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Chapter 3

Information Fusion

3.9 Fusion in the Context of Information Theory

In this section, we selectively explore some aspects of the theoretical framework that has

been developed to analyze the nature, performance, and fundamental limits for information

processing in the context of data fusion. In particular, we discuss how Bayesian methods

for distributed data fusion can be interpreted from the point of view information theory.

Consequently, information theory can provide a common framework for distributed detection

and communication tasks in sensor networks.

Initially, the context is established for considering distributed networks as efficient in-

formation processing entities (Section 3.9.1). Next, in Section 3.9.2, the approaches taken

towards analyzing such systems and the path leading towards the modern information the-

oretic framework for information processing are discussed. The details of the mathematical

method are highlighted in Section 3.9.3, and applied specifically for the case of multi-sensor

systems in Section 3.9.4. Finally our conclusions are presented in Section 3.9.5.

3.9.1 Information Processing in Distributed Networks

Distributed networks of sensors and communication devices provide the ability to electron-

ically network together what were previously isolated islands of information sources and

sinks, or more generally, states of nature. The states can be measurements of physical pa-
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4 CHAPTER 3. INFORMATION FUSION

rameters (e.g. temperature, humidity, etc.) or estimates of operational conditions (network

loads, throughput, etc.), among other things, distributed over a region in time and/or space.

Previously, the aggregation, fusion and interpretation of this mass of data representing some

phenomena of interest were performed by isolated sensors, requiring human supervision and

control. However, with the advent of powerful hardware platforms and networking technolo-

gies, the possibility and advantages of distributed sensing information processing has been

recognized [32].

A sensor can be defined to be any device that provides a quantifiable set of outputs in

response to a specific set of inputs. These outputs are useful if they can be mapped to a

state of nature that is under consideration. The end goal of the sensing task is to acquire a

description of the external world, predicated upon which can be a series of actions. In this

context, sensors can be thought of as information gathering, processing and dissemination

entities, as diagrammed in Figure 3.9.1. The data pathways in the figure illustrate an
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Figure 3.9.1: Information Processing in Sensors

abstraction of the flow of information in the system. In a distributed network of sensors,

the sensing system may be comprised of multiple sensors that are physically disjoint or

distributed in time or space, and that work cooperatively. Compared to a single sensor

platform, a network has the advantages of diversity (different sensors offer complementary
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viewpoints), and redundancy (reliability and increased resolution of the measured quantity)

[24]. In fact, it has been rigorously established from the theory of distributed detection that

higher reliability and lower probability of detection error can be achieved when observation

data from multiple, distributed sources is intelligently fused in a decision making algorithm,

rather than using a single observation data set [44]. Intuitively, any practical sensing device

has limitations on its sensing capabilities (e.g. resolution, bandwidth, efficiency, etc.). Thus,

descriptions built on the data sensed by a single device are only approximations of the true

state of nature. Such approximations are often made worse by incomplete knowledge and

understanding of the environment that is being sensed and its interaction with the sensor.

These uncertainties, coupled with the practical reality of occasional sensor failure greatly

compromises reliability and reduces confidence in sensor measurements. Also, the spatial

and physical limitations of sensor devices often means that only partial information can be

provided by a single sensor.

A network of sensors overcomes many of the shortcomings of a single sensor. However

new problems in efficient information management arise. These may be categorized into two

broad areas [30]:

1. Data Fusion: This is the problem of combining diverse and sometimes conflicting

information provided by sensors in a multi-sensor system, in a consistent and coherent

manner. The objective is to infer the relevant states of the system that is being observed

or activity being performed.

2. Resource Administration: This relates to the task of optimally configuring, coordinat-

ing and utilizing the available sensor resources, often in a dynamic, adaptive environ-

ment. The objective is to ensure efficient1 use of the sensor platform for the task at

hand.

In comparison to lumped-parameter sensor systems (Figure 3.9.1), the issues mentioned

1Efficiency, in this context, is very general and can refer to power, bandwidth, overhead, throughput, or
a variety of other performance metrics, depending upon the particular application.
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above for multi-sensor systems can be diagrammed as shown in Figure 3.9.2 [24].
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Figure 3.9.2: Information Processing in Distributed Sensors

3.9.2 Evolution Towards Information Theoretic Methods for Data

Fusion

Most of the early research effort in probabilistic and information theoretic methods for data

fusion focused on techniques motivated by specific applications, such as in vision systems,

sonar, robotics platforms, etc. [19, 23, 26, 22]. As the inherent advantages of using multi-

sensor systems were recognized [46, 2], a need for a comprehensive theory of the associated

problems of distributed, decentralized data fusion and multi-user information theory became

apparent [43, 15, 7]. Advances in integrated circuit technology have enabled mass production

of sensors, signal processing elements and radios [12, 34], spurring new research in wireless

communications [20], and in ad hoc networking [36, 40]. Subsequently, it was only natural

to combine these two disciplines—sensors and networking—to develop a new generation of

distributed sensing devices that can work cooperatively to exploit diversity [31, 32]. An

abridged overview of the research in sensor fusion and management is now summarized [24].
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Sensor Fusion Research: Data fusion is the process by which data from a multitude of

sensors is used to yield an optimal estimate of a specified state vector pertaining to the

observed system [44], whereas sensor administration is the design of communication and

control mechanisms for the efficient use of distributed sensors, with regards to power, perfor-

mance, reliability, etc. Data fusion and sensor administration have mostly been addressed

separately. Sensor administration has been addressed in the context of wireless network-

ing and not necessarily in conjunction with the unique constraints imposed by data fusion

methodologies.

To begin with, sensor models have been aimed at interpretation of measurements. This

approach to modeling can be seen in the sensor models used by Kuc and Siegel [19], among

others. Probability theory, and in particular, a Bayesian treatment of data fusion [9] is

arguably the most widely used method for describing uncertainty in a way that abstracts

from a sensor’s physical and operational details. Qualitative methods have also been used

to describe sensors, for example by Flynn [11] for sonar and infra-red applications. Much

work has also been done in developing methods for intelligently combining information from

different sensors. The basic approach has been to pool the information using what are es-

sentially ”weighted averaging” techniques of varying degrees of complexity. For example

Berger [2] discusses a majority voting technique based on a probabilistic representation of

information. Non-probabilistic methods [16] used inferential techniques, for example for

multi-sensor target identification. Inferring the state of nature given a probabilistic repre-

sentation is, in general, a well understood problem in classical estimation. Representative

methods are Bayesian estimation, Least Squares estimation, Kalman Filtering, and its vari-

ous derivatives. However, the question of how to use these techniques in a distributed fashion

has not been addressed to date in a systematic fashion except for some specific physical layer

cases [45].

Sensor Administration Research:

In the area of sensor network administration, protocol development and management
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have mostly been addressed using application specific descriptive techniques for specialized

systems [46]. Tracking radar systems provided the impetus for much of the early work. Later,

robotic applications led to the development of models for sensor behavior and performance

that could then be used to analyze and manage the transfer of sensor data. The centralized

or hierarchical nature of such systems enabled this approach to succeed. Other schemes that

found widespread use were based on determining cost functions and performance trade-offs

a priori [1], e.g. cost-benefit assignment matrices allocating sensors to targets, or Boolean

matrices characterizing sensor-target assignments based on sensor availability and capacity.

Expert system approaches have also been used, as well as decision-theoretic (normative)

techniques. However, optimal sensor administration in this way has been shown by Tsitsiklis

[43] to be very hard in the general framework of distributed sensors, and practical schemes

use a mixture of heuristic techniques (for example in data fusion systems involving wired

sensors in combat aircrafts). Only recently have the general networking issues for wireless

ad hoc networks been addressed (Sohrabi, Singh [41, 39]), where the main problems of

self-organization, bootstrap, route discovery etc., have been identified. Application specific

studies, e.g. in the context of antenna arrays (Yao, [47]) have also discussed these issued.

However, few general fusion rules or data aggregation models for networked sensors have

been proposed, with little analytical or quantitative emphasis. Most of these studies do not

analyze in detail the issues regarding the network-global impact of administration decisions,

such as choice of fusion nodes, path/tree selections, data fusion methodology, or physical

layer signalling details.

3.9.3 Probabilistic Framework for Distributed Processing

The information being handled in multi-sensor systems almost always relates to a state of

nature, and consequently, it is assumed to be unknown prior to observation or estimation.

Thus, the model of the information flow shown in Figure 3.9.2 is probabilistic, and hence can

be quantified using the principles of information theory [6, 14]. Furthermore, the process
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of data detection and processing that occurs within the sensors and fusion node(s) can

be considered as elements of classical statistical decision theory [29]. Using the mature

techniques that these disciplines offer, a probabilistic information processing relation can

be quantified for sensor networks, and analyzed within the framework of the well-known

Bayesian paradigm [35]. The basic tasks in this approach are the following:

1. Determination of appropriate information processing techniques, models and metrics

for fusion and sensor administration.

2. Representation of the sensors process, data fusion, and administration methodologies

using the appropriate probabilistic models.

3. Analysis of the measurable aspects of the information flow in the sensor architecture

using the defined models and metrics.

4. Design of optimal data fusion algorithms and architectures for optimal inference in

multi-sensor systems.

5. Design, implementation and test of associated networking and physical layer algorithms

and architectures for the models determined in (4).

We now consider two issues in information combining in multi-sensor systems: (i) the

nature of the information being generated by the sensors, and (ii) the method of combining

the information from disparate sources.

Sensor Data Model for Single Sensors

Any observation or measurement by any sensor is always uncertain to a degree determined by

the precision of the sensor. This uncertainty, or measurement noise, requires us to treat the

data generated by a sensor probabilistically. We therefore adopt the notation and definitions

of probability theory to determine an appropriate model for sensor data [13, 24].
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Definiton 3.9.1. A state vector at time instant t, is a representation of the state of nature of

a process of interest, and can be expressed as a vector x(t) in a measurable, finite-dimensional

vector space, Ω, over a discrete or continuous field, F:

x(t) ∈ Ω ⊆ Rn (3.9.1)

The state vector is arbitrarily assumed to n-dimensional and can represent a particular state

of nature of interest, e.g. it can be the three dimensional position vectors of an airplane.

The state space may be either continuous or discrete (e.g. the on or off states of a switch).

Definiton 3.9.2. A measurement vector at time instant t is the information generated by

a single sensor (in response to an observation of nature), and can be represented by an

m-dimensional vector, z(t) from a measurement vector space Ψ.

z(t) =




z1

z2

...

zm



∈ Ψ ⊆ Rm (3.9.2)

Intuitively, the measurement vector may be thought of as m pieces of data that a single sensor

generates from a single observation at a single instant of time. Because of measurement error,

the sensor output z(t) is an approximation of x(t)—the true state of nature. It is important

to note that z(t) may itself not be directly visible to the user of the sensor platform. A

noise corrupted version Γ{z(t),v(t)}, as defined below, may be all that is available for

processing. Furthermore, the dimensionality of the sensor data may not be the same as the

dimension of the observed parameter that is being measured. For example, continuing with

the airplane example, a sensor may display the longitude and latitude of the airplane at a

particular instant of time via GPS (a 2-dimensional observation vector), but may not be able

to measure the altitude of the airplane (which completes the 3-dimensional specification of
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the actual location of the airplane in space).

The measurement error itself can be considered as another vector, v(t), or a noise process

vector, of the same dimensionality as the observation vector z(t). As the name suggests,

noise vectors are inherently stochastic in nature, and serve to render all sensor measurements

uncertain, to a specific degree.

Definiton 3.9.3. An observation model, Γ, for a sensor is a mapping from state space Ω to

observation space Ψ, and is parameterized by the statistics of the noise process:

Γv : Ω 7→ Ψ. (3.9.3)

Functionally, the relationship between the state, observation and noise vectors can be

expressed as:

z(t) = Γ {x(t),v(t)} . (3.9.4)

Objective: The objective in sensing applications is to infer the unknown state vector x(t)

from the error corrupted and (possibly lower dimensional) observation vector z(t),v(t). If

the functional specification of the mapping in Equation (3.9.3), and the noise vector v(t),

were known for all times t, then finding the inverse mapping for one-to-one cases would be

trivial, and the objective would be easily achieved. It is precisely because either or both

parameters may be random that gives rise to various estimation architectures for inferring

the state vector from the imperfect observations. A geometric interpretation of the objective

can be presented as shown in Figure 3.9.3(i). The simplest mapping relationship Γ that can

be used as a sensor data model is the additive model of noise corruption, as shown in Figure

3.9.3(ii), which can be expressed as:

x = Γ (z + v) . (3.9.5)

Typically, for well designed and matched sensor platforms, the noise vector is small compared
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Figure 3.9.3: Sensor data models: (i) General case (ii) Noise additive case.

to the measurement vector, in which case a Taylor approximation can be made:

x = Γ(z) + (∇zΓ) z + (higher order terms) (3.9.6)

where ∇z is the Jacobian matrix of the mapping Γ with respect to the state measurement

vector z. Since the measurement error is random, the state vector observed is also random,

and we are in essence dealing with random variables. Thus, we can use well established

statistical methods to quantify the uncertainty in the random variables [35]. For example,

the statistics of the noise process v(t) can be often be known a priori. Moments are the

most commonly used measures for this purpose, and in particular, if the covariance of the

noise process is known, E
{
vvT

}
, then the covariance of the state vector is [24]:

E
{
xxT

}
= (∇zΓ) E

{
vvT

}
(∇zΓ)T . (3.9.7)

For uncorrelated noise v, the matrix (∇zΓ) E
{
vvT

}
(∇zΓ)T is symmetric and can be de-

composed using singular value decomposition [37]:

(∇zΓ) E
{
vvT

}
(∇zΓ)T =

(
SDST

)
(3.9.8)
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where S is an (n × n) matrix of orthogonal vectors ej and D are the eigenvalues of the

decomposition:

S = (e1, e2, · · · , en) , eiej =





1 for i = j

0 for i 6= j
(3.9.9)

D = diag (d1, d2, . . . , dn) (3.9.10)

The components of D correspond to the scalar variance in each of direction. Geometrically,

all the directions for a given state x can be visualized as an ellipsoid in n-dimensional space,

with the principal axes in the directions of the vectors ek and 2
√
dj as the corresponding

magnitudes. The volume of the ellipsoid is the uncertainty in x. The 2-dimensional case

is shown in Figure 3.9.4. From this perspective, the basic objective in the data fusion

e 1

e 2

e 1

e 2

Figure 3.9.4: Ellipsoid of state vector uncertainty

problem is then to reduce the volume of the uncertainty ellipsoid. All the techniques for

data estimation, fusion, and inference are designed towards this goal [27].

A Bayesian Scheme for Decentralized Data Fusion

Given the inherent uncertainty in measurements of states of nature, the end goal in using

sensors, as mentioned in the previous section, is to obtain the best possible estimates of

the states of interest for a particular application. The Bayesian approach to solving this

problem is concerned with quantifying likelihoods of events, given various types of partial
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knowledge or observations, and subsequently determining the state of nature that is most

probably responsible for the observations as the ‘best’ estimate.

The issue of whether the Bayesian approach is intrinsically the ‘best’ approach for a

particular problem2 is a philosophical debate that is not discussed here further. It may be

mentioned, however, that arguably, the Bayesian paradigm is most objective because it is

based only on observations and ‘impartial’ models for sensors and systems.

The information contained in the (noise corrupted) measured state vector z is first

described by means of probability distribution functions (PDF). Since all observations of

states of nature are causal manifestations of the underlying processes governing the state

of nature3, the PDF of z is conditioned by the state of nature at which time the obser-

vation/measurement was made. Thus, the PDF of z conditioned by x is what is usually

measurable and is represented by:

FZ(z | x) (3.9.11)

This is known as the Likelihood Function for the observation vector. Next, if information

about the possible states under observation is available (e.g. a priori knowledge of the range

of possible states), or more precisely the probability distribution of the possible states FX(x),

then the prior information and the likelihood function (3.9.11) can be combined to provide

the a posteriori conditional distribution of x, given z, by Bayes’ Theorem [13]:

Theorem 3.9.1.

FX(x | z) =
FZ(z | x)FX(x)∫

Ω

FZ(z | x)FX(x) dF (x)
=
FZ(z | x)FX(x)

FZ(z)
(3.9.12)

Usually, some function of the actual likelihood function, g(T (z) | x), is commonly avail-

able as the processable information from sensors. T (z) is known as the sufficient statistic

2In contrast with various other types of inferential and subjective approaches [35]
3Ignoring the observer-state interaction difficulties posed by Heisenberg Uncertainty considerations.
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for x and Equation (3.9.12) can be reformulated as:

FX(x | z) = FX(x | T (z)) =
g(T (z) | x)FX(x)∫

Ω

g(T (z) | x)FX(x) dF (x)

(3.9.13)

When observations are carried out in discrete time steps according to a desired resolution,

then a vector formulation is possible. Borrowing notation from [24], all observations up to

time index r can be defined as:

Zr , {z(1),z(2), . . . , z(r)} (3.9.14)

from where the posterior distribution of x given the set of observations Zr becomes:

FX(x | Zr) =
FZr(Z

r | x)FX(x)

FZr(Z
r)

. (3.9.15)

Using the same approach, a recursive version of Equation (3.9.15) can also be formulated:

FX(x | Zr) =
FZ(z(r) | x)FX(x | Zr−1)

FZ(z(r) | Zr−1)
(3.9.16)

in which case all the r observations do not need to be stored, and instead only the current

observation z(r) can be considered at the rth step. This version of the Bayes’ Law is most

prevalent in practice since it offers a directly implementable technique for fusing observed

information with prior beliefs.

Classical Estimation Techniques

A variety of inference techniques can now be applied to estimate the state vector x (from

the time series observations from a single sensor). The estimate, denoted by x̂, is derived

from the posterior distribution Fvecx(x | Zr) and is a point in the uncertainty ellipsoid of

Figure 3.9.4. The basic objective is to reduce the volume of the ellipsoid, which is equivalent

to minimizing the probability of error based on some criterion. Three classical techniques
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are now briefly reviewed: Maximum Likelihood, Maximum A Posteriori and Minimum Mean

Square Error estimation.

Maximum Likelihood (ML) estimation involves maximizing the likelihood function (Equa-

tion 3.9.11) by some form of search over the state space Ω:

x̂ML = arg max
x∈Ω

FZr (Zr | x) (3.9.17)

This is intuitive since the PDF is greatest when the correct state has been guessed for the

conditioning variable. However, a major drawback is that for state vectors from large state

spaces, the search may be computationally expensive, or infeasible. Nonetheless, this method

is widely used in many disciplines, e.g. digital communication reception [33].

Maximum a posteriori (MAP) estimation technique involves maximizing the posterior

distribution from observed data as well as from prior knowledge of the state space:

x̂MAP = arg max
x∈Ω

Fx (x | Zr) (3.9.18)

Since prior information may be subjective, objectivity for an estimate (or the inferred state)

is maintained by considering only the likelihood function (i.e. only the observed information).

In the instance of no prior knowledge, and the state space vectors are all considered to be

equally likely, the MAP and ML criterion can be shown to be identical.

Minimum Mean Square Error (MMSE) techniques attempt to minimize the estimation

error by searching over the state space, albeit in an organized fashion. This is the most

popular technique in a wide variety of information processing applications, since the variable

can often be found analytically, or the search space can be reduced considerably or investi-

gated systematically. The key notion is to reduce the covariance of the estimate. Defining
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the mean and variance of the posterior observation variable as:

x̄ , EF (x|Zr){x} (3.9.19)

Var(x) , EF (x|Zr){(x− x̄)(x− x̄)T} (3.9.20)

it can be shown that the least squares estimator is one that minimizes the Euclidean distance

between the true state x and the estimate x̂, given the set of observations Zr. In the context

of random variables, this estimator is referred to as the MMSE estimate and can be expressed

as:

x̂MMSE = arg min
x∈Ω

EF (x|Zr){(x− x̄)(x− x̄)T} (3.9.21)

To obtain the minimizing estimate, Equation (3.9.21) can be differentiated with respect to

x̂ and set equal to zero, which yields x̂ = E {x | Zr}. Thus the MMSE estimate is the

conditional mean. It also can be shown that the MMSE estimate is the minimum variance

estimate, and when the conditional density coincides with the mode, the MAP and MMSE

estimators are equivalent.

These estimation techniques and their derivatives such as the Wiener and Kalman filters

[18] all serve to reduce the uncertainty ellipsoid associated with state x [27]. In fact, direct

applications of these mathematical principles formed the field of radio frequency signal detec-

tion in noise, and shaped the course of developments in digital communication technologies.

Distributed Detection Theory and Information theory

Information theory was developed to determine the fundamental limits on the performance

of communication systems [38]. Detection theory on the other hand, involves the application

of statistical decision theory to estimate states of nature, as discussed in the previous section.

Both these disciplines can be used to treat problems in the transmission and reception of

information, as well as the more general problem of data fusion in distributed systems.

The synergy was first explored by researchers in the 1950s and 1960s [25], and the well
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established source and channel coding theories were spawned as a result. With respect

to data fusion, the early research in the fields of information theory and fusion proceeded

somewhat independently. Whereas information theory continued exploring the limits of

digital signalling, data fusion, on the other hand, and its myriad ad hoc techniques were

developed by the practical concerns of signal detection, aggregation and interpretation for

decision making. Gradually, however, it was recognized that both issues, at their abstract

levels, dealt fundamentally with problems of information processing.

Subsequently, attempts were made to unify distributed detection and fusion theory, as it

applied e.g. in sensor fusion, with the broader field of information theory. Some pioneering

work involved the analysis of the hypothesis testing problem using discrimination (Kullback,

[21]), employing cost functions based on information theory for optimizing signal detection

(Middleton, [25]) and formulating the detection problem as a coding problem for asymp-

totic analysis using error exponent functions (Csiszar et al. [8], Blahut[3]). More recently,

research in these areas have been voluminous, with various theoretical studies exploring the

performance limits and asymptotic analysis of fusion and detection schemes ([43, 4]).

In particular, some recent results [44] are relevant to the case of a distributed system of

sensor nodes. As has been noted earlier, the optimal engineering trade-offs for the efficient

design for such a system is not always clear cut. However, if the detection/fusion problem

can be recast in terms of information theoretic cost functions, then it has been shown that

system optimization techniques provide useful design paradigms.

For example consider the block diagrams of a conventional binary detection system and

a binary communication channel as shown in Figure 3.9.5. The source in the detection

problem can be viewed as the information source in the information transmission problem.

The decisions in the detection model can be mapped as the channel outputs in the channel

model. Borrowing the notation from [44], if the input is considered a random variable

H = i, i = 0, 1 where probability P (H = 0) = P0, the output u = i, i = 0, 1 is then

a decision random variable, whose probabilities of detection (PD), miss (PM), false alarm
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Figure 3.9.5: Signal Detection vs. Information Transmission

(PF ), etc. can be interpreted in terms of the transition probabilities of the information

transmission problem. This is the classic example of the binary channel [33].

If the objective of the decision problem is the minimization of the information loss be-

tween the input and output, then it can be shown that the objective is equivalent to the

maximization of the mutual information, I(H;u) (see Section 3.9.4 for formal definitions

of entropy and information measures). This provides a mechanism for computing practical

likelihood test ratios as a technique for information-optimal data fusion. Thus, the case of

the binary detection problem, the a posteriori probabilities are:

P (u = 0) = P0(1− PF ) + (1− P0)(1 + PD) , α0 (3.9.22)

P (u = 1) = P0PF + (1− P0)PD , α1 (3.9.23)

whereupon it can be shown that the optimal decision threshold for the received signal is:

threshold =
−P0 {log(α0/α1)− log [(1− PF )/PF ]}

(1− P0) {log(α0/α1)− log [(1− PD)/PD]} (3.9.24)

This approach can be extended to the case of distributed detection. For example, for a de-
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tection system in a parallel topology without a fusion center, and assuming the observations

at the local detectors are conditionally independent, the goal is then to maximize the mutual

information I(H;u) where the vector u contains the local decisions. Once again, it can be

shown that the optimal detectors are threshold detectors, and likelihood ratio tests can then

be derived for each detector. Using the second subscript in the variables below to refer to

the detector number, the thresholds are:

threshold1 = −
P0

[
log
(
α00

α10

)
+ PF2 log

(
α01α10
α00α11

)
− log

(
1−PF1

PF1

)]

(1− P0)
[
log
(
α00

α10

)
+ PD2 log

(
α01α10
α00α11

)
− log

(
1−PD1

PD1

)] (3.9.25)

with a similar expression for threshold2. In a similar manner, other entropy-based informa-

tion theoretic criteria (e.g. logarithmic cost functions) can be successfully used to design the

detection and distributed fusion rules in an integrated manner for various types of fusion

architectures, (e.g. serial, parallel with fusion center, etc.) This methodology provides an

attractive, unified approach for system design, and has the intuitive appeal of treating the

distributed detection problem as an information transmission problem.

3.9.4 Bayesian Framework for Distributed Multi-Sensor Systems

When a number of spatially and functionally different sensor systems are used to observe

the same (or similar) state of nature, then the data fusion problem is no longer simply a

state space uncertainty minimization issue. The distributed and multi-dimensional nature

of the problem requires a technique for checking the usefulness and validity of the data from

each of the not necessarily independent sensors. The data fusion problem is more complex,

and general solutions are not readily evident. This section explores some of the commonly

studied techniques and proposes a novel, simplified methodology that achieves some measure

of generality.

The first issue is the proper modeling of the data sources. If there are p sensors observing

the same state vector, but from different vantage points, and each one generates its own
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observations, then we have a collection of observation vectors z1(t), z2(t), . . . , zp(t), which

can be represented as a combined matrix of all the observations from all sensors (at any

particular time t):

Z(t) =

(
z1(t) z2(t) · · · zp(t)

)
=




z11 z21 · · · zp1

z12 z22 · · · zp2

. . .

z1m z2m · · · zpm



. (3.9.26)

Furthermore, if each sensor makes observations up to time step r for a discretized (sampled)

observation scheme, then the matrix of observations Z(r) can be used to represent the

observations of all the p sensors at time-step r (a discrete variable, rather than the continuous

Z(t)). With adequate memory allocation for signal processing of the data, we can consider

the super-matrix {Zr} of all the observations of all the p sensors from time step 0 to r:

{Zr} =

p⋃
i=1

Zr
i (3.9.27)

where Zr
i = {zi(1),zi(2), . . . zi(r)} (3.9.28)

This suggests that to use all the available information for effectively fusing the data from

multiple sensors, what is required is the global posterior distribution Fx (x | {Zr}), given

the time-series information from each source. This can be accomplished in a variety of ways,

the most common of which are summarized below [24].

The Linear Opinion Pool [42] aggregates probability distributions by linear combina-

tions of the local posterior PDF information Fx (x | Zr
i ) (or appropriate likelihood functions,

as per Equation (3.9.11)):

F (x | {Zr}) =
∑
j

wjF
(
x | Zr

j

)
(3.9.29)
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where the weights wj sum to unity and each weight wj represents a subjective measure of

the reliability of the information from sensor j. The process can be illustrated as shown in

Figure 3.9.6. Bayes’ theorem can now be applied to Equation (3.9.29) to obtain a recursive

Sensor 1

Sensor 2

Sensor j

Sensor 1

Sensor 2

Sensor j

Figure 3.9.6: Multi-Sensor Data Fusion by Linear Opinion Pool

form, which is omitted here for brevity. One of the shortcomings of the linear opinion pool

method is its inability to reinforce opinion because the weights are usually unknown except

in very specific applications.

The Independent Opinion Pool is a product form modification of the linear opinion

pool and is defined by the product:

F (x | {Zr}) = α
∏
j

F
(
x | Zr

j

)
(3.9.30)

where α is a normalizing constant. The fusion process in this instance can be illustrated as

shown in Figure 3.9.7

This model is widely used since it represents the case when the observations from the

individual sensors are essentially independent. However, this is also its weakness, since if

the data is correlated at a group of nodes, their opinion is multiplicatively reinforced, which

can lead to error propagation in faulty sensor networks. Nevertheless, this technique is

appropriate when the prior state space distributions are truly independent and equally likely

(as is common in digital communication applications).

To counter the weaknesses of the two common approaches summarized above, a third
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Sensor 1

Sensor 2

Sensor j

Figure 3.9.7: Multi-Sensor Data Fusion by Independent Opinion Pool

fusion rule is the Likelihood Opinion Pool, defined by the following recursive rule.

F (x | {Zr}) = αF
(
x | {Zr−1

})


∏
j

F (zj(r) | x)︸ ︷︷ ︸
likelihood


 (3.9.31)

The Likelihood Opinion Pool method of data fusion can be illustrated as shown in 3.9.8. The

Sensor 1

Sensor 2

Sensor j

a priori 
informat ion

Figure 3.9.8: Multi-Sensor Data Fusion by Likelihood Opinion Pool

likelihood opinion pool technique is essentially a Bayesian update process and is consistent

with the recursive process derived in general in Equation (3.9.16). It is interesting to note

that a simplified, specific form of this type of information processing occurs in the so called

belief propagation [28] type of algorithms that are widespread in artificial intelligence and

the decoding theory for channel codes. In the exposition above, however, the assumptions
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and derivations are and explicitly identified and derived, and is thus in a general form that

is suitable for application to heterogeneous multi-sensor systems. This provides intuitive

insight as to how the probabilistic updates help to reinforce ‘opinions’ when performing a

distributed state space search.

Information Theoretic Justification of the Bayesian Method

Probability distributions allow a quantitative description of the observables, the observer,

and associated errors. As such, the likelihood functions and distributions contain information

about the underlying states that they describe. This approach can be extended further to

actually incorporate measures for the information contained in these random variables. In

this manner, an information theoretic justification can be obtained for the Likelihood Opinion

Pool for multi-sensor data fusion, as discussed in the previous section. Some key concepts

from Information Theory [6] are required first.

Information Measures

The connections between information theory and distributed detection [44] were briefly sur-

veyed in Section 3.9.2. In this section, some formal information measures are defined to

enable an intuitive information theoretic justification of the utility of the Bayesian update

method. This approach also provides an insight towards the practical design of algorithms

based on the likelihood opinion pool fusion rules that has been discussed earlier.

To build an information theoretic foundation for data fusion, the most useful fundamental

metric is the Shannon definition of Entropy.

Definiton 3.9.4. Entropy is the uncertainty associated with a probability distribution,

and is a measure of the descriptive complexity of a PDF [5]. Mathematically:

h{F (x)} , E{− lnF (x)} (3.9.32)



3.9. FUSION IN THE CONTEXT OF INFORMATION THEORY 25

Note that alternative definitions of the concept of information which predate Shannon’s

formulation, e.g. the Fisher Information Matrix [10], are also relevant and useful, but not

discussed here further.

Using this definition, an expression for the entropy of the posterior distribution of x

given Zr at time r (which is the case of multiple observations from a single sensor) can be

expressed as:

h(r) , h {F (x | Zr)} = −
∑

F (x | Zr)lnF (x | Zr) (3.9.33)

Now, the entropy relationship for Bayes Theorem can be developed as follows:

E {− ln[F (x | Zr)]} = E
{− ln[F (x | Zr−1)]

}

− E

{
ln

[
F (z(r) | x)

F (z(r) | Zr−1)

]}
(3.9.34)

=⇒ h(r) = h(r − 1)− E

{
ln

[
F (z(r) | x)

F (z(r) | Zr−1)

]}
(3.9.35)

This is an alternative form of the result that conditioning with respect to observations

reduces entropy (cf. [6]). Using the definition of mutual information, Equation (3.9.34) can

be written in an alternative form as shown below.

Definiton 3.9.5. For an observation process, mutual information at time r is the informa-

tion about x contained in the observation z(r):

I(x, z(r)) , E

{
ln

[
F (z(r) | x)

F (z(r))

]}
(3.9.36)

from where

h(r) = h(r − 1)− I(r) (3.9.37)

which means that the entropy following an observation is reduced by an amount equal to

the information inherent in the observation.

The insight to be gained here is that by using the definitions of entropy and mutual
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information, the recursive Bayes update procedure derived in Equation (3.9.16) can now be

seen as an information update procedure:

E {ln[F (x | Zr)]} = E
{

ln[F (x | Zr−1)]
}

+ E

{
ln

[
F (z(r) | x)

F (z(r) | Zr−1)

]}
(3.9.38)

which can be interpreted as [24]:

posterior information = prior information + observation information.

The information update equations for the Likelihood Opinion Pool fusion rule thus be-

comes:

E {ln[F (x | Zr)]} = E
{

ln[F (x | Zr−1)]
}

+
∑
j

E

{
ln

[
F (zj(r) | x)

F (zj(r) | Zr−1)

]} (3.9.39)

The utility of the log-likelihood definition is that the information update steps reduce to

simple additions, and are thus amenable to hardware implementation without such problems

as overflow and dynamic range scaling.

Thus the Bayesian probabilistic approach is theoretically self-sufficient for providing a

unified framework for data fusion in multi-sensor platforms. The information theoretic con-

nection to the Bayesian update makes the approach intuitive, and shows rigorously how the

Likelihood Opinion Pool method serves to reduce the ellipsoid uncertainty. This framework

answers the question of how to weight or process outputs of diverse sensors, whether they

have different sensing modes of signal to noise ratios, without resort to ad hoc criteria.

Acoustic, visual, magnetic and other signals can all be combined [17]. Further, since trade-

offs in information rate and distortion can be treated using entropies (rate distortion theory

[14]) as of course can communication, questions about fundamental limits in sensor networks

can now perhaps be systematically explored.

Of course, obvious practical difficulties remain, such as how to determine the uncertainty

in measurements, the entropy of sources, and in general how to efficiently convert sensor
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measurements into entropies.

3.9.5 Concluding Remarks

In this section, the approach of using a probabilistic, information processing approach to

data fusion in multi-sensor networks was discussed. The Bayesian approach was seen to be

the central unifying tool in formulating the key concepts and techniques for decentralized

organization of information. Thus, it offers an attractive paradigm for implementation in a

wide variety of systems and applications. Further, it allows one to use information theoretic

justifications of the fusion algorithms, and also offers preliminary asymptotic analysis of

large scale system performance.

The information theoretic formulation makes clear how to combine the outputs of possibly

entirely different sensors. Moreover, it allows sensing, signal processing and communication

to be viewed in one mathematical framework. This may allow systematic study of many

problems involving the cooperative interplay of these elements. This further can lead to the

computation of fundamental limits on performance against with practical reduced complexity

techniques can be compared.
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