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Design and Evaluation of a Window-Consistent
Replication Service
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Abstract —Real-time applications typically operate under strict timing and dependability constraints. Although traditional data
replication protocols provide fault tolerance, real-time guarantees require bounded overhead for managing this redundancy. This
paper presents the design and evaluation of a window-consistent primary-backup replication service that provides timely availability
of the repository by relaxing the consistency of the replicated data. The service guarantees controlled inconsistency by scheduling
update transmissions from the primary to the backup(s); this ensures that client applications interact with a window-consistent
repository when a backup must supplant a failed primary. Experiments on our prototype implementation, on a network of Intel-based
PCs running RT-Mach, show that the service handles a range of client loads while maintaining bounds on temporal inconsistency.

Index Terms —Real-time systems, fault tolerance, replication protocols, temporal consistency, scheduling.

1 INTRODUCTION

ANY embedded real-time applications, such as auto-

mated manufacturing and process control, require
timely access to a fault-tolerant data repository. Fault-
tolerant systems typically employ some form of redun-
dancy to insulate applications from failures. Time redun-
dancy protects applications by repeating computation or
communication operations, while space redundancy masks
failures by replicating physical resources. The time-space
trade-offs employed in most systems may prove inappro-
priate for achieving fault tolerance in a real-time environ-
ment. In particular, when time is scarce and the overhead
for managing redundancy is too high, alternative ap-
proaches must balance the trade-off between timing pre-
dictability and fault tolerance.

For example, consider the process-control system shown
in Fig. 1a. A digital controller supports monitoring, control,
and actuation of the plant (external world). The controller
software executes a tight loop, sampling sensors, calculat-
ing new values, and sending signals to external devices
under its control. It also maintains an in-memory data re-
pository, which is updated frequently during each iteration
of the control loop. The data repository must be replicated
on a backup controller to meet the strict timing constraint
on system recovery when the primary controller fails, as
shown in Fig. 1b. In the event of a primary failure, the sys-
tem must switch to the backup node within a few hundred
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milliseconds. Since there can be hundreds of updates to the
data repository during each iteration of the control loop, it
is impractical (and perhaps impossible) to update the
backup synchronously each time the primary repository
changes.

An alternative solution exploits the data semantics in a
process-control system by allowing the backup to maintain a
less current copy of the data that resides on the primary. The
application may have distinct tolerances for the staleness of
different data objects. With sufficiently recent data, the
backup can safely supplant a failed primary; the backup can
then reconstruct a consistent system state by extrapolating
from previous values and new sensor readings. However, the
system must ensure that the distance between the primary
and the backup data is bounded within a predefined time
window. Data objects may have distinct tolerances in how far
the backup can lag behind before the object state becomes
stale. The challenge is to bound the distance between the
primary and the backup such that consistency is not com-
promised, while minimizing the overhead in exchanging
messages between the primary and its backup.

This paper presents the design and implementation of a
data replication service that combines fault-tolerant proto-
cols, real-time scheduling, and temporal consistency se-
mantics to accommodate such system requirements [24],
[29]. A client application registers a data object with the
service by declaring the consistency requirements for the
data in terms of a time window. The primary selectively
transmits to the backup, as opposed to sending an update
every time an object changes, to bound both resource utili-
zation and data inconsistency. The primary ensures that
each backup site maintains a version of the object that was
valid on the primary within the preceding time window by
scheduling these update messages.

The next section discusses related work on fault-tolerant
protocols and relaxed consistency semantics, with an
emphasis on supporting real-time applications. Section 3
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Fig. 1. Computer control system.

describes the proposed window-consistent primary-backup
architecture and replication protocols for maintaining con-
trolled inconsistency within the service. This replication
model introduces a number of interesting issues in sched-
uling, fault detection, and system recovery. Section 4 con-
siders real-time scheduling algorithms for creating and
maintaining a window-consistent backup, while Section 5
presents techniques for fault detection and recovery for
primary, backup, and communication failures. In Section 6,
we present and evaluate an implementation of the window-
consistent replication service on a network of Intel-based
PCs running RT-Mach [32]. Section 7 concludes the paper
by highlighting the limitations of this work and discussing
future research directions.

2 RELATED WORK

2.1 Replication Models
A common approach to building fault-tolerant distributed

systems is to replicate servers that fail independently. In
active (state-machine) replication schemes [6], [30], a collec-
tion of identical servers maintain copies of the system state.
Client write operations are applied atomically to all of the
replicas so that after detecting a server failure, the remain-
ing servers can continue the service. Passive (primary-
backup) replication [2], [9], on the other hand, distinguishes
one replica as the primary server, which handles all client
requests. A write operation at the primary invokes the
transmission of an update message to the backup servers. If
the primary fails, a failover occurs and one of the backups
becomes the new primary.

In recent years, several fault-tolerant distributed systems
have employed state-machine [7], [11], [26] or primary-
backup [4], [5], [9] replication. In general, passive replica-
tion schemes have longer recovery delays since a backup
must invoke an explicit recovery algorithm to replace a
failed primary. On the other hand, active replication typi-
cally incurs more overhead in responding to client requests
since the service must execute an agreement protocol to
ensure atomic ordered delivery of messages to all replicas.
In both replication models, each client write operation gen-
erates communication within the service to maintain
agreement amongst the replicas. This artificially ties the
rate of write operations to the communication capacity in
the service, limiting system throughput while ensuring
consistent data.

Past work on server replication has focused, in most
cases, on improving throughput and latency for client re-
quests. For example, Fig.2a shows the basic primary-
backup model, where a client write operation at the pri-
mary P triggers a synchronous update to the backup B [4].
The service can improve response time by allowing the
backup B to acknowledge the client C [2], as shown in
Fig. 2b. Finally, the primary can further reduce write la-
tency by replying to C immediately after sending an update
message to B, without waiting for an acknowledgment [8],
as shown in Fig. 2c. Similar performance optimizations ap-
ply to the state-machine replication model. Although these
techniques significantly improve average performance, they
do not guarantee bounded worst-case delay, since they do
not limit communication within the service.
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Fig. 2. Primary-backup models.

Synchronization of redundant servers poses additional
challenges in real-time environments, where applications
operate under strict timing and dependability constraints;
server replication for hard real-time systems is under in-
vestigation in several recent experimental projects [15], [16],
[33]. Synchronization overheads, communication delay, and
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interaction with the external environment complicate the
design of replication protocols for real-time applications.
These overheads must be quantified precisely for the sys-
tem to satisfy real-time constraints.

2.2 Consistency Semantics

A replication service can bound these overheads by relax-
ing the data consistency requirements in the repository. For
a large class of real-time applications, the system can re-
cover from a server failure, even though the servers may
not have maintained identical copies of the replicated state.
This facilitates alternative approaches that trade atomic or
causal consistency among the replicas for less expensive
replication protocols. Enforcing a weaker correctness crite-
rion has been studied extensively for different purposes
and application areas. In particular, a number of research-
ers have observed that serializability is too strict a correct-
ness criterion for real-time databases. Relaxed correctness
criteria facilitate higher concurrency by permitting a limited
amount of inconsistency in how a transaction views the
database state [12], [17], [18], [20], [28].

Similarly, imprecise computation guarantees timely
completion of an application by relaxing the accuracy re-
quirements of the computation [22]. This is particularly
useful in applications that use discrete samples of continu-
ous-time variables, since these values can be approximated
when there is not sufficient time to compute an exact value.
Weak consistency can also improve performance in non-
real-time applications. For instance, the quasi-copy model
permits some inconsistency between the central data and its
cached copies at remote sites [1]. This gives the scheduler
more flexibility in propagating updates to the cached cop-
ies. In the same spirit, window-consistent replication allows
computations that may otherwise be disallowed by existing
active or passive protocols that require atomic updates to a
collection of replicas.

3 WINDOW-CONSISTENT REPLICATION

The window-consistent replication service consists of a
primary and one or more backups, with the data on the
primary shadowed at each backup site. These servers store
objects which change over time, in response to client inter-
action with the primary. In the absence of failures, the pri-
mary satisfies all client requests and supplies a data-
consistent repository. However, if the primary crashes, a
window-consistent backup performs a failover to become
the new primary. Hence, service availability hinges on the
existence of a window-consistent backup to supplant a
failed primary.

3.1 System Model

Unlike the primary-backup protocols in Fig. 2, the window-
consistent replication model decouples client read and
write operations from communication within the service.
As shown in Fig. 3, the primary object manager (OM) han-
dles client data requests, while sending messages to the
backups at the behest of the update scheduler (US). Since
read and write operations do not trigger transmissions to
the backup sites, client response time depends only on local
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operations at the primary. This allows the primary to han-
dle a high rate of client requests while independently
sending update messages to the backup sites.

Although these update transmissions must accommo-
date the temporal consistency requirements of the objects,
the primary cannot compromise the client application’s
processing demands. Hence, the primary must match the
update rate with the available processing and network
bandwidth by selectively transmitting messages to the back-
ups. The primary executes an admission control algorithm
as part of object creation to ensure that the US can schedule
sufficient update transmissions for any new objects. Unlike
client reads and writes, object creation and deletion re-
quires complete agreement between the primary and all the
backups in the replication service.

create/delete
Update ack

Scheduler .

create/delete Update

Scheduler

read/write Object Object
Manager Manager
update
Primary Backup

Fig. 3. Window-consistent primary-backup architecture.

3.2 Consistency Semantics
The primary US schedules transmissions to the backups to
ensure that each replica has a sufficiently recent version of

each object. Timestamps rip(t) and TiB(t) identify successive
versions of object O; at the primary and backup sites, re-
spectively. At time t, the primary P has a copy of O; written
by the client application at time rip(t), while a backup B
stores a, possibly older, version originally written on P at
time r?(t). While B may have an older version of O; than P,
the copy on B must be “recent enough.” If O; has window
8, a window-consistent backup must believe in data that
was valid on P within the last & time units.

DerINITION 1. At time t, a backup copy of object O; has win-
dow-inconsistency t —t, where t; is the maximum time
such that t/ < t and 7| (t/) = 7} (t). Object O; is window-
consistent if and only if t — t/ < §;; a backup B is window-
consistent if and only if all of its objects are window-
consistent.

In other words, B has a window-consistent copy of object
O; at time tif and only if

P B P
7 (t=8)<ti(t) <7 (1)
For example, in Fig. 4, P performs several write operations

on O;, on behalf of client requests, but selectively transmits
update messages to B. At time t, the primary has the most
recent version of the object, written by the client at time d.
The backup has a copy first recorded on the primary at time
b; the primary stopped believing this version at time c.
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Fig. 4. Window-consistency semantics.

Thus, 7{ () =d, 70 = b,and 7] (t—§,) = a. Sincea<b <d, B
has a window-consistent version of O; at time t. The backup
object has inconsistency t — ¢, which is less than its window-

consistency requirement g,. A small value of t — ¢ allows the
client to operate with a more recent copy of the object if the
backup must supplant a failed primary.

The metric t -t/ represents an object’s temporal incon-
sistency within the replication service, as seen by an
“omniscient” observer. Since the backup site does not al-
ways have up-to-date knowledge of client operations, the
backup has a more conversative view of temporal consis-
tency, as discussed in Section 5.2. The client may also re-
quire bounds on the staleness of the backup’s object, rela-
tive to the primary’s copy, to construct a valid system state
when a failover occurs. In particular, if the client reads O; at
time t on P, it receives the version that it wrote t— rip(t)
time units ago. On the other hand, if B supplants a failed
primary, the client would read the version that it wrote
t— r?(t) time units ago. This version is rip(t) - r?(t) older
than that on the primary; in Fig. 4, this “client view” has
inconsistency d —b.

DEFINITION 2. At time t, object O; has recovery inconsistency
P B
7 (-7 (1),
Two components contribute to this recovery inconsis-
tency: client write patterns and the temporal inconsistency
within the service. Window-consistent replication bounds

the latter, allowing the client to bound recovery inconsis-
tency based on its access patterns. For example, suppose

consecutive client writes occur at most w; time units apart;

typically, w; is smaller than &, since the primary sends only
selective updates to the backup sites. The window-
consistency bound t -t/ < §; then ensures that the backup’s
copy of the object was written on the primary no earlier
than time t — (& + w;). Since rip(t) < t, window consistency

guarantees that TiP(t) - r?(t) <6, +w,.

4 REeAL-TIME UPDATE SCHEDULING

This section describes how the primary can use existing
real-time task scheduling algorithms to coordinate update
transmissions to the backups. In the absence of link
(performance or crash) failures [10], we assume a bound ¢

on the end-to-end communication latency within the serv-
ice. For example, a real-time channel [14], [23] with the de-
sired bound could be established between the primary and
the backups. Several other approaches to providing bounds
on communication latency are discussed in [3].

If a client operation modifies O;, the primary must send
an update for the object within the next 6 — € time units;
otherwise, the backups may not receive a sufficiently recent
version of O; before the time-window §, elapses. In order to
bound the temporal inconsistency within the service, it suf-
fices that the primary send O; to the backups at least once
every 6 — £ time units. While bounding the temporal incon-
sistency, the primary may send additional updates to the
backups if sufficient processing and network capacity are
available; these extra transmissions increase the service’s
resilience to lost update messages and the average
“goodness” of the replicated data.

In addition to sending update transmissions to the back-
ups, the primary must allow efficient integration of new
backups into the replication service. Limited processing
and network capacity necessitate a trade-off between timely
integration of a new backup and keeping existing backups
window-consistent. The primary should minimize the time
to integrate a new replica, especially when there are no
other window-consistent backups, since a subsequent pri-
mary crash would result in a server failure. The primary
constructs a schedule that sends each object to the backup
exactly once, and allows the primary to smoothly transition
to the update transmission schedule. While several task
models can accommodate the requirements of window-
consistent scheduling and backup integration, we initially
consider the periodic task model [19], [21].

4.1 Periodic Scheduling of Updates

The transmissions of updates can be cast as “tasks” that run
periodically with deadlines derived from the objects’ win-
dow-consistency requirements. The primary coordinates
transmissions to the backups by scheduling an update
“task” with period p; and service time e, for each object O; ;*
for window consistency, this permits a maximum period
p; = (6 — €)/2. The end of a period serves as both the dead-
line for one invocation of the task and the arrival time for
the subsequent invocation. The scheduler always runs the
ready task with the highest priority, preempting execution
if a higher-priority task arrives. For example, rate-
monotonic scheduling statically assigns higher priority to
tasks with shorter periods [19], [21], while earliest-due-date
scheduling favors tasks with earlier deadlines [21].

The scheduling algorithm, coupled with the object pa-
rameters ¢; and &, determines a schedulability criterion
based on the total processor and network utilization. The
schedulability criterion governs object admission into the
replication service. The primary rejects an object registra-
tion request (specifying e; and &) if it cannot schedule suffi-
cient updates for the new object without jeopardizing the
window consistency of existing objects, i.e., it does not have

1. The size of O; determines the time ¢; required for each update trans-
mission. In order to accommodate preemptive scheduling and objects of
various sizes, the primary can send an update message as one or more
fixed-length packets.
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sufficient processing and network resources to accommodate
the object’s window-consistency requirements. The sched-
uling algorithm maintains window consistency for all ob-
jects as long as the the collection of tasks does not exceed a
certain bound on resource utilization (e.g., 0.69 for rate-
monotonic and 1 for earliest-due-date) [21].

4.2 Compressing the Periodic Schedule

While the periodic model can guarantee sufficient updates
for each object, the schedule updates O; only once per pe-
riod p;, even if computation and network resources permit
more frequent transmissions. This restriction arises because
the periodic model assumes that a task becomes ready to
run only at period boundaries. However, the primary can
transmit the current version of an object at any time. The
scheduler can capitalize on this “readiness” of tasks to im-
prove both resource utilization and the window consistency
on the backups by compressing the periodic schedule.

Consider two objects O, (with p, =5 and e; = 2) and O,
(p, = 3 and e, = 1), as shown in Fig. 5; the unshaded boxes
denote transmission of O;, while the shaded boxes signify
transmission of O,. The scheduler must send an update
requiring one unit of processing time once every three time
units (unshaded box) and an update requiring two units of
processing time once every five time units (shaded box).
The schedule repeats after each major cycle of length 15.
Each time unit corresponds to a tick which is the granularity
of resource allocation for processing and transmission of a
packet. For this example, both the rate-monotonic and ear-
liest-due-date algorithms generate the schedule shown in
Fig. 5a.

While each update is sent as required in the major cycle
of length 15, the schedule has four units of slack time. The
replication service can capitalize on this slack time to im-
prove the average temporal consistency of the backup ob-
jects. In particular, the periodic schedule in Fig. 5a can pro-
vide the order of task executions without restricting the time
the tasks become active. If no tasks are ready to run, the
scheduler can advance to the earliest pending task and acti-
vate that task by advancing the logical time to the start of
the next period for that object. With the compressed sched-
ule, the primary still transmits an update for each O; at least
once per period p; but can send more frequent update mes-
sages when time allows. As shown in Fig. 5b, compressing
the slack time allows the schedule to start over at time 11.
In the worst case, the compressed schedule degrades to the
periodic schedule with the associated guarantees.

4.3 Integrating a New Backup

To minimize the time the service operates without a win-
dow-consistent backup, the primary P needs an efficient
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Fig. 5. Compression (p;1 =5, e,=2,p,=3, e,=1).

mechanism to integrate a new or invalid backup B. P must
send the new backup B a copy of each object and then tran-
sition to the normal periodic schedule, as shown in Fig. 6.
Although B may not have window-consistent objects dur-
ing the execution of the integration schedule, each object
must become consistent and remain consistent until its first
update in the normal periodic schedule.

As a result, B must receive a copy of O; within the
“period” p; before the periodic schedule begins; this ensures
that B can afford to wait until the next p; interval to start

receiving periodic update messages for O;. In order to inte-
grate the new backup, then, the primary must execute an
integration schedule that would allow it to transition to the
periodic schedule while maintaining window consistency.
Referring to Fig. 6, a window-consistent transition requires

DJP"O' + DJF"’St <8 - ¢ Djplrior is the time elapsed from the

last transmission of O; to the end of the integration sched-
ule, while Dj‘"JSt is the time from the start of the periodic

schedule until the first transmission of O;. This ensures
window consistency for each object, even across the sched-
ule transition. Since the periodic task model provides

DI < p; , it suffices to ensure that D" < p, = (§; - )2

A simple schedule for integration is to send objects to the
new backup using the normal periodic schedule already
being used for update transmissions to the existing replicas.
This incurs a worst-case delay of 2 max;{p;} to integrate the
new backup into the service. However, if the service has no
window-consistent backup sites, the primary should mini-
mize the time required to integrate a new replica. In par-
ticular, an efficient integration schedule should transmit
each object exactly once before transitioning to the normal
periodic schedule.

The primary may adapt the normal periodic schedule
into an efficient integration schedule by removing duplicate
object transmissions. In particular, the primary can transmit
the objects in order of their last update transmissions before
the end of a major cycle in the normal schedule. For exam-
ple, for the schedule shown in Fig.5a, the integration

ppost

integration schedule

transition

Fig. 6. Integrating a new backup repository.
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periodic schedule t
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Fig. 7. Update protocols.

schedule is [O4, O,] because the last transmission for O,

(O,) before time 15 is at time 10 (12). A transition from the
integration schedule to the normal schedule sustains win-
dow consistency on the newly integrated backup since the
normal schedule guarantees window consistency across
major cycles. Since the integration schedule is derived from

the periodic schedule, it follows that Djprior < DjpoSt <p;.

The normal schedule order can be determined when ob-
jects are created or during the first major cycle of the nor-
mal schedule. Since the schedule transmits each object only

. . . N .
once, the integration delay is Zi e;, where N is the num-

ber of registered objects. Although this approach is efficient
for static object sets, dynamic creation and deletion of ob-
jects introduces more complexity. Since the transmission
order in the normal schedule depends on the object set, the
primary must recompute the integration schedule when-
ever a new object enters the service. The cost of construct-
ing an integration schedule, especially for dynamic object
sets, can be reduced by sending the objects to B in reverse
period order, such that the objects with larger periods are
sent before those with smaller periods.

For object O;, this ensures that only objects with smaller
or equivalent periods can follow O; in the integration
schedule; these same objects can precede O; in the periodic
schedule. This guarantees that the integration schedule

transmits O; no more than p; time units before the start of
the periodic schedule, ensuring a window-consistent tran-

sition. For example, in Fig. 6, p; < p; < py. In the periodic
schedule, objects O; with p; < p; are transmitted at least once
within time Dj‘"’st but exactly once within time Dj”””; it fol-

lows that Djprior < D}mt < p;. After object creations or dele-

tions, the primary can construct the new integration sched-
ule by sorting the new set of periods. The primary mini-
mizes the time it operates without a window-consistent
backup by transmitting each object exactly once before
transitioning to the normal periodic schedule.

5 FAuULT DETECTION AND RECOVERY

Although real-time scheduling of update messages can
maintain window-consistent replicas, processor and com-
munication failures potentially disrupt system operation.
We assume that servers may suffer crash failures and the
communication subsystem may suffer omission or per-

formance failures; when a site fails, the remaining replicas
must recover in a timely manner to continue the data-
repository service. The primary attempts to minimize the
time it operates without a window-consistent backup, since
a subsequent primary crash would cause a service failure.
Similarly, the backup tries to detect a primary crash and
initiate failover before any backup objects become window-
inconsistent. Although the primary and backup cannot
have complete knowledge of the global system state, the
message exchange between servers provides a measure of
recent service activity.

5.1 Update Protocols

Fig. 7 shows how the primary and backup sites exchange
object data and estimate global system state. We assume
that the servers communicate only by exchanging mes-
sages. Since these messages include temporal information,
P and B cannot effectively reason about each other unless
server clocks are synchronized within a known maximum
bound. A clock synchronization algorithm can use the
transmit times for the update and acknowledgment mes-
sages to bound clock skew in the service. Using the update
protocols, P and B each approximate global state by main-
taining the most recent information received from the other
site.

Before transmitting an update message at time t, the
primary records the version timestamp rix”“t for the selected

xmit

object O;. Since riB <1, ", this information gives P an opti-
mistic view of the backup’s window consistency. The pri-
mary’s message to the backup contains the object data, along
with the version timestamp and the transmission time. B uses
the transmission time to detect out-of-order message arrivals

by maintaining t™", the time of the most recent transmission
of O; that has been successfully received; the sites store mo-
notonically nondecreasing version timestamps, without re-
quiring reliable or in-order message delivery in the service.
Upon receiving a newer transmission of O;, the backup up-

dates the object’s data, the version timestamp riB, and tixm“;

xmit
i

as discussed in Section 5.2, the backup uses t to reason

about its own window consistency.
last

To diagnose a crashed primary, B also maintains t ", the
transmission time of the last message received from P re-

garding any object; that is, t*' = max,{t™}. Similarly, P
tracks the transmission times of B’s messages to diagnose
possible crash failures. Hence, the backup’s acknowledg-

ment message to P includes the transmission time t, as well
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as f?, the most recent version timestamp for O; on B. Using

ack
i

this information, the primary determines 7., the most re-

cent version of O; that B has successfully acknowledged.
Since riB > %% this variable gives P a pessimistic measure

i
of the backup’s window consistency; as discussed in Sec-
tion 5.3, the primary uses 7°*and 7™ to select policies for

scheduling update transmissions to the backup.

5.2 Backup Recovery From Primary Failures

A backup site must estimate its own window consistency
and the status of the primary to successfully supplant a
crashed primary. While B may be unaware of recent client
interaction with P for each object, B does know the time

t™ when P transmitted version 7° of object O;. Although
P may continue to believe version 7™, even after trans-
mitting the update message, B conservatively estimates that
the client wrote a new version of O; just after P transmitted

the object at time t™. In particular,

DerINITION 3. At time t, the backup copy of object O; has esti-

xmit,

mated inconsistency t -t ; the backup knows that O; is

window-consistent if t — t“™ < &..

Fig. 4 shows an example of this “backup view” of window
consistency.

Using this consistency metric, the backup must balance
the possibility of becoming window-inconsistent with the
likelihood of falsely diagnosing a primary crash. If B be-
lieves that all of its objects are still window-consistent, B
need not trigger a failover until further delay would en-
danger the consistency of a backup object; in particular, the

backup conservatively estimates that its copy of O; could

become window-inconsistent by time t™ +§,, in the ab-
sence of further update messages from P. However, to re-
duce the likelihood of false failure detection, failover
should only occur if B has not received any messages from

P for some minimum time .

In this adaptive failure detection mechanism, B diagno-
ses a primary crash at time

tcrash _ m-in{tixmit + 5|}
I

if and only if £*" > t*' + . After failover, the new primary
site invokes the client application and begins interacting
with the external environment. For a period of time, the
new P operates with some partially inconsistent data but
gradually constructs a consistent system state from these
old values and new sensor readings. The new P later inte-
grates a fresh backup to enhance future service availability.

Since B diagnoses a primary crash through missed up-
date messages, lost or delayed messages could still trigger
false failure detection, resulting in multiple active primary
sites. When the system has multiple backups, the replicas
can vote to select a single, valid primary. However, when
the service has only two sites, communication failures can
cause each site to assume the other has failed. In this situa-
tion, a third-party “witness” [27] can select the primary site.
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This witness does not act as a primary or backup server, but
casts the deciding vote in failure diagnosis. In a real-time
control system, the actuator devices could implicitly serve
as this witness; if a new server starts issuing commands to
the actuators, the devices could ignore subsequent instruc-
tions from the previous primary site.

5.3 Primary Recovery From Backup Failures

Service availability also depends on timely recovery from
backup failures. Since the data-repository service continues
whenever a valid primary exists, the primary can tempo-
rarily tolerate backup crashes or communication failures
without endangering the client application. Ultimately,
though, P should minimize the portion of time it operates
without a window-consistent backup, since a subsequent
primary crash would cause a service failure. The primary
should diagnose possible backup crashes and efficiently
integrate new backup sites. If P believes that an operational
backup has become window-inconsistent, due to lost up-
date messages or transient overload conditions, the primary
should quickly refresh the inconsistent objects.

As in Section 5.2, timeout mechanisms can detect possi-
ble server failures. The primary assumes that the backup
has crashed if P has not received any acknowledgment mes-
sages in the last o time units (i.e., t — t* > ). After detect-
ing a backup crash, P can integrate a fresh backup site into
the system while continuing to satisfy client read and write
requests. If the P mistakenly diagnoses a backup crash, the
system must operate with one less replica while the pri-
mary integrates a new backup site; this new backup does
not become window-consistent until the integration sched-
ule completes, as described in Section 4.3. However, if the
backup has actually failed, a large timeout value increases
the failure diagnosis latency, which also increases the time
the system operates without sufficient backup sites. Hence,
P must carefully select o to maximize the backups’ chance
of recovering from a subsequent primary failure.

Even if the backup site does not crash, delayed or lost
update messages can compromise the window consistency

of backup objects, making B ineligible to replace a crashed
primary. Using 7% and 7™, P can estimate the consis-
tency of backup objects and select the appropriate policy for

scheduling update transmissions. The primary may choose

to reintegrate an inconsistent backup, even when t — < Q,

rather than wait for a later update message to restore the
objects’ window consistency. Suppose the primary thinks
that B’s copy of O; is window-inconsistent. Under periodic
update scheduling, P may not send another update mes-
sage for this object until some time 2p; = & — d later. If this
object has a large window &, the primary can reestablish
the backup’s window consistently more quickly by execut-
ing the integration schedule, which requires time Zi &,

where ¢g; is the service time for object O;, as described in
Section 4.1.

Still, the primary cannot accurately determine if the
backup object O; is inconsistent, since lost or delayed ac-
knowledgment messages can result in an overly pessimistic
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value for 72 The primary should not be overly aggressive

in diagnosing inconsistent backup objects, since reintegra-
tion temporarily prohibits the backup from replacing a
failed primary. Instead, P should ideally “retransmit” the
offending object, without violating the window consistency
of the other objects in the service. For example, P can
schedule a special “retransmission” window for transmitting
objects that have not received acknowledgment messages for
past updates; when this “retransmission object” is selected
for service, P transmits an update message for one of the ex-

isting objects, based on the values of 7% and ;™. This im-
proves the likelihood of having window-consistent backup
sites, even in the presence of communication failures.

6 IMPLEMENTATION AND EVALUATION

6.1 Prototype Implementation

We have developed a prototype implementation of the
window-consistent replication service to demonstrate and
evaluate the proposed service model. The implementation
consists of a primary and a backup server, with the client
application running on the primary node as shown in
Fig. 3. The primary implements rate-monotonic scheduling
of update transmissions, with an option to enable schedule
compression. Tick scheduling allocates the processor for
different activities, such as handling client requests, send-
ing update messages, and processing acknowledgments
from the backup. At the start of each tick, the primary
transmits an update message to the backup for one of the
objects, as determined by the scheduling algorithm. Any
client read/write requests and update acknowledgments
are processed next, with priority given to client requests.

Each server is currently an Intel-based PC running the
Real-Time Mach [25], [32] operating system.’ The sites
communicate over an Ethernet through UDP datagrams
using the socket++ library [31], with extensions to the
UNIX select call for priority-based access to the active
sockets. At initialization, sockets are registered at the ap-
propriate priority such that the socket for receiving client
requests has a higher priority over that for receiving update
acknowledgments from the backup. A tick period of 100 ms
was chosen to minimize the intrusion from other runnable
system processes.” To further minimize interference, ex-
periments were conducted with lightly-loaded machines on
the same Ethernet segment; we did not observe any signifi-
cant fluctuations in network or processor load during the
experiments.

The primary and backup sites maintain in-memory logs
of events at run-time to efficiently collect performance data
with minimal intrusion. Estimates of the clock skew be-
tween the primary and the backup, derived from actual
measurements of round-trip latency, are used to adjust the
occurrence times of events to calculate the distance between

2. Earlier experiments on Sun workstations running Solaris 1.1 show
similar results [24].

3. The 100 ms tick period has the same granularity as the process sched-
uling quantum to limit the interference from other jobs running on the
machine. However, smaller tick periods are desirable in order to allow
objects to specify tighter windows (the window size is expressed in number
of ticks) and respond to client requests in a timely manner.

objects on the primary and backup sites. The prototype
evaluation considers three main consistency metrics repre-
senting window consistency and the backup and client
views. These performability metrics are influenced by sev-
eral parameters, including client write rate, communication
failures, and schedule compression.

The experiments vary the client write rate by changing
the time w; between successive client writes to an object. We
inject communication failures by randomly dropping up-
date messages; this captures the effect of transient network
load as well as lost update acknowledgments. The invari-
ants in our evaluation are the tick period (100 ms), the ob-
jects” window size (& = 30 ticks), and the number of objects
(N = 10); given the tick period and &;, N is determined by
the schedulability criterion of the rate-monotonic schedul-
ing algorithm. All objects have the same update transmis-
sion time of one tick, with the object size chosen such that
the time to process and transmit the object is reasonably
small compared to the tick size; the extra time within each
tick period is used to process client requests and update
acknowledgements. Experiments ran for 45 minutes for
each data point.

6.2 Omniscient View (Window Consistency)

The window-consistency metric (t — t) captures the actual
temporal inconsistency between the primary and the
backup sites, and serves as a reference point for the per-
formance of the replication service. Fig. 8a shows the aver-
age maximum distance between the primary and the backup
as a function of the probability of message loss for three
different client write periods, with and without schedule
compression. This measures the inconsistency of each
backup object just before receiving an update, averaged
over all versions and all objects, reflecting the “goodness”
of the replicated data. Fig. 8b shows the probability of an in-
consistent backup as a function message loss; this “fault-
tolerance” metric measures the likelihood that the backup
has one or more inconsistent objects. In these experiments,
the client writes each object once every tick (w; = 100 ms),
once every three ticks (w; = 300 ms) and once every seven
ticks (w; =700 ms).

The probability of message loss varies from zero percent
to 10 percent; experiments with higher message loss rates
reveal similar trends. Message loss increases the distance
between the primary and the backup, as well as the likeli-
hood of an inconsistent backup. However, the influence of
message loss is not as pronounced due to conservative ob-
ject admission in the current implementation. This occurs
because, on average, the periodic model schedules updates
twice as often as necessary, in order to guarantee the re-
quired worst-case spacing between update transmissions.
Message loss should have more influence in other sched-
uling models which permit higher resource utilization, as
discussed in Section 7. Higher client write rates also tend to
increase the backup’s inconsistency; as the client writes
more frequently, the primary’s copy of the object changes
soon after sending an update message, resulting in staler
data at the backup site.

Schedule compression is very effective in improving both
performance variables. The average maximum distance be-
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Fig. 8. Window consistency t — t;: The graphs show the performance of
the service as a function of the client write rate, message loss, and
schedule compression. Although object inconsistency increases with
message loss, compressing the periodic schedule reduces the effects
of communication failures. Inconsistency increases as the client writes
more frequently, since the primary changes it object soon after trans-
mitting an update message to the backup.

tween the primary and backup under no message loss (the
y-intercept) reduces by about 30 percent for high client
rates in Fig. 8a; similar reductions are seen for all message
loss probabilities. This occurs because schedule compres-
sion successfully utilizes idle ticks in the schedule gener-
ated by the rate-monotonic scheduling algorithm; the utili-
zation thus increases to 100 percent and the primary sends
approximately 30 percent more object updates to the
backup. Compression plays a relatively more important
role in reducing the likelihood of an inconsistent backup, as
can be seen from Fig. 8b. Also, compression reduces the
impact of communication failures, since the extra update
transmissions effectively mask lost messages.

6.3 Backup View (Estimated Consistency)

Although Fig. 8 provides a system-wide view of window
consistency, the backup site has limited knowledge of the
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the backup’s conservative viewpoint, as a function of the client write
rate, message loss, and schedule compression. As in Fig. 8, temporal
consistency improves under schedule compression but worsens under
increasing message loss. The backup’s view is impervious to the client
write rate.

Fig. 9. Backup view t — t; " : The plots show system performance from

primary state. The backup’s view (t — ‘™) is a good, albeit
pessimistic, estimate of the actual window consistency, as
shown in Fig. 9. The backup site uses this metric to evaluate
its own window consistency to detect a crashed primary
and effect a failover. As in Fig. 8, message loss increases the
average maximum distance (Fig. 9a) and the likelihood of
an inconsistent backup (Fig. 9b). Schedule compression also
has similar benefits for the backup’s estimate of window
consistency.

However, unlike Fig. 8, the client write rate does not in-
fluence the backup’s view of its window consistency. The
backup (pessimistically) assumes that the client writes an
object on the primary immediately after the primary trans-
mits an update message for that object to the backup. For
this reason, the backup’s estimate of the average maximum
distance between the primary and the backup is always
worse than that derived from the omniscient view. It follows
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that this estimate is more accurate for high client write
rates, as can be seen by comparing Figs. 8a and 9a; for high
client rates relative to the window, t — ™" and t — t’ are
virtually identical. The window-consistent replication
model is designed to operate with high client write rates,
relative to communication within the service, so the backup
typically has an accurate view of its temporal consistency.

6.4 Client View (Recovery Consistency)

The client view (rp(t) - TB(t)) measures the inconsistency
between the primary and backup versions on object reads;
better recovery consistency provides a more accurate sys-
tem state after failover. Since the client can read at an arbi-
trary time, Fig. 10 shows the time average of recovery in-
consistency, averaged across all objects, with and without
compression. We attribute the minor fluctuations in the
graphs to noise in the measurements.

The distance metric is not sensitive to the client write
rate, since frequent client writes increase both rip(t) and
f?(t); when the client writes more often, the primary copy
changes frequently (i.e., Tip(t) is close to t), but the backup

also receives more recent versions of the data (i.e., rf’(t) is
close to tixm"). Moderate message loss does not have a sig-
nificant influence on read inconsistency, especially under
schedule compression. As expected, schedule compression
improves the read inconsistency seen by the client signifi-
cantly (= 30%). It is, therefore, an effective technique for
improving the “goodness” of the replicated data.
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Fig. 10. Client view T/.P(t) - r?(t) : This graph presents the time aver-
age of recovery inconsistency, as a function of the client write rate,
message loss, and schedule compression. Compressing the update
schedule improves consistency by generating more frequent update
transmission, while message loss worsens read consistency. The met-
ric is largely independent of the client write rate.

7 CONCLUSION AND FUTURE WORK

Window consistency offers a framework for designing rep-
lication protocols with predictable timing behavior. By de-
coupling communication within the service from the han-
dling of client requests, a replication protocol can handle a
higher rate of read and write operations and provide more

timely response to clients. Scheduling the selective commu-
nication within the service provides bounds on the degree
of inconsistency between servers. While our prototype im-
plementation has successfully demonstrated the utility of
the window-consistent replication model, more extensive
evaluation is needed to validate the ideas identified in this
paper. We have recently added support for fault-detection,
failover, and integration of new backups. Further experi-
ments on the current platform will ascertain the usefulness
of processor capacity reserves [25] and other RT-Mach fea-
tures in implementing the window-consistent replication
service. The present work extends into several fruitful areas
of research:

Object admission/scheduling: We are studying techniques to
maximize the number of admitted objects and improve ob-
jects’ window consistency by optimizing object admission
and update scheduling. For the window-consistent replica-
tion service, the periodic task model is overly conservative
in accepting object registration requests; that is, it may ei-
ther limit the number of objects that are accepted or it may
accept only those objects with relatively large windows.
This occurs because, on average, the periodic model sched-
ules updates twice as often as necessary in order to guar-
antee the required worst-case spacing between update
transmissions. We are exploring other scheduling algo-
rithms, such as the distance-constrained task model [13],
which assigns task priorities based on separation constraints,
in terms of their implementation complexity and ability to
accommodate dynamic creation/deletion of objects.

We are also considering techniques to maximize the
“goodness” of the replicated data. As one possible ap-
proach, we are exploring ways to incorporate the client
write rate in object admission and scheduling. An alternate
approach is to optimize the object window size itself by
proportionally shrinking object windows such that the
system remains schedulable; this should improve each ob-
ject’s worst-case temporal inconsistency. The selection of
object window sizes can be cast as an instance of the linear
programming optimization problem. Schedule compression
can still be used to improve the utilization of the remaining
available resources.

Interobject window consistency: We are extending our win-
dow-consistent replication model to incorporate temporal
consistency constraints between objects. Our goal is to
bound consistency in a replicated set of related objects; new
algorithms may be necessary for real-time update schedul-
ing of such object sets. This is related to the problem of en-
suring temporally consistent objects in a real-time database
system; however, our goal is to bound consistency in a rep-
licated set of related objects.

Alternative replication models: Although the current proto-
type implements a primary-backup architecture with a sin-
gle backup site, we are studying the additional issues in-
volved in supporting multiple backups. In addition, we are
also exploring window consistency in the state-machine
replication. This would enable us to investigate the appli-
cability of window consistency to alternative replication
models.
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