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Abstract—Space-time block coded spatial modulation (STBC-
SM) system is the multiple input multiple output (MIMO)
communication system that gives better error performance than
space-time block coded (STBC) MIMO system when compared
at the same spectral efficiency. It performs better than spatial
modulation (SM) MIMO systems. In this paper, we analyze the
bit error probability (BEP) of STBC-SM systems over correlated
Rayleigh and Rician fading channels. A closed form expression
for upper bound on the BEP is derived and evaluated. The analyt-
ical results are validated using Monte Carlo simulation results.
The performance of STBC-SM system is also compared with
STBC systems and SM systems in correlated and uncorrelated
fading channels.

I. INTRODUCTION

Multiple input multiple output (MIMO) systems give higher
spectral efficiency and better performance than single input
single output (SISO) systems without consuming extra band-
width and power. Recent developments in the MIMO tech-
nologies focus on reducing computational and hardware com-
plexity using different transmit and receive diversity schemes
[1]–[4]. In [1], S. Alamouti proposed a simple two branch
transmit diversity scheme. It was then generalized as space
time block codes (STBC) for any number of antennas by
Tarokh et. al. in [2]. In [3], R. Mesleh et. al. proposed and
analyzed spatial modulation (SM) in which single antenna is
active at a time and the antenna index of the active antenna
also carries the information resulting in increased spectral
efficiency. SM systems are further investigated and a joint
detection scheme is proposed to improve the performance in
[5]. SM system can be combined with STBC system to get two
fold advantage of improved performance and better spectral
efficiency. E. Basar et. al. proposed and analyzed space-time
block coded spatial modulation (STBC-SM) system in [4]. It

is also shown that STBC-SM systems give better bit error rate
(BER) performance than SM and Vertical Bell Laboratories
Layered Space Time (V-BLAST). Further, the computational
complexity of optimal maximum-likelihood (ML) decoder
for STBC-SM has been reduced through proposals like hard
decision simplified ML detector, hard decision low-complexity
near-ML detector and soft-output low-complexity near-ML
detector [4], [6], [7]. The spectral efficiency of STBC-SM was
improved by using cyclic structure in SM but with slightly
degraded error performance [8].

To the best of our knowledge, the analysis of STBC-SM
systems reported so far in the literature is done over indepen-
dent and identically distributed (i.i.d.) Rayleigh channel only,
albeit, simulation results for exponentially correlated Rayleigh
channels are reported in [4]. But in practical scenario, i.i.d.
MIMO channels are very rare due to limited spacing among
the antennas. In this paper, we analyze the bit error probability
(BEP) of STBC-SM systems over correlated Rayleigh and
Rician fading channels. A closed form expression for upper
bound on the BEP is derived and evaluated. The analytical
results are validated by Monte Carlo simulation results. We
also show results for BER performance comparison of SM,
STBC and STBC-SM systems over correlated Rayleigh fading
channels.

The rest of the paper is organized as follows. In Section
II, we describe STBC-SM transmission scheme and system
model. The expression for BEP of STBC-SM over correlated
Rayleigh fading channels is derived in Section III. Section IV
describes the analysis of STBC-SM systems over correlated
Rician fading channels. Analytical and simulation results are
presented and discussed in Section V and finally the paper is
concluded in Section VI.
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II. SPACE-TIME BLOCK CODED SPATIAL MODULATION

In this paper, we have used Alamouti’s STBC in which
two complex symbols taken from an M-PSK or M-QAM
constellations are transmitted from two transmit antennas in
two symbol intervals in an orthogonal manner [1]. We consider
a MIMO system with 𝑛𝑇 transmit antennas and 𝑛𝑅 receive
antennas. In STBC-SM technique [4], the input data is divided
into three streams. Two streams carry the Alamouti’s STBC
symbols and the third stream carries the transmit antenna
indices. As per the bits in the third stream, 2 antennas out of
𝑛𝑇 transmitting antennas are selected for transmission. The
Alamouti’s STBC symbol is transmitted from the selected
antennas and the remaining antennas are idle at this moment.
In general, for an STBC-SM system with symbol length of 𝑁 ,
the received signal matrix can be given as [4]

Y =

√
𝜌

𝜇
HX+N (1)

where 𝜇 is the normalization factor to ensure that 𝜌 is the
average signal to noise ratio (SNR) at each receiver antenna,
Y is the 𝑛𝑅 × 𝑁 received signal matrix, N is the 𝑛𝑅 × 𝑁
zero mean circularly symmetric complex Gaussian (ZMCSCG)
distributed noise matrix, X is the 𝑛𝑇×𝑁 transmitted codeword
matrix and H is the 𝑛𝑅×𝑛𝑇 channel matrix which is assumed
to be quasi-static correlated Rayleigh or Rician fading. For
Alamouti’s STBC scheme (𝑁 = 2), the dimensions of Y,
N and X will reduce to 𝑛𝑅 × 2, 𝑛𝑅 × 2 and 𝑛𝑇 × 2
respectively. The transmitted symbol is detected at the receiver
using ML detection algorithm. It does extensive search over
all possible transmitted matrices and detects the matrix which
is most likely to have been transmitted using the following
minimization criteria [4].

X̂ =
arg
min

X ∈ 𝜒

∥∥∥∥Y −
√
𝜌

𝜇
HX

∥∥∥∥
2

(2)

where 𝜒 is the signal matrix alphabet. Though, the above
minimization criteria look like the decision criteria for STBC
systems but the set of signal matrix alphabets (𝜒) for STBC-
SM systems is different than that for STBC systems. The
details of signal matrix alphabets can be found in Table I and
equation (2) of [4].

III. BEP OF STBC-SM OVER CORRELATED RAYLEIGH

FADING CHANNELS

The conditional pairwise error probability (PEP) of decod-
ing STBC-SM symbol matrix X𝑙 when STBC-SM symbol
matrix X𝑘 is transmitted can be given by [9]

𝑃 (X𝑘 → X𝑙∣H) = 𝑄

(√
𝜌

𝜇
∥HΔ∥2

)

=
1

𝜋

𝜋
2∫

0

𝑒
− 𝜌∥HΔ∥2

2𝜇sin2𝜃 𝑑𝜃 (3)

where Δ = X𝑘 −X𝑙 is the codeword difference matrix.
Without loss of generality, assuming 𝜇 = 1, the un-

conditional PEP with unit energy symbol transmission, i.e.
𝐸
{
𝑡𝑟𝑎𝑐𝑒

(
X𝐻X

)}
= 2, can be given by

𝑃 (X𝑘 → X𝑙) =
1

𝜋

𝜋
2∫

0

Φ∥HΔ∥2

(
− 𝜌

4sin2𝜃

)
𝑑𝜃 (4)

where Φ∥HΔ∥2 (⋅) is the moment generating function (MGF)
of ∥HΔ∥2. Considering Kronecker MIMO channel model, the
channel matrix can be represented as

H = R
1/2
𝑅𝑋

H̃

(
R
1/2
𝑇𝑋

)𝑇

(5)

where H̃ is the i.i.d. channel matrix, R𝑅𝑋
is the receiver side

correlation matrix and R𝑇𝑋
is the transmitter side correlation

matrix. Our analysis is applicable to the correlation matrices
that can be represented in the following forms

R𝑅𝑋
=

⎛
⎜⎜⎜⎜⎝

1 𝑝𝑟12 . . . 𝑝𝑟1𝑛𝑅

𝑝𝑟21 1
. . . 𝑝𝑟2𝑛𝑅

...
...

. . .
...

𝑝𝑟𝑛𝑅1 𝑝𝑟𝑛𝑅2 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎠ (6)

R𝑇𝑋
=

⎛
⎜⎜⎜⎜⎝

1 𝑝𝑡12 . . . 𝑝𝑡1𝑛𝑇

𝑝𝑡21 1
. . . 𝑝𝑡2𝑛𝑇

...
...

. . .
...

𝑝𝑡𝑛𝑇 1 𝑝𝑡𝑛𝑇 2 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎠ (7)

where 𝑝𝑟𝑖𝑗 is the correlation coefficient between the 𝑖𝑡ℎ and
𝑗𝑡ℎ receive antennas and 𝑝𝑡𝑖𝑗 is the correlation coefficient
between the 𝑖𝑡ℎ and 𝑗𝑡ℎ transmit antennas. Both the correlation
matrices are symmetric in nature, i.e. 𝑝𝑟𝑖𝑗 = 𝑝𝑟𝑗𝑖 and
𝑝𝑡𝑖𝑗 = 𝑝𝑡𝑗𝑖.

The MGF of correlated Rayleigh fading channels can be
given by [9]

Φ(𝑠) = ∣I𝑛𝑅𝑛𝑇
− 𝑠Ψ∣ =

𝑟∏
𝑖=1

𝑟∏
𝑗=1

(1− 𝑠𝜎𝑖𝜆𝑗)
−1

(8)

where Ψ =

(
R
1/2

)𝐻 (
I𝑛𝑅

⊗ΔΔ𝐻
)(

R
1/2

)
, 𝑠 = − 𝜌

4sin2𝜃
,

𝜎𝑖 are the eigenvalues of ΔΔ𝐻R𝑇𝑋
, 𝜆𝑗 are the eigenvalues

of R𝑅𝑋
, R = R𝑅𝑋

⊗ R𝑇𝑋
, 𝑟 = 𝑟𝑎𝑛𝑘

(
ΔΔ𝐻R𝑇𝑋

)
and

𝑟 = 𝑟𝑎𝑛𝑘 (R𝑅𝑋
)

From the average PEP using (4) and (8), the union bound
on BEP can be calculated as

𝑃𝑏 ≤ 1

22𝑚

22𝑚∑
𝑘=1

22𝑚∑
𝑙=1

𝑛𝑘,𝑙
𝑃 (X𝑘 → X𝑙)

2𝑚
(9)

where 𝑛𝑘,𝑙 is the number of bits in error when the codeword
matrix X𝑙 is received when the codeword matrix X𝑘 is
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transmitted assuming 2𝑚 bits are transmitted during two
consecutive symbol intervals using one of the 22𝑚 possible
STBC-SM symbol matrices.

Approximating the average PEP by Chernoff bound (put
sin2 𝜃 = 1 in the integrand of (4)), BEP can be given as
follows

𝑃𝑏 ≤ 1

22𝑚

22𝑚∑
𝑘=1

22𝑚∑
𝑙=1

𝑛𝑘,𝑙
4𝑚

𝑟∏
𝑖=1

𝑟∏
𝑗=1

(
1 +

𝜌𝜎𝑖𝜆𝑗
4

)−1

(10)

The above expression can be further simplified for constant
correlation at receiver, i.e. each 𝑝𝑟𝑖𝑗 = 𝑝𝑟. For such a case,
all the off diagonal elements in the receiver correlation matrix
of (6) bear the same value, 𝑝𝑟. For such a matrix, 𝑟 = 𝑛𝑅 and
there will be 𝑛𝑅 eigen values taking any of the two distinct
values, 1+(𝑛𝑅−1)𝑝𝑟 and 1−𝑝𝑟. Out of 𝑛𝑅 eigen values one
eigen value equals 1 + (𝑛𝑅 − 1)𝑝𝑟 and the remaining 𝑛𝑅 − 1
equals 1− 𝑝𝑟. The expression of PEP for such a case can be
given as

𝑃𝑏 ≤ 1

22𝑚

22𝑚∑
𝑘=1

22𝑚∑
𝑙=1

𝑛𝑘,𝑙
4𝑚

𝑟∏
𝑖=1

{(
1 +

𝜌𝜎𝑖 (1− 𝑝𝑟)
4

)1−𝑛𝑅

×
(
1 +

𝜌𝜎𝑖 (1 + (𝑛𝑅 − 1) 𝑝𝑟)

4

)−1
}

(11)

IV. BEP OF STBC-SM OVER CORRELATED RICIAN

FADING CHANNELS

The BEP analysis of STBC-SM over correlated Rician
fading channels can be done in the similar way as in previous
section. The MGF of correlated Rician fading channels can be
given as [9]

Φ(𝑠) =

exp

[
𝑠h̄𝐻Ψ

{
I𝑛𝑅𝑛𝑇

− 𝑠Ψ
(𝐾+1)

}−1

h̄

]
∣∣∣I𝑛𝑅𝑛𝑇

− 𝑠Ψ
(𝐾+1)

∣∣∣ (12)

where h̄ = 𝑣𝑒𝑐𝑡
(
H̄𝐻

)
and H̄ =

√
𝐾

𝐾+1

⌣

H (𝑛𝑅, 𝑛𝑇 ) is the
mean channel matrix with Rice parameter 𝐾.

The average PEP can be calculated as

𝑃 (X𝑘 → X𝑙)

=
1

𝜋

𝜋
2∫

0

𝑒

[
− 𝜌

4sin2𝜃
h̄𝐻Ψ

{
I𝑛𝑅𝑛𝑇

+ 𝜌Ψ

4sin2𝜃(𝐾+1)

}−1
h̄

]
∣∣∣I𝑛𝑅𝑛𝑇

+ 𝜌Ψ
4sin2𝜃(𝐾+1)

∣∣∣ 𝑑𝜃

(13)

Using sin2 𝜃 = 1 (Chernoff bound) in above equation and
applying union bound, the BEP can be evaluated as
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Fig. 1. Performance comparison of SM, STBC and STBC-SM systems over
uncorrelated Rayleigh fading channels (2 bits/s/Hz)

𝑃𝑏 ≤ 1

22𝑚

22𝑚∑
𝑘=1

22𝑚∑
𝑙=1

𝑛𝑘,𝑙
4𝑚
𝑒

[
− 𝜌

4 h̄
𝐻Ψ

{
I𝑛𝑅𝑛𝑇

+ 𝜌Ψ
4(𝐾+1)

}−1
h̄

]

𝑟∏
𝑖=1

𝑟∏
𝑗=1

(
1 +

𝜌𝜎𝑖𝜆𝑗
4 (𝐾 + 1)

)−1

(14)

Following the explanation in previous section, above expres-
sion can be represented as follows for constant correlation at
receiver.

𝑃𝑏 ≤ 1

22𝑚

22𝑚∑
𝑘=1

22𝑚∑
𝑙=1

𝑛𝑘,𝑙
4𝑚
𝑒

[
− 𝜌

4 h̄
𝐻Ψ

{
I𝑛𝑅𝑛𝑇

+ 𝜌Ψ
4(𝐾+1)

}−1
h̄

]

𝑟∏
𝑖=1

{(
1 +

𝜌𝜎𝑖 (1− 𝑝𝑟)
4 (𝐾 + 1)

)1−𝑛𝑅

×
(
1 +

𝜌𝜎𝑖 (1 + (𝑛𝑅 − 1) 𝑝𝑟)

4 (𝐾 + 1)

)−1
}

(15)

It is important to note that expressions for BEP of STBC-
SM systems (11) and (15) are similar to those for STBC
systems. In our case, we are assuming Alamouti scheme based
spatial modulation in which only 2 antennas are selected for
transmission at particular time interval. So, the codewords (X)
and hence the codeword difference matrices (Δ) are different
from STBC systems.

V. RESULTS AND DISCUSSIONS

The STBC-SM system was simulated assuming Alamouti’s
STBC transmission scheme for a 4 × 4 MIMO system. For
spatial modulation with STBC, two antennas are selected at
transmitter to transmit each Alamouti’s STBC symbol matrix.
The performance of STBC-SM system is compared with 2×4
SM system and 2× 4 STBC system in uncorrelated Rayleigh
fading channels. Fig. 1 gives the BER performance of the
SM, STBC and STBC-SM systems for 2 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧. It can be
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Fig. 2. Performance comparison of SM, STBC and STBC-SM systems over
correlated Rayleigh fading channels for SNR = 8 dB (2 bits/s/Hz)
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Fig. 3. Average BER of STBC-SM systems over correlated Rayleigh fading
channels (2 bits/s/Hz)

observed that, for the same spectral efficiency of 2 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧,
STBC-SM systems give better error performance as compared
to STBC or SM systems. It is clear that STBC systems achieve
full diversity order and hence performs better than SM systems
which achieve diversity order of 𝑛𝑅. But, while moving from
spectral efficiency of 1 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧 to 2 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧 or higher,
STBC systems need to use higher order modulation scheme
whereas in STBC-SM systems, higher spectral efficiency can
be achieved by deploying more number of transmit antennas
without changing the modulation scheme.

The BER performance of SM, STBC and STBC-SM sys-
tems is compared in correlated Rayleigh fading channels in
Fig. 2. For correlated fading channels, we refer transmitter
correlation coefficient by 𝑝𝑡 and receiver correlation coef-
ficient by 𝑝𝑟. It can be observed that STBC-SM systems
perform better than SM and STBC systems for the same
spectral efficiency in both uncorrelated channels and correlated

Fig. 4. Average BER of STBC-SM systems over correlated Rician fading
channels (2 bits/s/Hz)

channels with correlation coefficients 𝑝𝑡 = 𝑝𝑟 < 0.8. For
𝑝𝑡 = 𝑝𝑟 > 0.8 the BER performance of STBC is superior
to STBC-SM systems when observed at an SNR of 8 dB.
The reason behind degradation of BER performance of STBC-
SM systems for high correlation coefficients is that highly
correlated links becomes similar to each other making antenna
index estimation more difficult and erroneous. Hence, it results
in degraded overall BER performance.

The upper bound on BEP of STBC-SM systems over
correlated Rayleigh fading channels is evaluated using (11)
and plotted in Fig. 3 along with the results of Monte Carlo
simulations at the spectral efficiency of 2 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧. The
upper bound on BEP of STBC-SM systems over correlated
Rician fading channels is evaluated using (15) and plotted in
Fig. 4 along with the results of Monte Carlo simulations of the
STBC-SM system at the spectral efficiency of 2 𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧
and Rice fading parameter, 𝐾 = 2. From Fig. 3 and Fig. 4,
it can be observed that the analytical upper bounds calculated
using (11) and (15) are tighter for BER< 0.5× 10−2.

VI. CONCLUSION

In this paper, we derive closed form expressions for upper
bound on BEP of STBC-SM systems over correlated Rayleigh
and Rician fading channels. The upper bound on BEP is
derived using Chernoff bound and the union bound. The
analytical results are validated using the results obtained from
Monte Carlo simulations of STBC-SM systems. The analytical
results are in agreement with the Monte Carlo simulation
results and the upper bound on BEP is highly accurate for
high SNR regions (BER< 0.5× 10−2). The results show that
STBC-SM systems give better BER performance than SM
and STBC systems in uncorrelated fading channels and in
correlated fading channels up to correlation coefficient of 0.8.
Under highly correlated fading conditions (𝑝𝑡 = 𝑝𝑟 > 0.8),
STBC systems outperform STBC-SM systems.

519



REFERENCES

[1] S. Alamouti, “A simple transmit diversity technique for wireless commu-
nications,” IEEE Journal on Selected Areas in Communications, vol. 16,
no. 8, pp. 1451–1458, 1998.

[2] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes
from orthogonal designs,” IEEE Transactions on Information Theory,
vol. 45, no. 5, pp. 1456–1467, 1999.

[3] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation - a new
low complexity spectral efficiency enhancing technique,” in Proceedings
First International Conference on Communications and Networking in
China, 2006, pp. 1–5.

[4] E. Basar, U. Aygolu, E. Panayirci, and H. Poor, “Space-time block coded
spatial modulation,” IEEE Transactions on Communications, vol. 59,
no. 3, pp. 823–832, 2011.

[5] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation:
optimal detection and performance analysis,” IEEE Communications
Letters, vol. 12, no. 8, pp. 545–7, 2008.

[6] H. Xu and N. Pillay, “Simple near-maximum-likelihood low-complexity
detection scheme for alamouti space-time block coded spatial modula-
tion,” IET Communications, vol. 8, no. 15, pp. 2611–2618, October 2014.

[7] R. Govender, N. Pillay, and H. Xu, “Soft-output space-time block coded
spatial modulation,” IET Communications, vol. 8, no. 16, pp. 2786–2796,
2014.

[8] X. Li and L. Wang, “High rate space-time block coded spatial modulation
with cyclic structure,” IEEE Communications Letters, vol. 18, no. 4, pp.
532–535, April 2014.

[9] A. Hedayat, H. Shah, and A. Nosratinia, “Analysis of space-time coding
in correlated fading channels,” IEEE Transactions on Wireless Commu-
nications, vol. 4, no. 6, pp. 2882–2891, 2005.

520


