing H0 : θ̃ = θ̃0 where θ̃0 is the fuzzy parameter as shown in
Figure 3. Since for each α ∈ [0, 1], θl0α ̸∈ ST (Xl

α) and θu0α ̸∈ ST (Xu
α), therefore, we reject

the null hypotheses (4) and (5) for each α ∈ [0, 1]. So, it is reasonable that the hypothesis
H0 : θ̃ = θ̃0 should completely be rejected.

Now, consider the problem of testing the hypothesis H0 : θ̃ = θ̃0, where θ̃0 is the fuzzy
parameter shown in Figure 4. In this case, the relations θl0α ∈ ST (Xl

α) and θu0α ∈ ST (Xu
α)

might be held for some values of α ∈ [0, 1]. Therefore, it is reasonable to accept the
hypothesis H0 : θ̃ = θ̃0 with some degree of acceptability. To determine such a degree of
acceptability, we use the concept of fuzzy confidence interval, which will be described in
the next step.

Step 5. In this step, we employ the procedure introduced by (Chachi and Taheri, 2011)
to construct a fuzzy confidence interval for a fuzzy parameter θ̃. Upon this method, the
fuzzy set C̃T = {(θ̃, CT (θ̃)) : θ̃ ∈ F(Θ)} is obtained as a fuzzy confidence interval for
the fuzzy parameter θ̃.
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Figure 3: The hypothesis H0 : θ̃ = θ̃0 is completely rejected.

Definition 1 (Chachi and Taheri, 2011) (Re. Example 2) The degree of membership of θ̃
in the two-sided fuzzy confidence interval C̃T is defined as CT (θ̃) = W/(W + S), where
W = W l +W u, S = Sl + Su, and
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W u =

∫
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X̄u
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where, L(A) is the Lebesgue measure of a set A (see Figure 4 for some details).
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Figure 4: The hypothesis H0 : θ̃ = θ̃0 is partially accepted.

Step 6. Finally, using the result in Step 5, the following fuzzy test function is provided
for testing the hypothesis H0 : θ̃ = θ̃0 versus H1 : θ̃ ̸= θ̃0 at level β, based on the fuzzy
random sample X1, . . . ,Xn

φ̃(X ; θ̃0)(t) =

{
CT (θ̃0) t = 0 ,

1− CT (θ̃0) t = 1 .

Note that the fuzzy test function φ̃(X ; θ̃0) : Fn(R) → F{0, 1} is characterized by a fuzzy
set, which accepts the null hypothesis with degree of CT (θ̃0) and rejects it with degree of
1− CT (θ̃0).

Remark 2. In the above fuzzy test function φ̃(X ; θ̃0), the values of CT (θ̃0) and 1−CT (θ̃0)
correspond to the degrees of acceptability of the null and alternative hypotheses, respec-
tively, which can be interpreted as the degrees of conviction that we should accept or
reject the null hypothesis. Such a fuzzy test function, contrary to the classical crisp test,
does not lead to a binary decision, i.e. to accept or to reject the null hypothesis, but to a
fuzzy decision. Thus, in the situation when CT (θ̃0) is neither 0 nor 1, a user has to decide
whether to reject or to accept the given hypothesis actually, however the value CT (θ̃0)
would support the decision, i.e. for greater values of CT (θ̃0) he/she is more convinced to
accept the null hypothesis.
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2. Testing H0 : θ̃ = θ̃0 versus H1 : θ̃ ≻ θ̃0
Concerning the above procedure, the proposed fuzzy test for testing these hypotheses

is obtained as follows

φ̃(X ; θ̃0)(t) =

{
CR(θ̃0) t = 0 ,

1− CR(θ̃0) t = 1 ,

where CR(θ̃0) = W/(W + S) is the degree of membership of θ̃0 in the right one-sided
fuzzy confidence interval given as
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3. Testing H0 : θ̃ = θ̃0 versus H1 : θ̃ ≺ θ̃0
Similarly, the proposed fuzzy test for testing these hypotheses is obtained as

φ̃(X ; θ̃0)(t) =

{
CL(θ̃0) t = 0 ,

1− CL(θ̃0) t = 1 ,

where CL(θ̃0) = W/(W + S) is the degree of membership of θ̃0 in the left one-sided
fuzzy confidence interval given as
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Table 1: Triangular fuzzy numbers as the observations of a normal FRV in Example 3.
i Xi i Xi i Xi i Xi

1 (45, 5, 6)T 10 (51, 5, 5)T 19 (64, 7, 5)T 28 (52, 3, 6)T
2 (48, 6, 5)T 11 (49, 8, 5)T 20 (62, 8, 5)T 29 (53, 5, 5)T
3 (41, 3, 6)T 12 (42, 5, 6)T 21 (59, 6, 5)T 30 (47, 6, 6)T
4 (49, 7, 7)T 13 (55, 8, 4)T 22 (57, 6, 4)T 31 (41, 4, 7)T
5 (39, 5, 5)T 14 (44, 6, 3)T 23 (46, 6, 5)T 32 (57, 5, 5)T
6 (56, 6, 7)T 15 (61, 7, 5)T 24 (64, 8, 5)T 33 (51, 5, 6)T
7 (47, 6, 7)T 16 (49, 6, 5)T 25 (57, 5, 5)T 34 (48, 6, 5)T
8 (61, 5, 6)T 17 (59, 5, 6)T 26 (60, 7, 6)T 35 (46, 6, 8)T
9 (43, 7, 7)T 18 (40, 5, 8)T 27 (41, 5, 6)T 36 (58, 6, 5)T

5 Numerical Examples

In this section, in order to explain the applicability of the proposed approach, some nu-
merical examples are provided.

Example 3 (Wu, 2009). Suppose that the triangular fuzzy data in Table 1 are the obser-
vations of a sample of 36 from a normal FRV with unknown fuzzy mean θ̃ ∈ F(R) and
known σ2 = 64. Assume that we wish to test the hypothesis

H0 : θ̃ = (48, 5, 6)T versus H1 : θ̃ ̸= (48, 5, 6)T ,

at level β = 0.10.
According to the procedure described in Section 4, we have

X̄ = (51.17, 5.81, 5.61)T ,

X̄α = [x̄l
α, x̄

u
α] = [45.36 + 5.81α, 56.78− 5.61α] ,

θ̃0α = [θl0α, θ
u
0α] = [43 + 5α, 54− 6α] .

Now, based on the samples xl
α = (xl

1α, . . . , x
l
nα) and xu

α = (xu
1α, . . . , x

u
nα), we test the

following hypotheses

H0 : θ
l
α = 43 + 5α versus H1 : θ

l
α ̸= 43 + 5α , (8)

H0 : θ
u
α = 54− 6α versus H1 : θ

u
α ̸= 54− 6α , (9)

at level β = 0.10, by using the corresponding two-sided confidence intervals at confidence
level 1−β = 0.90. The usual confidence intervals for the parameters θlα and θuα are easily
obtained as

ST (xl
α) = [43.17 + 5.81α, 47.55 + 5.81α] ,

ST (xu
α) = [54.59− 5.61α, 58.97− 5.61α] .
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Table 2: Data set in Example 4.
i xi i xi i xi i xi i xi i xi
1 38.0 5 35.0 9 45.0 13 60.0 17 49.0 21 52.0
2 41.0 6 43.0 10 50.0 14 52.0 18 44.0 22 42.0
3 47.5 7 54.0 11 58.6 15 52.0 19 49.0 23 40.0
4 51.0 8 52.0 12 62.0 16 49.0 20 50.3 24 37.0

25 21.2

Based on the above confidence intervals, the following test functions are obtained for
testing the hypotheses (8) and (9)

φ(xl
α; θ

l
0α) =

{
0 if θl0α ∈ [43.17 + 5.81α, 47.55 + 5.81α] ,

1 if θl0α ̸∈ [43.17 + 5.81α, 47.55 + 5.81α] ,

φ(xu
α; θ

u
0α) =

{
0 if θu0α ∈ [54.59− 5.61α, 58.97− 5.61α] ,

1 if θu0α ̸∈ [54.59− 5.61α, 58.97− 5.61α] .

The results of the above test functions lead to reject the null hypotheses in (8) and (9), for
each α ∈ [0, 1]. On the other hand, the following sets are easily obtained

K l
θ̃0;0.10

= ∅ , C l
1;θ̃0;0.10

= [0, 1] , C l
2;θ̃0;0.10

= ∅ ,

Ku
θ̃0;0.10

= ∅ , Cu
1;θ̃0;0.10

= [0, 1] , Cu
2;θ̃0;0.10

= ∅ ,

Sl = 0.575 , Su = 0.785 , S = 1.360 ,

W l = 0 , W u = 0 , W = 0 .

So, based on the fuzzy observations and at level 1 − β = 0.90, the fuzzy parameter θ̃0 =
(48, 5, 6)T has no degree of membership in the two-sided fuzzy confidence interval, i.e.
CT (θ̃0) = 0. Therefore, the hypothesis H0 : θ̃ = (48, 5, 6)T versus H1 : θ̃ ̸= (48, 5, 6)T is
accepted with degree of acceptability CT (θ̃0) = 0, and the fuzzy test function is obtained
as

φ̃(X ; θ̃0)(t) =

{
0 t = 0 ,

1 t = 1 .

Example 4. One of the classical problems in soil science is the measurement of some
physical, chemical and/or biological soil properties. The problem results from the diffi-
culty and time of measurements which yield imprecise observations. In studying natural
systems such as soil systems, in which we come across imprecise observations, we must
therefore attempt to analyze the behavior of such systems more realistically.

To analyze some characteristics of the soil, especially the SP (which shows soil satu-
rated by water), a study has been done in a part of Silakhor plain situated in the province
of Lorestan (west of Iran), between the cities of Broujerd and Durood. The 100 hectares
field, located in the middle of the plain, were sampled on a grid with intersections at
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200 (m) interval. A total of 25 core samples were obtained from 0.0 (cm) to 25 (cm)
depth. The SP were measured using standard procedures. The data set is given in Table
2 (Mohammadi and Taheri, 2004). We can assume that, based on a pilot study, such data
are distributed according to a normal distribution with σ = 9.

However, due to some difficulties in measurements, we are not sure about the crisp-
ness of the observations. So, it is convenient to consider the data as fuzzy observations.
To convert the data set in Table 2 to a set of fuzzy numbers, we may employ a fuzzy rep-
resentation method. There are several families of fuzzy representations in the literature
(González-Rodrı́guez, Colubi, and Gil, 2006a; Colubi, González-Rodrı́guez, Lubiano,
and Montenegro, 2006; Colubi and González-Rodrı́guez, 2007). A family of interesting
fuzzy representations is proposed in González-Rodrı́guez et al. (2006a). Each represen-
tation transforms crisp data (the variable values of a real-valued random variable) into
fuzzy sets (the associated FRV values) by mapping γ̃ : R → F(R) whose membership
function and α-level sets are given by

γ̃x(t) =


1− (x− t)hL(x) if t ∈ [x− 1, x] ,

1− (t− x)hR(x) if t ∈ [x, x+ 1] ,

0 otherwise,

(γ̃x)α =
[
x− (1− α)1/hL(x), x+ (1− α)1/hR(x)

]
∀α ∈ (0, 1] ,

where

hL(x) =


1

1 + x−x0

a

if x ≥ x0 ,

1− x−x0

a
if x < x0 ,

hR(x) =
1

hL(x)
∀x ∈ R ,

for x0 ∈ R and a ∈ R+. The F(R)-valued FRV γ̃X : Ω → F(R) will be called the
γ-fuzzy representation of X .

The membership functions of fuzzy representations for some observations are given in
Figure 5 for the values 38, 41, 47.5, and 51 (the first four data), when x0 = 46.98 and
a = 1. The α-level set of the fuzzy sample mean is obtained as

X̄α =

[
46.98− 1

25

25∑
i=1

(1− α)1/hL(xi) , 46.98 +
1

25

25∑
i=1

(1− α)1/hR(xi)

]
∀α ∈ (0, 1] .

Suppose that, based on the above soil fuzzy data, we want to test the hypothesis H0 : θ̃ =
γ̃44.25 versus H1 : θ̃ ≺ γ̃44.25 at level β = 0.05. Note that, γ̃44.25 is the fuzzy perception of
θ0 = 44.25. The membership function and the α-level set of γ̃44.25 are given as

γ̃θ0(t) =


1− (θ0 − t)hL(θ0) if t ∈ [θ0 − 1, θ0] ,

1− (t− θ0)
hR(θ0) if t ∈ [θ0, θ0 + 1] ,

0 otherwise,

(γ̃θ0)α = [(γθ0)
l
α, (γθ0)

u
α] =

[
θ0 − (1− α)1/hL(θ0), θ0 + (1− α)1/hR(θ0)

]
∀α ∈ (0, 1] .
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Figure 5: The fuzzy values γ̃xi
for i = 1, 2, 3, 4, x0 = 46.98 and a = 1 in Example 4.

Figure 6 shows the mean value of the γ-fuzzy representation of the random sample, i.e.
X̄ , and the fuzzy parameter γ̃θ0 .

Based on the procedure proposed in Section 4, the right one-sided 0.95 confidence
intervals for the parameters (γθ0)

l
α and (γθ0)

u
α are obtained as

SR(xl
α) = [46.98− 1

25

25∑
i=1

(1− α)1/hL(xi) − 9

5
1.645,∞) ,

SR(xu
α) = [46.98 +

1

25

25∑
i=1

(1− α)1/hR(xi) − 9

5
1.645,∞) .

In addition, the following results are easily obtained by comparing the above confidence
intervals and the α-level sets of γ̃θ0

K l
γ̃θ0 ;0.05

= [0, 0.092) ∪ (0.921, 1] , C l
γ̃θ0 ;0.05

= [0.092, 0.921] , S = 0.2542 ,

Ku
γ̃θ0 ;0.05

= [0, 0.212) ∪ (0.994, 1] , Cu
γ̃θ0 ;0.05

= [0.212, 0.994] , W = 0.0426 .

The degree of membership of γ̃θ0 in the right one-sided fuzzy confidence interval is ob-
tained as CR(γ̃θ0) = 0.0426/(0.0426+ 0.2542) = 0.1435. Finally, we have the following
test function

φ̃(X ; γ̃θ0)(t) =

{
0.1435 if t = 0 ,

0.8565 if t = 1 .

With other words, based on the fuzzy observations and at level 0.95, the amount of possi-
bility that the true mean of population be γ̃θ0 , is 0.1435. Therefore, at level β = 0.05, the
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Figure 6: The mean value of the γ-fuzzy representation of the random variable and the
null hypothesized value when x0 = 46.98 and a = 1.

hypothesis H0 : θ̃ = γ̃θ0 is accepted against the hypothesis H1 : θ̃ ≻ γ̃θ0 with degree of
acceptability CR(γ̃θ0) = 0.1435.

6 Conclusion

In the present work, based on the concept of fuzzy confidence interval, we introduced the
so called fuzzy test for testing statistical hypotheses about an imprecise parameter when
the data are reported as fuzzy numbers. In the proposed approach, the available data are
assumed to be the observations of FRVs.

A well-known method of constructing fuzzy confidence intervals is used to determine
the degree of membership of each fuzzy parameter in the fuzzy confidence interval and
then to make inference in testing a hypothesis about the fuzzy parameter of interest. The
proposed fuzzy test, contrary to the classical crisp test, does not lead to a binary decision,
i.e. to accept or to reject the null hypothesis, but to a fuzzy decision. Based on the pro-
posed approach, the decision makers actually accept or reject the given hypothesis about
a fuzzy parameter, however an index, called the degree of acceptability, would support
the decision. Such a fuzzy test is a natural generalization of the traditional statistical tests,
i.e. if the data and the parameter(s) of interest are precise, we get classical statistical tests
with the binary decision as a special case.

Developing the suggested procedure to other FRVs, rather than normal, and to a non-
parametric context are interesting subjects for future work. Moreover, a study of proper-
ties of the proposed procedure, and the effect of sample size in the obtained fuzzy test are
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other possible lines for future work.
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