
Bandwidth Optimized Motion Compensation
Hardware Design for H.264/AVC HDTV Decoder

Chuan-Yung Tsai, Tung-Chien Chen, To-Wei Chen, and Liang-Gee Chen
DSP/IC Design Lab, Graduate Institute of Electronics Engineering and Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan; Email: cytsai@video.ee.ntu.edu.tw

Abstract— Design of H.264/AVC motion compensation (MC) is
very challenging through the high memory bandwidth and low
hardware utilization caused by the new functionalities of variable
block size and 6-tap interpolation filter. In this paper, the Ver-
tically Integrated Double Z (VIDZ) schedule, and Interpolation
Window Reuse (IWR) and Interpolation Window Classification
(IWC) bandwidth reduction schemes are proposed to keep the
MC highly utilized and save 60-80% memory bandwidth. The
hardware of proposed MC is implemented at 120MHz with 47K
logic gates and can support 2048×1024 30fps H.264/AVC HDTV
decoder with less than 200MB/s memory bandwidth.

I. INTRODUCTION

H.264/AVC [1] is the new generation video coding standard
developed by the Joint Video Team (JVT), which consists of
experts from ITU-T VCEG and ISO/IEC MPEG. H.264/AVC
can save about 25-45% bit-rate compared to MPEG-4 Ad-
vanced Simple Profile (ASP). The ultra high coding efficiency
comes from many new features, including sub pixel inter
prediction with variable block size (VBS) and multiple ref-
erence frames, intra prediction, and context-based adaptive
entropy coding—CAVLC and CABAC. However, its overall
computational complexity also increases greatly such that an
H.264/AVC decoder requires two times the computational
power of an MPEG-4 decoder. According to the runtime
analysis of H.264/AVC decoder software, the MC can use up
to 55% of total decoding time. This explains the necessity of
hardware acceleration for MC in an H.264/AVC decoder.

MC hardware design for an H.264/AVC decoder is much
more difficult than those for previous standards. Memory
bandwidth and hardware utilization are the two responsible
problems caused by H.264/AVC new coding features—6-tap
interpolation filter for luma sub pixels and variable block
size (VBS). During luma quarter pixel interpolation, a large
amount of frame memory accesses is required due to the
combined effect of very small block size (e.g. 4×4) and 6-tap
interpolation filter, and the memory bandwidth requirement
can be 80% more than MPEG-4 ASP’s. The variety of block
sizes also makes the MC hardware engine need to be carefully
designed and scheduled to keep the hardware utilization.

In this paper, we propose a bandwidth optimized MC hard-
ware design for H.264/AVC HDTV decoder system. Using the
proposed interpolation flow and bandwidth reduction schemes,
we successfully design an MC with high hardware utilization
and low bandwidth requirement (60-80% bandwidth saving).
The proposed MC can support 2048×1024 30fps H.264/AVC
HDTV decoder with 47K logic gates and less than 200MB/s

f A g

h i j k

B l C m D

n o p q

E

MB Mode

16x16 16x8 8x16 8x8
Sub 8x8 Mode

8x8 8x4 4x8 4x4

(a) (b)

Fig. 1. (a) Integer pixels (gray blocks), half pixels (blocks with upper-case
letters), and quarter pixels (blocks with lower-case letters) of luminance. (b)
H.264/AVC block modes of VBS.

memory bandwidth, when operating at 120MHz. The rest of
this paper is organized as follows. In Section II, we describe
H.264/AVC new features and the resultant problems in design-
ing MC. Section III and IV present the proposed methods and
architecture. Simulation and implementation results are shown
is Section V and VI. Finally, Section VII gives the conclusion.

II. PROBLEM STATEMENT

In H.264/AVC, the difficulties of MC hardware design arise
from the 6-tap sub pixel interpolation filter and VBS. The 6-
tap finite impulse response (FIR) filter uses [1 -5 20 20 -5 1]
as factors for interpolating luma half pixels, and luma quarter
pixels are average of two integer/half pixels. For the chroma
part, bilinear interpolation filter is used to generate 1/8 pixels.
Positions of each kind of luma pixels are shown in Fig. 1(a) for
later references. VBS allows four macro-block (MB) modes as
illustrated in Fig. 1(b)—16×16, 16×8, 8×16, and 8×8; for an
8×8 block, it can be further partitioned as 8×4, 4×8, or 4×4
mode. Under these features, interpolation of an X×Y luma
quarter pixel block requires (X+5)×(Y +5) integer pixels.

During the designing of H.264/AVC MC hardware, memory
bandwidth and hardware utilization are the two main problems
cause by H.264/AVC new coding features. A large amount of
frame memory accesses is required due to the very small block
size (e.g. 4×4) and 6-tap interpolation filter. The MC hardware
also needs great effort in designing and scheduling to keep its
utilization for supporting 7 different block sizes. To solve these
two problems, two basic hardware architectures can be firstly
considered—4×4-based and 16×16-based MC hardware. A
4×4-based MC is very ideal for hardware utilization since all
VBS can be decomposed into 4×4 ones. However this causes
serious overhead in bandwidth (or memory access number),
because for every 4×4 block, a 9×9 interpolation window (the

11990-7803-9197-7/05/$20.00 © 2005 IEEE.

1

2

65

13 15

87

109

1211

Luma 16x16 Block

3

4

14 16

1

2

7

8

9

10

3

5

4

6

Chroma 8x8 Block

11

12

(a) (b)

Fig. 2. Example of VIDZ interpolation flow of: (a) luma block (buffer shaded
region for horizontal reuse); (b) chroma block.

integer pixel block used during interpolation) is required. For
our objective specification—2048×1024 30fps HDTV decoder
operating at 120MHz with 32-bit system bus, at least 432
cycles among 488 total usable cycles will be required to finish
only luma MB memory access and interpolation. The timing
budget will be impossible for processing chroma pixels. On the
contrary, a 16×16-based MC requires the minimal bandwidth
because it can cover all interpolation data for any VBS,
without reloading pixels between decomposed blocks. But its
average hardware utilization is obviously low, especially when
the MB consists of smaller blocks.

To solve the memory bandwidth and hardware utilization
problems efficiently, we need to propose an MC hardware
architecture with the hardware utilization (and area cost) of
4×4-based MC, and the minimal bandwidth of 16×16-based
MC. Reference [2] presented an MC hardware for 1920×1088
30fps HDTV decoder operating at 100MHz. However, con-
sidering the integration of a complete decoder system, its
timing budget may be too tight for inter-module data transfer.
Therefore, sufficient timing margin should be included in this
MC hardware design.

III. PROPOSED METHODS

In this paper, one unified processing flow and two bandwidth
reduction schemes are proposed for the hardware architecture
of bandwidth optimized MC. We first adopt the 4×4-based MC
as the basic architecture. With the 4×4 block decomposition
strategy [3], all types of VBS are decomposed into 4×4 ones,
and then can be processed by this MC unit with full hardware
utilization. The bandwidth requirement of 4×4-based MC can
be minimized by the two bandwidth reduction schemes.

The proposed unified processing flow of decomposed 4×4
blocks is called Vertically Integrated Double Z (VIDZ) flow;
an example is shown in Fig. 2. It can provide a regular
schedule for the MC unit and help to save all vertical re-
dundant memory accesses (about 25-35% of total bandwidth).
Inside one block, the vertical scan order is adopted for easier
integration of common interpolation operations between two
vertically decomposed 4×4 blocks. Between different blocks
(original ones, not decomposed), the H.264/AVC native double
Z scan is used as the processing order for all MB modes and
sub 8×8 modes. Worth to note, 4×2 block decomposition is
used for chroma blocks to make luma and chroma MC units

9

9

Reference frame

4x4 block

4 45

4

4

5

Reference frame

8x8 block

(a) (b)

9

4

Reference frame

4x4 block

9

2 34

Reference frame

4x4 block

(c) (d)

Fig. 3. (a) General case interpolation window. (b) Four interpolation windows
for an 8×8 block (shaded region means reusable). (c) Interpolation window
when MV pointing to horizontal integer pixels. (d) Interpolation window when
MV pointing to quarter pixel i.

have good hardware reusability. Utilization of the chroma MC
is halved only when processing 4×8 or 4×4 blocks.

In the following paragraphs, we will present the two band-
width reduction schemes. With both schemes, the bandwidth
requirement of 4×4-based MC is further reduced to minimum.

A. Interpolation Window Reuse Scheme

The first scheme is Interpolation Window Reuse (IWR). As
described in Section II, MC of an H.264/AVC decoder can
have very high memory bandwidth requirement. A straightfor-
ward memory access scheme is to process every decomposed
luma 4×4 blocks as the general case—always load a 9×9
interpolation window for a decomposed luma 4×4 block, as
shown in Fig. 3(a). But its performance is just the same as the
failed case mentioned in Section II.

In order to minimize the bandwidth requirement, we must
design an MC hardware capable of reusing all common in-
terpolation data between decomposed luma 4×4 (and chroma
4×2) blocks. Although an all-4×4-block MB can have all 16
interpolation windows spaced out in the reference frames, yet
this kind of MB is not frequent. In other words, there tends
to exist overlapped regions between interpolation windows of
decomposed blocks for most MBs. As the example of an 8×8
block shown in Fig. 3(b), the shaded regions are required by
more than one decomposed block and thus can be reused.
Based on the VIDZ flow, all vertically overlapped interpolation
windows can be easily reused. Therefore, the IWR scheme
only adds a 21×64-bit on-chip memory to save horizontally
overlapped interpolation windows of decomposed blocks. The
on-chip memory is referred to as horizontal reuse memory in
later sections. More details of the IWR scheme will be given
in Section IV.

B. Interpolation Window Classification Scheme

The second scheme is Interpolation Window Classification
(IWC). After examining the interpolation formulas of luma
sub pixels at different positions, we can find the interpolation
window is not always (X+5)×(Y +5) for a luma X×Y

1200

TABLE I

SUMMARY OF INTERPOLATION WINDOW CLASSIFICATION

Luma Sub Pixel Type Interpolation Window Size
Integer Pixel X×Y
Pixel f, A, g Y ×(X+5)
Pixel h, B, n X×(Y +5)
Pixel i, k, o, q (X+5)×(Y +5)−25
Others (X+5)×(Y +5)

Chroma Sub Pixel Type Interpolation Window Size
Integer Pixel X×Y
Horizontal-Integer Pixel X×(Y +1)
Vertical-Integer Pixel Y ×(X+1)
Others (X+1)×(Y +1)

Window size X is for width, and Y is for height.
Refer to Fig. 1(a) for luma sub pixel position labels.

MUX HFIR
Integer
Pixel

Horizontal
Half Pixel

VFIR CFIR

Vertical
Half Pixel

Center
Half Pixel

FIR Input
Pixels

Data
Output

Data Shift

A

+ + +

+

++

+

x4

x4

x-1

F B E C D

Rounding
Coefficient

(a) (b)

Fig. 4. (a) Luma interpolation unit. (b) Adder tree based 6-tap FIR.

block. For example, a luma 4×4 block with MV pointing to
horizontal-integer pixels—pixel h, B, or n in Fig. 1(a)—should
have an interpolation window sized 4×9 as shown in Fig. 3(c).
This is because its sub pixel interpolation procedure involves
no horizontal filtering, and thus no horizontal 5-pixel extension
of interpolation window is needed. Figure 3(d) gives another
example of interpolation at quarter pixel i. Value of pixel i
is the average of half pixel A and B, which are filtered from
horizontal and vertical strips of pixels respectively, and the
cumulated strips form a cross-shaped interpolation window.

In brief, the IWC scheme aims to precisely control the MC
hardware to load a smaller and exact interpolation window,
rather than a general one. For luminance, four classes of re-
duced interpolation windows with different bandwidth-saving
levels are derived from the H.264/AVC interpolation formulas.
The complete classification is summarized in Table I; there are
three classes of reduced chroma interpolation windows. With
few added control logics, the IWC scheme can further provide
about 10-20% bandwidth reduction.

IV. ARCHITECTURE

Before looking into the complete architecture of MC, we
first present the most fundamental circuit of MC—the luma
interpolation unit. The 2D 6-tap luma half pixel filter can

Address
GeneratorControl

FSM

MUX MUX MUX MUX

A/B A/B A/B A/B

B
I

BI = Bus Interface
IP = Interpolation
A/B = Average/Bypass

External
Frame Memory

Row Buffer

Shift & Combine

IP
Unit

1

IP
Unit

2

IP
Unit

3

IP
Unit

4

MC Result
Memory

MUX MUX MUX MUX MUX

Horizontal Reuse
Register File
(21x64-bit)

32

Fig. 5. Block diagram of proposed MC hardware.

be decomposed into three 1D 6-tap filters (HFIR, VFIR, and
CFIR), as shown in Fig. 4(a). Based on the VIDZ flow, the
interpolation unit has good data reusability, because the two
vertical shift register arrays as VFIR/CFIR input buffers keep
all intermediate values across vertically decomposed blocks.
Worth to note, there is always only one vertical-half pixel
(either B or D) involved in a block’s interpolation; therefore
the unit needs only one shift register array for integer pixels,
with the input selected by the multiplexer (MUX). The adder
tree based 6-tap FIR filter as shown in Fig. 4(b) is improved
from our previous work [3] and mapped into pipeline stages
for running at 120MHz. The utilization of interpolation unit
also benefits from the VIDZ flow and IWR scheme greatly
such that it can even achieve 100%.

Figure 5 is the block diagram of proposed MC architecture.
The architecture employs a central control finite state machine
(FSM) to generate control signals for all components. Firstly,
the control FSM translates MB information input for address
generation of the external frame memory. Then, the control
signals for data path are passed through a delay-reconfigurable
control signal pipeline to synchronize with the reference frame
data. All data are loaded consecutively without bubble to help
increasing the memory bus utilization and reducing total cycles
for MC. Worth to note, the IWR scheme functions according
to block/sub-block mode, while the IWC scheme according to
motion vector value.

The data path starts from a shift-and-combine circuit, which
selects and packs the pixels loaded from external frame mem-
ory and horizontal reuse memory into the 12-byte row buffer.
The required size of row buffer is determined as illustrated
in Fig. 6; 9 pixels for luma interpolation (of one row of four
sub pixels) and at most 3 preloaded pixels (possibly data for
later interpolation) must be stored. Four interpolation units
form a processing element (PE) for supporting both luma and

1201

TABLE II

SIMULATION RESULTS OF BANDWIDTH REDUCTION SCHEMES

Access Per MB / Reduction IWR-Vertical IWC IWR-Vertical + IWC IWR IWR + IWC
Akiyo 346 / 35% 127 / 76% 121 / 77% 207 / 61% 113 / 79%
Foreman 391 / 26% 311 / 41% 252 / 53% 252 / 53% 184 / 65%
Mobile Calendar 401 / 25% 335 / 37% 288 / 46% 262 / 51% 198 / 63%
Stefan 402 / 25% 343 / 36% 284 / 47% 263 / 51% 201 / 62%
Table Tennis 363 / 32% 204 / 62% 176 / 67% 222 / 58% 143 / 73%

Word 1 Word 2 Word 3

Interpolation Unit 1

Preloaded
Horizontally Reusable

1 2 3 4 5 6 7 8 9 10 11 12

Interpolation Unit 2
Interpolation Unit 3

Interpolation Unit 4

Fig. 6. Maximum usage of row buffer (nine pixels for interpolation distributed
in 4-4-1 fashion across three RAM words and three pixels preloaded).

chroma decomposed blocks. During the VIDZ flow, every time
the row buffer is filled with necessary amount of pixels, all
interpolation units pull corresponding data in and push results
out for luma quarter pixels (via average) or other type of sub
pixels (via bypass). Meanwhile, at most eight pixels (64 bits,
as shown in Fig. 6) in the row buffer need to be written into the
horizontal reuse memory. For luma 16×16 or 8×16 blocks,
there should be 21 (16+5) words in the the horizontal reuse
memory. Therefore, the horizontal reuse memory sizes 21×64
bits in order to fully support the IWR scheme. This memory
specification is more suitable to be implemented as register
file than as SRAM, for the chip area consideration. Finally,
all luma and chroma MC results are buffered in the MC result
memory, and then combine with residues to complete the P-
frame reconstruction loop.

V. SIMULATION RESULTS

To evaluate the resultant performance of proposed band-
width reduction schemes for MC, we modify the H.264/AVC
reference software JM 8.2 [4] decoder for simulating the MC
memory access. Simulation results are listed in Table II. Five
CIF sized video sequences are simulated with quantization
parameter set to 20, 30, and 40 for averaging the results. We
compare five combinations of IWR-Vertical, IWR, and IWC
schemes; the IWR-Vertical scheme equals the IWR scheme
without adding horizontal reuse memory (i.e. can be covered
by the VIDZ flow). The complete bandwidth reduction scheme
(IWR+IWC) apparently can save the most memory bandwidth.
From the last column of Table II, the bandwidth optimization
result is about 60-80%, and the contribution of each proposed
method is as mentioned in Section III. In the 2048×1024
30fps H.264/AVC HDTV decoder specification, the resultant
memory bandwidth of proposed MC hardware is less than
200MB/s; the simulated timing budget is also very sufficient
(about 100 cycles), which implies the proposed MC is able to
support even higher H.264/AVC HDTV decoder specification.

TABLE III

MC INTERPOLATION UNIT HARDWARE COMPARISON

Component Gate Count Optimization Clock Rate

Ref. [2]
FIR×13

20686 30% 100MHz
Bilinear×2

Proposed
FIR×12 21506

60-80% 125MHz
Bilinear×4 & Reg File

VI. IMPLEMENTATION RESULTS

The proposed MC hardware is implemented in Verilog HDL
and synthesized using Synopsys Design Compiler with TSMC
0.18µm cell library, with its clock rate set to 125MHz. The
total MC gate count is 46,646 gates. This number includes the
synthesized register file for horizontal reuse memory (15,197
gates), which may be reduced using a register file macro. Table
III gives a comparison of the MC key hardware—interpolation
unit. Although our work is larger in area, yet our performance
is better optimized. Our work also has been integrated into an
H.264/AVC HDTV decoder system [5] and verified to function
correctly; the system memory bandwidth is saved by 40-50%.

VII. CONCLUSION

In this paper, we propose a memory bandwidth optimized
MC hardware design for H.264/AVC HDTV decoder sup-
porting 2048×1024 30fps high definition videos, with 47K
logic gates and less than 200MB/s memory bandwidth when
operating at 120MHz. Using the proposed VIDZ interpolation
flow and IWR/IWC bandwidth reduction schemes, we have
successfully designed an H.264/AVC MC with high hardware
utilization and low bandwidth requirement. In total, about 60-
80% memory bandwidth reduction is achieved.

REFERENCES

[1] Joint Video Team, Draft ITU-T Recommendation and Final Draft Inter-
national Standard of Joint Video Specification. ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC, May 2003.

[2] S. Z. Wang, T. A. Lin, T. M. Liu, and C. Y. Lee, “A new motion
compensation design for H.264/AVC decoder,” in Proc. of Int. Symposium
on Circuits and Systems (ISCAS’05), 2005, pp. 4558–61.

[3] T. C. Chen, Y. W. Huang, and L. G. Chen, “Fully utilized and reusable
architecture for fractional motion estimation of H.264/AVC,” in Proc. of
Int. Conf. on Accoustics, Speech, and Signal Processing (ICASSP’04),
2004, pp. V – 9–12 vol.5.

[4] Joint Video Team H.264/AVC Reference Software, version JM 8.2.
http://iphome.hhi.de/suehring/tml/download/.

[5] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and
L. G. Chen, “Architecture design of H.264/AVC decoder with hybrid
task pipelining for high definition videos,” in Proc. of Int. Symposium on
Circuits and Systems (ISCAS’05), 2005, pp. 2931–34.

1202

