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Abstract—In this paper, we develop an adaptive waveform de-
sign method for target tracking under a framework of sequential
Bayesian inference. We employ polarization diversity to improve
the tracking accuracy of a target in the presence of clutter. We use
an array of electromagnetic (EM) vector sensors to fully exploit
the polarization information of the reflected signal. We apply a
sequential Monte Carlo method to track the target parameters,
including target position, velocity, and scattering coefficients. This
method has the advantage of being able to handle nonlinear and
non-Gaussian state and measurement models. The measurements
are the output of the sensor array; hence, the information about
both the target and its environment is incorporated in the tracking
process. We design a new criterion for selecting the optimal
waveform one-step ahead based on a recursion of the posterior
Cramér-Rao bound. We also derive an algorithm using Monte
Carlo integration to compute this criterion and a suboptimal
method that reduces the computation cost. Numerical examples
demonstrate both the performance of the proposed tracking
method and the advantage of the adaptive waveform design
scheme.

Index Terms—Adaptive design, polarimetric radar, posterior
Cramér-Rao bound, radar tracking, sequential Bayesian filter,
waveform design.

I. INTRODUCTION

ADAPTIVE design and processing of diverse waveforms
are advanced technologies in radar signal processing used

to achieve substantial improvements in sensing performance.
Recent advances in sensor information processing and related
hardware have motivated intense interest in adaptive waveform
design. Specifically, advances in flexible digital waveform mod-
ulators make it feasible to implement pulse-to-pulse waveform
selection capability in real time. Thus, there is a strong interest
in fully exploiting the potential of radar systems through adap-
tive waveform design to obtain the highest possible performance
level. In this paper we address the problem of adaptive polarized
waveform design for tracking targets in the presence of clutter.
The proposed scheme is derived under a framework of sequen-
tial Bayesian inference.

In a conventional active sensing system, parameters of the
transmitted signal, e.g., waveform shape, polarization, and
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frequency, are fixed, and the system is operated in an open loop
independently of the environment. However, the target state
evolves in time; furthermore, in some scenarios, the environ-
ment may also change, for example, with nonstationary clutter.
If the fixed waveform does not match the operational scenario,
the sensing system performance is severely limited. Thus, the
purpose of our work is to adaptively design the transmitted
waveform in response to the target’s dynamic states and the
environmental conditions in order to achieve a better tracking
performance.

Another property of our waveform design scheme is that
we employ the freedom provided by the polarization of the
transmitted signal to design our system, whereas most wave-
form-design methods only the shape of the transmitted wave-
form is controlled [1], [2]. As we know, optimally selecting
the polarization state of the transmitted waveform can mitigate
multipath interference and improve the performance of the
sensing system in detection, tracking, and target identification,
as discussed in [3], references therein, and [4]–[7]. Therefore,
by exploiting the polarimetric aspects of the reflected signals
we can further improve the parameter estimation accuracy and
the resolution of the targets.

A general procedure of adaptive waveform design for target
tracking can be described as follows: 1) waveform-agile sensors
transmit an optimally designed waveform and then take the mea-
surements of the reflected signal from the target; 2) the tracker
processes the received data and estimates the current states of
the dynamic target parameters; 3) the tracking system also pre-
dicts the target states at the next time step; 4) the waveform-agile
sensors optimally select the waveform parameters for the next
transmitted signal according to a design criterion that depends
on the current and predicted target states and the characteristics
of the environment.

In this paper, we first propose a general framework for adap-
tive waveform design for target tracking in an active sensing
system. This framework combines target tracking using sequen-
tial Bayesian filtering and optimal waveform selection. Most
of the previous work on adaptive waveform design for target
tracking [8]–[16] is derived under this framework, which also
provides guidance for developing new technologies in this area.

We then propose a target dynamic state model and a statis-
tical measurement model for target tracking. In the state model,
we include the parameters of the scattering matrix; hence, we
can track not only the target position and velocity but also its
polarimetric aspects, which are useful, for example, for target
identification [3]. In the measurement model, we include the po-
larization of the transmitted waveform and apply an electromag-
netic (EM) vector-sensor array to receive the reflected signal. An
EM vector sensor fully exploits the polarization information by
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measuring all the components of the EM field [4], [5], and it has
been shown that employing vector sensors improves the estima-
tion of the signal direction of arrival (DOA) and the resolution
of closely spaced signal arrivals [4], [17], [18]. We also extend
the measurement model to consider more conventional polari-
metric sensor arrays, e.g., tripole [19] and 2–D vector sensors
[20].

Next, we develop a sequential (recursive) Bayesian filtering
for target tracking and adaptive waveform design. Some work
on adaptive waveform design for target tracking is presented
in [8]–[16]. In [8] and [9], the state and measurement models
are assumed to be linear and Gaussian; hence, a Kalman
filter is used for target tracking, and the criteria of minimum
mean-square tracking error and minimum validation gate
volume are used for optimal waveform design. In [10] and
[11], also assuming linear and Gaussian models, the concept of
adaptive waveform selection is extended to interacting multiple
model trackers looking one and two steps ahead. In [13]–[16],
the methods are applied to a linear Gaussian state model and a
nonlinear Gaussian measurement model, and the optimal wave-
form parameters are selected by minimizing a mean-square
tracking error. A common characteristic in [8]–[16] is that
the time delay and Doppler response of the matched filter are
considered as the measurements. This procedure simplifies the
modeling but decouples the measurements from the clutter.
In [14], for example, data probabilistic association is used
to account for the clutter effects; however, there is no clear
relationship between the measurement’s association proba-
bilities and the clutter features. In our proposed approach,
the measurements are the direct output of the polarimetric
sensor array. Hence, we can incorporate into the tracking and
waveform design algorithm information about the target and
its environment in a more natural way, especially regarding
their polarization aspects. Then, we track a target using a se-
quential Monte Carlo method (particle filter) that is suitable for
nonlinear and non-Gaussian state and measurement models. In
contrast with ordinary particle filtering methods, we consider
that the potential dimension of state space can be large (we
track the target position, velocity, and scattering parameters
simultaneously), and we propose to use a Gibbs sampler that is
a Markov chain Monte Carlo (MCMC) algorithm that allows
successful solution of simulation problems for complex models.

We also develop a new criterion for selecting the op-
timal waveform one step ahead that is based on a posterior
Cramér-Rao bound (PCRB). We adopt a recursive form to de-
rive the PCRB. We employ a Monte Carlo integration method
to calculate this criterion. In addition, we present a suboptimal
criterion that reduces the computation cost with respect to
the former waveform-selection rule. Note that according to
sequential Bayesian framework, the proposed method can be
extended to other criterions for adaptive waveform design. The
motivations for using the PCRB here are as follows: 1) it is a
lower bound for the mean-square error (MSE) of Bayesian es-
timation; 2) the calculation of the criterion can be integrated in
the proposed sequential Monte Carlo tracking approach, hence
decrease the computation complexity; 3) since the computation
of the criterion is based on Bayesian inference, we do not need
to know the specific value of the next measurements for its

calculation [in contrast with other work in [12]–[16] that uses
MSE as a criterion]. Therefore, we increase the processing
accuracy.

In Section II, we propose a general framework for an adap-
tive waveform design based on sequential Bayesian inference.
In Section III, we derive a target dynamic state model and a sta-
tistical measurement model using an EM vector-sensor array.
In Section IV, we develop a sequential Monte Carlo method
to track the target. In Section V, we design a new criterion to
optimally select the transmitted waveform based on posterior
Cramér-Rao bounds. Numerical examples and conclusions are
given in Sections VI and VII, respectively.

II. SEQUENTIAL BAYESIAN FRAMEWORK FOR ADAPTIVE

WAVEFORM DESIGN

The problem of waveform design consists of finding the
signal parameters or selecting the waveforms that improve
the system performance. In this section, we provide a general
framework for adaptive waveform design based on sequen-
tial Bayesian inference. This framework is a combination of
sequential Bayesian filtering for parameter estimation and
optimal transmitted waveform design in active sensing systems.

This framework for adaptive waveform design includes
four phases: 1) creation of a dynamic state model and a sta-
tistical measurement model; 2) belief prediction and update;
3) Bayesian state estimation; and 4) optimal waveform selec-
tion. They are described in details as follows.

1) Dynamic State Model and Measurement Model: To for-
mulate a sequential Bayesian estimation, we first consider a state
sequence , , which is assumed to be
an unobserved (hidden) Markov process with initial distribution

. The evolution of the state sequence is given by

(1)

where is a nonlinear function of the
state; is a process noise sequence; and and

are the dimensions of the state and process noise vectors,
respectively. This state model represents our prior knowledge
about, e.g., the underlying dynamic movement of a target.

We also have a sequence of measurements ,
. These measurements are related to the current state vector

via the observation equation:

(2)

where is a nonlinear function;
is a measurement noise sequence; and and are the

dimensions of the measurement and noise vectors, respectively.
2) Belief Prediction and Update: We denote by

and , respectively, the state
sequence and the observations up to . Under the Bayesian
inference framework, all relevant information about given
observations can be obtained from the posterior probability
density (also called belief) . Therefore, our aim is
to estimate recursively in time the distribution and
its associated features, including .
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In order to derive a recursive Bayesian inference process,
we consider that the following conditional independent assump-
tions for a first-order hidden Markov process are satisfied.

A1: Conditioned on , the current measurements are
independent of the past states and past measure-
ment history , i.e.

(3)

A2: Conditioned on , the current state is indepen-
dent of the states and past measurement history

, i.e.

(4)

Based on these assumptions, we obtain recursive formulas to
calculate the new belief when the new measure-
ments are available, as follows:

(5)

and

(6)

where

(7)

For linear and Gaussian state and measurement models, the
above equations become Kalman filters.

Equations (5) and (6) form a procedure for belief prediction
and update in a recursive belief propagation. In the prediction
stage (5), we use the probabilistic model of the state transition

and the measurement history to predict the
prior probability density function (pdf) of the state at the th
time step. In the update stage (6), the current measurement
(via the likelihood function ) is used to modify the prior
density to obtain the belief at the current time step.

3) Bayesian State Estimation: At the th time step, after
obtaining the current belief , we can obtain an op-
timal estimate of the current state . In target tracking, this
estimate can be used to determine the current target states (e.g.,
position and velocity) and environment parameters. Under the
Bayesian framework, the estimate is calculated by optimizing a
utility function. For example, when we apply a minimum-mean-
squared error (MMSE) criterion, the estimate is the mean of the
belief .

4) Optimal Waveform Selection: In optimal waveform selec-
tion, we use the information from the current belief ,
together with the state transition distribution and measurement
model, to optimally select the waveform one step ahead in
response to the target state and the environmental situation.
Hence, we can achieve the best possible sensing performance.

To derive a mathematical formulation for optimal waveform
selection, we first create a utility function according to certain
criteria that represent the sensing performance; then, we deter-
mine the parameters for the next transmitted waveform by op-
timizing (e.g., maximizing) this utility function. We denote by

the utility function, the waveform parameters at the
th time step, and the measurements at the

th time step. At the current time step , we select the next
transmitted waveform to be

(8)

where denotes the set of the allowed values for or a
library of possible waveforms.

We note that the former utility function is related to the be-
lief at the th time step. In order to determine this belief,
we need the measurements , which are not available at the
current time step . Therefore, we compute the utility function

by marginalizing out the particular value of . We ob-
serve that for any given , we obtain a particular value for

acting on the new belief . Now
for each waveform parameter we consider the set of all
values of for different values of . Possibilities for sum-
marizing the set of values of by a single quantity include
the average, the worst, or the best case [21]. For example, if we
use the average as a utility, the next transmitted waveform is se-
lected by

(9)
where represents the average over the set of new
belief weighted by .

We note that many tracking applications require fast real-time
processing. The tradeoff between performance and computation
cost should be considered when choosing the utility function

.

III. TARGET DYNAMIC STATE MODEL AND

MEASUREMENT MODEL

In this section, we first create a dynamic state model for target
tracking. Based on this model, we can track the target position,
velocity, and scattering coefficients. We then derive a measure-
ment model that is the output of the receiver sensor array. This
model provides a natural way of incorporating the polarimetric
aspects of the target and clutter into the tracking filter.

A. Target Dynamic State Model

In our state model, we include the target scattering coeffi-
cients that are important, for example, for target identification
and classification [3]. We denote by the complex scattering
matrix representing the polarization change of the transmit
signal upon its reflection on the target:

(10)

The variables and are copolar scattering coefficients,
whereas and are cross-polar coefficients. For the mono-
static radar case, .

The scattering matrix of the target can be written in terms of
the radar polarization basis as [22]

(11)
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where
• is a unitary transformation matrix from the target eigen-

basis to the radar basis

(12)

where is the orientation angle of the target eigenbasis
around the line of sight and relative to the radar

, and is the ellipticity of the target
.

• is a diagonal matrix representing the target scattering
matrix in its eigenpolarization basis

(13)

where is the maximum target amplitude; is the abso-
lute phase of the scattering matrix ;

is called the skip angle, which is associated with the de-
polarization of the reflected signal ;
and is called the characteristic angle, representing the
ability of the target to polarize an incident unpolarized field

[3]. These four parameters
do not change with the target orientation about the line of
sight; hence, they are called invariant parameters. The de-
composition of the scattering matrix for the non-reciprocal
case (i.e. ) can be found in [23].

Then, we represent the target state at the th time step as

(14)

where includes the target posi-
tion and velocity at the th time step in a Cartesian coordinate
system, and represents the target
scattering parameters.

We assume that: 1) the target movement is characterized by
a constant velocity and random acceleration; 2) the target scat-
tering parameters are nearly constant and have random rate of
change; and 3) the position and velocity are statistically inde-
pendent of the scattering coefficients. Then, we obtain a linear
target dynamic state model given by

(15)

where
• is the transition matrix for states as

(16)

where denotes the identity matrix of size , and is
the pulse repetition interval (PRI). is the transition
matrix for state .

• is the independent process noise, representing the un-
certainty about the state model, and is assumed to be zero-
mean Gaussian distributed with covariance matrix

(17)

where and denote the covariance matrices for the
target acceleration and rate of change of the scattering pa-
rameters [24], see (18) at the bottom of the page, and
and are constants.

In this state model, the assumption that the target scattering
coefficients vary slowly is suitable for a situation in which the
target is far away from the sensor array and the target position
change during the tracking period is not large compared with
the distance between the target and the sensor array.

In general, the dynamic model for the scattering coefficients
is a nonlinear function with respect to other states; hence, the
target dynamic state model will be nonlinear. In some cases, it
is difficult even to determine a closed-form dynamic transition
model for the scattering coefficients. One solution is to assume
the state transition density to be a uniform distri-
bution centered at with a radius equal to the possible max-
imum value of the change of the scattering coefficients during

. That is, we do not provide any prior information about the
change of except that will be within a certain range.

B. Statistical Measurement Model

We consider a target characterized by azimuth , elevation ,
range , Doppler shift , and scattering matrix . These pa-
rameters are related to the states in (14). To uniquely identify
the polarimetric aspects of a target, polarization diversity is re-
quired and the complete EM information of the signal reflected
from the target has to be processed [5]. To provide these mea-
surements, we employ an array of EM vector sensors [4] as the
receiver, where each sensor measures the six components of the

(18)
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EM field (three electric and three magnetic components of the
received signal). In Section III-B-1, we briefly consider the ap-
plication of more traditional sensors, such as tripoles [19] and
2-D sensors [20].

Consider an array of vector sensors receiving the signal re-
turns from a target. The complex envelope of the measurements
can be expressed as

(19)

where the following is noted.
• The matrix is the

array response, where is the Kronecker product;
is the bearing angle vector;

represents the phase
of the planewave arriving from the direction given by
the vector at the
position of the th sensor ; is the
signal wavelength; and is the response of a single
vector sensor given by [4]

(20)

• The polarized transmit wave is a narrowband signal
that can be represented by a complex vector [3], [4]

(21)

where

(22)

Angles and are the orientation and ellipticity of the
polarization ellipse. The function represents the scalar
complex envelope of the transmitted pulse. The time delay

, where is the distance from the target to the
sensor array and is the wave propagation velocity.

• The vector is the additive noise corrupting the radar
measurements; it represents the thermal noise at the sen-
sors and the reflections from the clutter (target environ-
ment).

• denotes the number of samples during the pulse repeti-
tion interval .

Since is the transmitted signal, the waveform design
problem consists of selecting the envelope and the po-
larization angles and in (21). We denote these waveform
parameters by .

It can be verified that the relationship between the target pa-
rameters and the states is given
by

(23a)

(23b)

(23c)

(23d)

(23e)

where is the carrier frequency, and the relation between
and is given in (11)–(13). When we insert (23) into the mea-
surement model (19), we observe a nonlinear relationship be-
tween measurements and state . We write this nonlinear
relationship at the th time step as

(24)

where

(25)

When we lump together into a vector,
we obtain the following as measurement model:

...
...

...

(26)

1) Model Extension to Other Vector Sensors: The above
measurement model is based on the application of EM vector
sensors to provide polarimetric information of the reflected
signal. This model can also be extended to other polarimetric
sensors by generalizing the matrix response of the vector sensor
as

(27)

where is given in (20) and is a diagonal ma-
trix whose th diagonal entry is , for

. This matrix provides the phase shift between the
vector-sensor center and the position of the th component.
is a 6 6 matrix whose entries are “0” or “1.” It has only one
“1” per row, indicating the EM field measured by the th sensor
component. Equation (27) represents a distributed EM vector
sensor [17] in which the components are not collocated. For the
case of the collocated vector sensor [as the EM vector sensor in
(20)], the matrices and are the identity matrix . Equation
(27) can represent the tripole and 2-D sensors by redefining ma-
trix as
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(28)

We note that EM vector sensors are expected to have con-
stant performance in all directions and polarizations of the
received signal since they measure all the components of the
EM field [4]. On the other hand, to achieve good performance,
2-D sensors have to be steered using a mechanical device or a
sensor array combined with beamforming techniques. Although
tripoles measure the complete electric information of the re-
ceived signal, we have shown in [18] that their performance on
the estimation of direction-of-arrival parameters depends on
the signal polarization and azimuth.

2) Polarimetric Clutter Model: The measurement noise
represents not only the thermal noise at the sensors of the re-
ceiver but also the reflections from the environment surrounding
or behind the target. We aim to represent by this model the
clutter reflections, for example, in the case for which a target
flies above a sea or land surface.

It is well known that the clutter response is highly depen-
dent on the transmit signal polarization [3], [25]. Conventional
clutter models represent the term in (19) with a random
vector and apply training data to estimate its distribution pa-
rameters [26], [27]. In an adaptive polarized waveform system,
training data must be recorded for all possible polarizations
used by the transmitter, but this modeling procedure becomes
highly inefficient. Instead, we propose a new polarimetric clutter
model that explicitly accounts for the polarization of the il-
luminating signal, and only the clutter scattering coefficients
are represented by a random vector. For estimating the statis-
tical parameters of this random vector, training data recorded
with simple two different polarized pulses are required [5]. In
[28], we applied the former model for a radar detection problem
and showed good performance using real radar data compared
with detectors designed for other clutter models, such as com-
pound-Gaussian and Weibull distributions.

The transmit signal illuminates both the target and the clutter,
and their reflections are recorded by the same receiver. Hence,
we propose a noise model, similar to measurement model (19),
as

(29)

where is the additive thermal noise and is the scat-
tering matrix of the clutter. The angles are the direc-
tion in which the radar beam is been steered, which might be
different from the target angles. The clutter delay is related
to the average clutter position, and it may also differ from the
target delay. For our cases of interest, we consider that the clutter
does not introduce Doppler shift; i.e. the clutter velocity can be
neglected when compared with the target velocity. The clutter

scattering coefficients are random variables because they repre-
sent the reflections from many incoherent point scatterers con-
stituting the clutter. Following the model in [5], (29) can be re-
arranged to express the clutter scattering coefficients in a vector:

(30)

where

(31)

and

(32)

where the variables are the scattering coefficients of the
clutter.

We assume that the thermal noise and the clutter scattering
coefficients can be modeled as

(33)

where is the noise power, and the clutter covariance matrix
can be parameterized as [5]

(34)

where and are the power of the polarized and unpolar-
ized components of the clutter, and are the orientation and
ellipticity angles of the clutter, matrix and vector are
defined as in (22), and is the power of the cross-polarized
component of the clutter.

3) Polarized Waveform Structure: The design of the polar-
ized waveform involves selecting the parameters of the signal
envelope and its polarization in (21). Here, we consider
as an example a linear frequency modulated (LFM) pulse with
Gaussian envelope, which is defined as

(35)

where is the pulse length and is the frequency sweep rate.
The signal bandwidth is [13]. Then, we propose
to use the following scheme of polarized waveform [7]:

(36)

where is the number of transmitted LFM pulses and
is the effective pulse length [13]. Under this scheme, the

waveform parameters are .
Note that if the scattering matrix is completely unknown,

at least two pulses with different polarization should be trans-
mitted, i.e. , to uniquely identify .

IV. TARGET TRACKING USING SEQUENTIAL

MONTE CARLO METHODS

In this section, we develop a target-tracking method based on
the proposed dynamic state model (15) and the statistical mea-
surement model (26). Since these models are nonlinear, we pro-
pose a sequential Monte Carlo method (particle filter), which is
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based on point mass representation of probability densities and
is powerful for solving nonlinear and non-Gaussian Bayesian
inference problems.

In contrast with the ordinary sequential Monte Carlo
methods, in our proposed approach we adopt a Gibbs sampler
to draw samples from an importance sampling function [29]
through which we can handle the potentially large dimension
of a state vector. We first describe the ordinary sequential
importance sampling (SIS) particle filter and then we discuss
the use of other possible importance sampling functions.

A. Sequential Importance Sampling Particle Filter

The sequential Monte Carlo method is a technique for im-
plementing a recursive Bayesian filter by Monte Carlo simula-
tions [29]–[35]. The key idea is to represent the required poste-
rior density function by a set of random samples with associated
weights and to compute estimates based on these samples and
weights.

Let denote a random mea-
sure that characterizes the belief , where

is a set of support points with asso-
ciated weights . Then, the belief at the

th time step can be approximated as

(37)

where the weights are chosen using the principle of importance
sampling [29]. Let be samples that are
easily generated from a proposal importance density function

. Then, the weights in (37) are given by [34]

(38)

For a sequential filtering case where only is required
at each time step, we can choose the importance density
such that we obtain a weight update equation [35]:

(39)

and the belief can be approximated as

(40)

where are sampled from the importance
density .

B. Gibbs Sampling-Based Particle Filter

Considering our target tracking problem, from the dynamic
state model (15) we observe that if we want to track the target
position, velocity, and scattering coefficients simultaneously,
the dimension of the state space is large. Drawing samples
directly from the importance density is typ-
ically inefficient. Hence, we apply a Markov chain Monte
Carlo (MCMC) method, a class of iterative simulation-based

methods, to sample from the importance density. MCMC
methods are a set of procedures that enable the successful
solution of simulation problems for more complex models
[31], [32]. The basic idea of MCMC methods is to simulate
an ergodic Markov chain whose samples are asymptotically
distributed according to a desired density function. In our work,
we adopt a classical MCMC algorithm—the Gibbs sampler.
Given state , the Gibbs sampler consists of first defining a
partition of the components of as ( ),
and then sampling successively from the full conditional distri-
butions , where .

In our developed particle filter, we choose the importance
density to be the transitional prior , .
We adopt the above Gibbs sampling and propose the following
method to draw samples from . According to the
state model (15), we partition the components of as

, where includes the target position and velocity
and includes the target scattering parameters. Then, we derive
a Gibbs sampling algorithm to draw samples
at the th time step in a particle filter. Such a Gibbs sampling is
described as follows.

• Initialization, . Set randomly or deterministically:

• Iteration , , where is a large number.
— Sample .

— Sample .

• Installation of and into :

Then, the obtained is a sample from .
In a special case where the partitions and are statistical

independent of each other, the Gibbs sampling can be simplified
as

• Sample .

• Sample .

Then, we obtain .

C. Discussion

In the above proposed Gibbs sampling-based particle filter,
we use the simplest importance density function .
However, this importance function does not take into account
the current measurements , and the state space is explored
without any knowledge of the observations. Therefore, the filter
can be inefficient and it is sensitive to outliers. A natural strategy
to overcome this disadvantage is to use an optimal importance
function that minimizes the variance of the importance weights
conditional upon the states and the measurements .
Such an optimal importance function is given as [35]

(41)

and the importance weight in (39) becomes

(42)
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However, this optimal importance function suffers from
two drawbacks: it requires the ability to sample from

, which is not easy; and it requires the evaluation

of . This integral has
no analytical form in general cases. A practical method to over-
come this drawback is to use a Gaussian density to approximate
the optimal importance function, which allows us to easily
draw samples. The parameters of this Gaussian importance
function are evaluated using a local linearization of the original
optimal importance function [35], [36]. This method can be
extended to use a sum of Gaussian densities to approximate
the optimal importance function, which can provide a more
accurate approximation when the optimal importance function
is multi-modal.

V. OPTIMAL WAVEFORM DESIGN BASED ON POSTERIOR

CRAMÉR-RAO BOUNDS

In this section we propose a new optimal waveform design
method for target tracking. This method is based on the pro-
posed dynamic state model and the statistical measurement
model in (15) and (26), respectively. It is combined with the
above target-tracking algorithms and forms an adaptive wave-
form design scheme.

In order to pursue the optimization at the th time step, we de-
velop an algorithm that predicts the tracking performance at the

th time step when employing specific waveform param-
eters. Then, we select the waveform parameters that optimize a
certain criterion. Since the target tracking methods are derived
under a sequential Bayesian inference framework, we design the
waveform selection criterion based on a posterior Cramér-Rao
bound.

A. Posterior Cramér-Rao Bounds

For random parameters, as in our sequential Bayesian filter
for target tracking, a lower bound that is analogous to the
Cramér-Rao bound (CRB) in a nonrandom parameter estima-
tion exists and is derived in [37] and [38]. This lower bound is
usually referred to as a posterior CRB (PCRB) or a Bayesian
CRB.

We denote by a vector of measurements and by a vector
of random parameters to be estimated. Let be the joint
pdf of the pair , and be an estimate of . Then,
the PCRB on the mean-square estimation error satisfies

(43)

where is the Bayesian information matrix (BIM), is the
PCRB, denotes expectation with respect to , and
the inequality in the equation means that the difference
is a nonnegative definite matrix. Let be the matrix
of second-order partial derivatives with respect to the -dimen-
sional parameter and -dimensional parameter vector ; i.e.,

...
. . .

... (44)

Using this notation, the BIM for is defined as [38]

(45)

From this property we observe that the PCRB is a lower bound
on the error covariance matrix , and it is related only to the
state and measurement models and independent of the specific
estimation methods. Hence, we can use the PCRB as a precise
measure of the tracking system performance.

B. Criterion for Optimal Waveform Selection

Consider our target tracking problem: at the th time step,
we want to estimate the state using the measurements .
We denote by the sequence of states up to
time . Then, the BIM of the target states, whose inverse is the
PCRB, is defined as

(46)

This BIM and the corresponding PCRB are
matrices. The lower right block of is

the PCRB for estimating , and its inverse is the BIM for es-
timating , denoted by . According to this definition, in our
optimal waveform selection algorithm, at the th time step we
design a criterion based on the BIM to select the wave-
form to be transmitted at the th time step.

To derive the optimal waveform selection criterion, we adopt
the recursive equation in [38] to update BIM . For the par-
ticular case of a linear state model with additive Gaussian noise,
this recursive BIM can be written as (see [39])

(47)

where and are the waveform parameters at time step
and , respectively, and

(48)
In our sequential waveform design algorithm, we attempt to

minimize the error on the estimation of the target state using
the information provided by the state and measurement models
and the measurement history . Hence, we modify the matrix

to include the measurement history and design a criterion
based on a new matrix :

(49)

By replacing with , we use the information from the
measurement history to improve our prior knowledge on
the state . Mathematically, we replace the prior density

with when calculating (see (52) for
a further understanding). Hence, provides more informa-
tion on state than , and the waveform selection crite-
rion based on has the potential to provide better processing
performance. Note that is calculated by averaging over all
the possible values of . That means we do not need to know
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the specific value of the next measurements to calculate the cri-
terion function. Then, for selecting the optimal parameters of
the next transmitted waveform, we propose to use the weighted
trace of the inverse of (47), replacing by

(50)

where denotes a set of the allowed values for or a library
of all possible waveforms, is the weighting matrix used to
equalize the magnitude of the different parameters in the state
vector (see also [7]), and is defined as in (47) replacing

by .

C. Computation of the Criterion Function

The proposed criterion function depends not only on the in-
formation provided by the state model but also on the mea-
surement model and history, through the term . To com-
pute the former matrix, in general, the expectation in (49) has
no closed-form analytical solution and must be solved numer-
ically. We propose to use Monte Carlo integration to calculate
this expectation and merge this numerical procedure into the se-
quential Monte Carlo method for tracking the target.

In order to compute the numerical result for , we define
the matrix function

(51)

Then, we can rewrite as

(52)

According to this equation, the expectation to calculate
can first be taken with respect to the conditional density
function and then with respect to the density

; i.e.,

(53)

(54)

Note that is the standard Fisher information matrix (FIM)
for estimating the state vector based on the observations

.
In order to calculate (53), we need samples of the predicted

target state . We can apply sequential Monte Carlo methods
to draw these samples. For a sequential Monte Carlo method, we
obtain samples and its associated weights at the th time step
from the belief as . Then,
the corresponding samples and weights of the predicted state are

, where (see
Appendix A for details). Therefore, the expectation in (53) can
be computed by the following two steps:

• For , draw samples .

• Approximate the matrix as

(55)

In order to calculate (54), for each , we draw
identically independently distributed (i.i.d.) samples

from the likelihood function

. Then, we approximate the FIM as

(56)

Therefore, we approximate using the Monte Carlo method
as

(57)

1) Computation under Gaussian Measurement Noise: The
Monte Carlo integration for computing given by (57) is
suitable for any statistical measurement model. However, if the
additive noise in the measurement model (26) has Gaussian
distribution, we can obtain an analytical form for the FIM ;
thus, the cost of computing using (53) can be significantly
reduced.

Assuming that the measurement noise follows a com-
plex Gaussian distribution, the measurement given
is distributed as

(58)

where is defined in (26). We also assume that the measure-
ment noise values are independent at
different sample times. Then, the covariance matrix in (58) can
be written as a block diagonal matrix:

(59)

where, if the measurement noise follows the model de-
scribed in Section III-B-2,

(60)
Therefore, according to the results in [40, Ch. 15.7] the FIM in
(54) is

(61)

where is defined in (25).
2) Suboptimal Criterion Function: Computing using

the Monte Carlo integration is intensive and time demanding
because the FIM must be evaluated for every particle.
Therefore, we propose a suboptimal criterion function in which
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Fig. 1. Comparison of the averaged tracking results between adaptive and fixed
waveform schemes.

the matrix is replaced by evaluated at the expected
predicted state. Therefore, the suboptimal criterion can be com-
puted by the following steps:

• For , draw samples .
• The expectation of the predicted state is approximated as

(62)

• Replace by in (47).
This suboptimal criterion significatively reduces computation
time at the expense of accuracy in computing the integral; hence,
the selected waveform may not be optimal.

VI. NUMERICAL EXAMPLES

In this section, we use numerical examples to study the per-
formance of the proposed adaptive waveform design method for
tracking targets in the presence of clutter. Through these exam-
ples we demonstrate the advantages of the adaptive waveform
design scheme compared with the fixed transmitted waveform
scheme. We also study how the target scattering coefficients will
affect the design of the polarimetric aspect of the waveform.
First, we provide a description of the simulation setup consid-
ered for the target and tracking system, and then we discuss dif-
ferent numerical examples. The results reported in this section
correspond to the average over 100 Monte Carlo simulations.

Target and Clutter: The numerical examples consist of a
single target that moves parallel to the horizontal plane at a ve-
locity of 200 m/s. The target trajectory is a section of a circle
of radius 1.5 km, that starts at the position ,
as shown in Fig. 1. We assume that the scattering parameters
of the target are partially known and have the following values:

, , , and ; however, its
orientation angle can change as the target moves. In addition,
we consider that the clutter covariance parameters have been
estimated using training data and that they have the following
values: , , , , and .

The covariance of the clutter will be scaled to fulfill the required
target-to-clutter ratio (TCR). The definition of TCR is given in
Appendix B.

Transmitted Signal: We consider a radar system that trans-
mits one pulse at intervals of , with a
carrier frequency . The maximum
signal bandwidth is . The system is capable
of transmitting LFM pulses that change length , frequency rate
, and polarization angles and on a pulse-to-pulse basis.

Tracking System: The receiver of the tracker consists of two
vector sensors located at and

. The radar echoes are recorded at sampling fre-
quency . The system tracks the position and ve-
locity of the target, as well as its orientation angle; hence, the
state vector is . The particle filter is imple-
mented using the transitional prior as the impor-
tance density function to draw . The inten-
sity of the process noise is given by and . In
addition, we assume the covariance of the initial state is

. The weighting matrix is a di-
agonal matrix whose main diagonal entries are a power of ten
intended to equalize the covariance of the different parameters.

Example 1: In this example, we compare the performance
of the adaptive and fixed waveform system assuming that the
orientation angle of the target is along the entire tra-
jectory. For the adaptive system, the wave shape parameters are

and (maximum allowable
frequency rate for the signal bandwidth), and the polarization
aspects of the signal are selected from the following waveform
library:

(63)

where

(64)

For the fixed waveform, the transmitted signal corresponds to
the waveform (vertical polarization). Fig. 1 shows the av-
eraged tracking results of the moving target in an environment
such that and [signal-to-noise ratio (SNR)]

. For the fixed waveform, the vertical polarization
is unfavorable because it is close to the polarimetric response
of the clutter. Hence, the received signal is highly corrupted by
clutter reflections and the tracking filter is not capable of fol-
lowing the target. On the other hand, the adaptive waveform
method, although it was also started with vertical polarization,
immediately selects the waveform that matches the target po-
larimetric aspects, increasing the energy of the signal reflected
from the target and reducing the clutter reflections. Therefore,
the tracking performance for the adaptive waveform selection
scheme is significantly better than the fixed waveform scheme.

Using the same simulation setup, the numerical example was
repeated. However, this time the waveform was selected by ap-
plying the suboptimal criterion function in order to reduce the
computation cost of the adaptive waveform design algorithm.
Fig. 2 shows the square root of the averaged MSE for the target
position. As expected, the suboptimal algorithm generated esti-
mates with larger error. However, since the loss of performance



1130 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

Fig. 2. Square root of the averaged MSE for the target position.

is small and the reduction of computation time is significant, we
will apply this suboptimal method in the following examples.

Example 2: In this new example, we study the performance
of the adaptive system when the transmit signal is also allowed
to have different shape parameters. In this case, the waveform
library consists of

(65)

where

(66)

where is the maximum frequency rate for a given .
The simulations show that our adaptive waveform algorithm

always selects the waveforms with the longest length and
highest frequency rate; i.e. and . We
note that longer pulses reduce the estimation error for the target
velocity and signals with higher frequency rate reduce the error
on the position. Hence, in order to estimate both position and
velocity of the target, the adaptive waveform algorithm selects
the signal with the largest length and frequency rate. Note that
signals with highest time-bandwidth product are frequently
applied in radar.

The waveform selection algorithm selects the polarization pa-
rameters of the signal in order to increase the energy of the target
echoes and to reduce the energy from the clutter, as was dis-
cussed in the previous example.

Example 3: We analyze the behavior of the tracking filter
when the state model does not match the target dynamics. In this
case, we consider the setup and waveform library as in the first
example; however, the orientation angle of the target changes
following the linear piecewise function depicted in Fig. 3. The
same figure shows the estimated target orientation angle and
the waveform polarization angle selected for transmission by
the adaptive algorithm. The same simulation was solved for two
scenarios: and .

In Fig. 3, it can be observed that the filter tries to track the
true orientation angle when it is changing linearly, even though
this parameter is defined as constant in the state model. Clearly,

Fig. 3. Averaged orientation angles for two scenarios:TCR = SNR = 10dB

(solid line) and TCR = SNR = 15 dB (dotted line).

Fig. 4. Square root of the averaged MSE for the target position for two sce-
narios: TCR = SNR = 10 dB (solid line) and TCR = SNR = 15 dB

(dotted line).

the convergence of the estimated orientation angle is faster when
the clutter and noise interference is lower. We note that the filter
selects the waveform that best matches the estimated target po-
larization aspects, in order to increase the energy reflected by
the target.

In addition, we studied the performance of the adaptive
method with respect to the fixed waveform system. Fig. 4 and
Fig. 5 depict the square root of the averaged MSE for the target
position and orientation angle, respectively. It is not surprising
that estimation performance is better in the case of lower clutter
and noise interference for both the fixed and adaptive case.
It is also interesting to note that the estimation performance
on the position for the adaptive case is worse with respect to
Example 1. The reason for this lower performance is because
the target orientation is changing and the tracking filter cannot
estimate precisely that target parameter. In such a case, the
adaptive waveform algorithm selects the signal that matches the
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Fig. 5. Square root of the averaged MSE for the target orientation angle for two
scenarios: TCR = SNR = 10 dB (solid line) and TCR = SNR = 15 dB

(dotted line).

estimated target parameters, which differs from the true target
parameters. Nevertheless, the adaptive system still performs
better than the fixed waveform system for this example.

VII. CONCLUSIONS

In this paper, we addressed the problem of adaptive polarized
waveform design for tracking a target in the presence of clutter.
We proposed a general framework based on sequential Bayesian
inference. For the target-tracking problem, we adopted a se-
quential Monte Carlo method that is very powerful for handling
nonlinear and non-Gaussian state and measurement models. We
first defined a state model that includes the scattering coeffi-
cients of the target in addition to its position and velocity. We
proposed and developed a measurement model that is the output
of an EM vector-sensor array. This model provides a natural
way of introducing polarimetric information of both target and
clutter into the tracking filter. Then, we developed an adap-
tive waveform design scheme that exploits the freedom pro-
vided by the polarization of the transmitted waveform to in-
crease tracking accuracy. We derived a new criterion based on a
posterior Cramér-Rao bound to optimally select the waveform
one step ahead on time. We also applied a Monte Carlo method
to compute this criterion numerically and proposed a subop-
timal method that considerably reduces the computation cost.
Numerical examples demonstrated the advantages of the adap-
tive waveform design scheme. Specifically, we showed that se-
lecting the optimal signal polarization improves the tracker per-
formance.

In future work, we will validate our algorithms using real
radar data. In addition, we will apply the proposed framework
for adaptive waveform design to other radar applications, e.g.,
target sequential detection. We will derive more realistic dy-
namic state models to track the target scattering coefficients
and other target states. We will also incorporate other clutter

models into the statistical measurement model according to dif-
ferent application scenarios. Our proposed framework for adap-
tive waveform design provides us the freedom to implement dif-
ferent criteria to optimally select the next transmitted waveform
parameters. Hence, in our future work, we will implement and
compare different waveform design criteria for different appli-
cations and operational scenarios.

APPENDIX

A. Numerical Computation of (53)

In order to compute the expectation in (53) using Monte
Carlo integration, we need to draw samples from certain impor-
tance density function and find their corresponding importance
weights. We start by finding an approximation to the prediction
of the belief

(A.1)

As in the procedure described in Section IV-A, the weights
are chosen using the principle of importance sampling:

(A.2)

where is the importance density function to be specified.
Considering that this function should also satisfy the assump-
tions A1 and A2, then it can be factored as

(A.3)

Applying the same decomposition to the prediction of the belief,
the weights are

(A.4)

If the importance density function is chosen to match im-
portance density function of the tracking particle filter, the
weights become (see (38))

(A.5)

Furthermore, if the importance density of the tracking particle
filter is the prior , the weights of the filter and the
numerical integral are equal. Hence, the prediction of the belief
can be approximated as

(A.6)

Finally, (53) can be computed as in (55).

B. Definition of TCR and SNR

In order to characterize the target in its environment, we de-
fine the TCR following the work by Novak et al. in [41]

TCR (B.1)
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where , , are the target scattering coefficients defined
in (10) and is the norm of the vector.

When selecting the optimal signal parameters, the pulse
length and bandwidth of the signal are changed. Hence, we
seek to specify a definition of the SNR independent of these
features. Then, it is useful to define SNR as

SNR (B.2)

where is the number of transmitted pulses, is the power
of the thermal noise process and , define the time-window
during which the system is allowed to track the target. For the
simulation examples, these parameters were set up in a way that
the system was able to follow a target in a radial distance be-
tween 10 and 25 km.
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