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Adaptive Wavelet Graph Model for Bayesian
Tomographic Reconstruction

Thomas FreseMember, IEEECharles A. Boumarfellow, IEEE and Ken SaueMember, IEEE

Abstract—We introduce an adaptive wavelet graph image approaches is that the resulting estimates exhibit blockiness
model applicable to Bayesian tomographic reconstruction and which is usually the result of a quadtree dependency structure.

other problems with nonlocal observations. The proposed model |, ihis work, we address these issues by introducing an adaptive
captures coarse-to-fine scale dependencies in the wavelet tree by let ' h ori del. The int le d d . f
modeling the conditional distribution of wavelet coefficients given wavelet graph prior model. € Inierscale GePenaencies o

overlapping windows of scaling coefficients containing coarse scale this model are not limited to a quadtree structure, resulting
information. This results in a graph dependency structure which in smooth estimates even for simple wavelet bases such as
is more general than a quadtree, enabling the model to produce the Haar basis. In conjunction with this model, we propose a
smooth estimates even for simple wavelet bases such as the Haag,q; jterative multiresolution reconstruction algorithm that can

basis. The inter-scale dependencies of the wavelet graph model are. t d . traint h itivit d
specified using a spatially nonhomogeneous Gaussian distribution 'NcOrPOraleé space domain constraints such as posiuvity, an

with parameters at each scale and location. The parameters of this thus, is applicable to Bayesian tomographic reconstruction.
distribution are selected adaptively using nonlinear classification =~ Markov random field priors [1]-[3] have enjoyed con-

of coarse scale data. The nonlinear adaptation mechanism is basedsjderable success in Bayesian image reconstruction [4] and
on a set of training images. In conjunction with the wavelet graph restoration [1]. However, MRF approaches are typically limited

model, we present a computationally efficient multiresolution ¢ deli | lint i L S | MRE
image reconstruction algorithm. This algorithm is based on 0 modeling very local Interactions In 1mages. oevera

iterative Bayesian space domain optimization using scale recursive Potential functions have been proposed that provide good edge
updates of the wavelet graph prior model. In contrast to per- preservation without explicitly modeling edges [5]-[11]. In
forming the optimization over the wavelet coefficients, the space comparison to MRF priors, multiresolution methods can im-
domain formulation facilitates enforcement of pixel positivity  54ye reconstruction quality and offer fast and robust estimation
constraints. Results indicate that the proposed framework can - ; -

improve reconstruction quality over fixed resolution Bayesian algorithms [12]_[17]' Multlresolutlon models_better a(?count
methods. for long range interactions and can more easily be designed to
separately account for edges, smooth and textured regions.

In recent years, multiresolution techniques have been de-
veloped which use linear system models on trees [12]-[14],
[18]-[23]. Nonlinear extensions of those methods have been
. INTRODUCTION applied to image restoration with both Gaussian and Poisson

MAJOR challenge for Bayesian image reconstructiofOise [16], [17], [24]-[26]. Other methods have been developed
A methods is the design of image prior models that acc{fr image segmentation [27]-[30]. Most of the existing work
rately account for edges as well as uniform and textured regid¥$ Multiresolution techniques has focused on applications
in images, yet result in tractable estimation algorithms. In cothere the observations are spatially localized. Typically, the
parison to Markov random field (MRF) priors, multiresolutiorPPServations are assumed to be conditionally independent
models can improve accuracy and increase computatioffen the local state of the model [12], [16]-[18], [20], [21].
efficiency. However, little work has been done on applyin§Or this class of problems, the application of multiresolution

multiresolution prior models to Bayesian tomographic recomodels defined on quadtrees is very appealing because it
struction and other problems with nonlocal observations. |@2ds to noniterative, scale-recursive estimation and realization
addition, a well known problem with many multiresolutiorlgorithms. _
Little work, however, has been done on applying mul-
tiresolution Bayesian estimation to problems with nonlocal
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transformation of the observations [6]. The quadtree structureThe conditional distributions of the wavelet coefficients are
of their model allows for closed-form EM updates; howevemodeled using a spatially nonhomogeneous Gaussian distribu-
since the overall EM technique remains iterative, the comptien with image-adaptive parameters. As compared to a fully
tational benefit of using a quadtree structure is less clear. Famnlinear approach, the Gaussian model is suitable for global
the Poisson case, their approach is limited to the Haar wavedgtimization in a Bayesian framework while the adaptation can
basis. Saquilet al. proposed a prior model for tomography thaaccount for nonlinear dependencies. The parameter adaptation
used a multiresolution pyramid representation [32]. Howevas, based on nonlinear classification of coarse scale data. The
a disadvantage of this pyramid representation is that differesfassifiers and class parameters used for the adaptation are ob-
scales contain redundant information. This makes formulatiteined using training data. The training procedure allows the
of a consistent Bayesian estimator difficult. overall model to incorporate characteristics of typical recon-
A general problem for multiresolution models formulated ostructions as prior information.
quadtrees is blockiness of the resulting estimates [20], [21], The proposed multiresolution reconstruction algorithm com-
[28], [33]-[36]. Specifically, nodes that are spatially adjacemiutes a coarse-to-fine scale sequence of Bayesian MAP esti-
can be far apart in the quadtree so that their correlation is poomates. Each estimate in the sequence is computed with fixed
modeled. A popular fix is to average multiple estimates obtainedaptation of the wavelet graph model followed by re-adapta-
for different spatial alignments of the tree or wavelet basis [33]on. The MAP estimates are computed in the space domain
[36], [37]. More elegant approaches have used trees with nodsing scale-recursive updates of the multiresolution prior. The
corresponding to overlapping portions of the image domain [3§pace domain formulation of the optimization is essential for ap-
or have performed state augmentation to account for the depplieation of our approach to tomographic reconstruction since it
dencies of general wavelet bases from within a quadtree stratlews positivity constraints to be enforced independently of the
ture [23]. These approaches have in common that their datavelet basis.
representation is highly overcomplete which can make accurat&’he paper is organized as follows. Sections II-A and B in-
modeling of sampled data difficult. troduce the image model and develop the overall structure of
A more direct way to avoid blockiness is to use a dependenitye multiresolution reconstruction algorithm. Section II-C pro-
structure that is more general than the quadtree. For imagées a detailed discussion of the space domain optimization al-
segmentation, Bouman and Shapiro [28] have used a pyramigatithm. Section 1I-D describes our implementation of the non-
graph where each node depends on a fixed size window at linear classifiers used for the adaptation of the multiresolution
next coarser scale. Katet al. proposed a fully three-dimen- prior. Section Il discusses the application of the proposed prior
sional (3-D) MRF where each node’s neighborhood consigtstomographic reconstruction and Section IV provides experi-
of adjacent nodes at the same scale and its quadtree paregttal results.
[27], [38]. A disadvantage of violating the tree constraint is
that Bayesian reconstruction must be performed iteratively as

compared to the recursive algorithms available for quadtree Il. IMAGE MODEL AND MULTIRESOLUTION
models. For applications such as tomographic reconstruction RECONSTRUCTIONALGORITHM

this is not a limitation since the forward model requires iterative

optimization in any case. A. Wavelet Graph Model

In this work, we develop a stochastic multiresolution frame- , . .
work for Bayesian image reconstruction for problems with spa- To define the notation for the wavelet decomposition, con-
sider the one-dimensional (1-D) case. kebe the N-dimen-

tially nonlocal measurements. We propose a wavelet graph prior ; . :
y brop grapn p sional vector of the image pixel values in raster order and let

model in combination with a computationally efficient multires= denote the pixel value at location We now consider the
olution reconstruction algorithm applicable to iterative tomo:? b " .
graphic reconstruction class of wavelet decompositions that can be computed using the

The basic concept of the proposed wavelet graph model &&US1ONS

to exploit dependencies of wavelet coefficients across scales. (nt1) (n)
; ; 3 T = hi—osx (1)
We capture these dependencies by modeling the wavelet coef 5 Z k—2

ficients at each scale and location as a function of a window of k

scaling coefficients at the same scale. This structure has several zg"“) = Z gk_stEf) (2
important implications: First, by conditioning the wavelet coef- k

ficients on overlapping windows of scaling coefficients, the de-

pendencies are not limited to a quadtree structure. Secondly, terez(® = =, 0 < n < log, N, h is the lowpass analysis
structure is such that the optimal wavelet graph model for a sfidter, and g is the highpass analysis filter. We assume bioth
tionary process is homogeneous at each scale, resulting in a &itstg to have finite support. In this notation{™ denotes the
stantial reduction in the number of model parameters. Finalgaling coefficient ana!™ the wavelet or detail coefficient at
the model is causal in scale, not overcomplete, and each wavstgler and locations. An illustration of this decomposition is
coefficient is a function of only a few scaling coefficients. Thehown in Fig. 1.

resulting prior is not suitable for noniterative scale-recursive op- In the following, we will assume ah resolution wavelet de-
timization; however, it allows for very efficient iterative opti-composition. The nonovercomplete wavelet transform: @$
mization using scale recursive updates. then specified by the wavelet coefficients) - - - 2(X) and the



758 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 7, JULY 2002

scale 204) 4@

N=

n=3 243),%,3)

n=2 22(2),X2(2) 23(2),X3(2)

n=1 Z5(1),35(1) 25(0x5(1)  @zg(1),xg")  @@z7(1),x7(1)

n=0
Xo(o) X1 (0) X2(0) X3(O) X4(0) X5(O) XG(O) X7(0) XB(O) Xg(o) X4 0(0) X11(0) X12(O) X13(0) X14(O) X15(0)

Fig.1. Waveletdecomposition in 1-D fér = 4 resolution levels. The wavelet transform of the original imaffeé = x is givenbyz = (=1, ..., 220 2(F)),

coarsest scale scaling coefficientd’). Using matrix notation,  To obtain a practical model, we assume the wavelet coef-

the L resolution wavelet transform af can be written as ficients at different locations to be conditionally independent
L) given the scaling coefficients at the same scale. Furthermore,
we assume the wavelet coefficients at each location only to de-
O ' —Wa ©) pend on a small window of scaling coefficients. lsedlenote a
2 spatial location at a given scalesuch that={" is the vector
2D of the wavelet coefficients at location For the two-dimen-

sional (2-D) case;;ﬁ") has three components corresponding to

where for simplicity of notation, we suppress the dependence;gk high—low, low—high, and high—high coefficients of a sepa-
the wavelet transform matri¥” on L. Note, that the transform 5pje wavelet decomposition. We then defiheas a window
vectorz includes the scaling coefﬁmeniéL_). _ with finite support centered at positierwith circular boundary
The basic concept of our image model is to exploit the depegisngitions. Them " is the set of scaling coefficients within the
dencies of the wavelet coefficients across scales. To formuldif,qow s at resolutiom.. Further. lets™ denote the set of all
the approach, we write the distributitsg p-(z) in terms of the 1o cationss of the wavelet decomposition at scaleUsing this

conditional distribution at each scale given the information gt ~«.on our assumptions are that #® are conditionally in-

all coarser scales dependent and that™ depends only on:g;). Applying these
assumptions to (6) results in the model

L

L
IngZ(Z) = Ingx(L) (.I(L))—f‘z logpz(n>|z(n+1>7 o, 21 2 (1)
=1
) " logp.(z) = Z Z logngﬂ;lxgm) (z§"> ‘a:g;)) + counst.
(Z n=1 g s(n) °
7

Since the scaling coefficients™ contain exactly the same in-We will call any model of the form (7) a wavelet graph
formation as:(+1) ..., (") 2(") we may rewrite (4) as  model. Fig. 2 illustrates the spatial dependencies of the model
(7) for the case of a 1-D signal and a three point window
a:(")) ds = {s — 1, s, s + 1}. In this case, the conditional distri-
bution of 2™ depends only on the three scaling coefficients
B) & = [z, 2 0
herez(™ is a function ofz("+D) (L), 5 The distri- An important advantage . .
wherex"™/ IS a tunction otz y eeey 27 2 The distr An important advantage of the structure (7) is that the optimal

bution assumption far("” is typically not important due to the wavelet graph model for a stationary process is homogeneous.
high signal-to-noise ratio at the coarsest resolution. Therefogs; homogeneous, we mean that

we assume that‘™) is uniformly distributed. Thus, we can
write 1ngz§”>|acg;> (zg") ‘ajg;)) = fa (zgn)’ ajg;))

At ) a:(L)) . @)

L
log p.(z) =logpu» (w(”) +> " log paonjutn (z(")
n=1

L . .
for some functiongf,, that do not depend on The following
) _ . (n) | p(n) "
logp.(2) = 221 log .o jzom (Z ‘x ) teonst. (6)  heorem, proven in Appendix A, makes the previous statement
"= precise.

1For_ applicgtiqns \_Nhere(? i_s not guaranteed to bg within a compact set, Thegrem 1:Let {XS(O)EZO—I be a 1-D discrete-time
the uniform distribution of:¢’ is improper. However, in our experience, this . £ . . (0)
does not cause practical problems with the model. For tomography applicatidi@ldom process that is circularly stationary, i.&; and
z() is within a compact set since its components are nonnegative and boungled — X(O) modaN have the same distribution. Léfs(") and
from above by a constant proportional to the maximum emission rate or dosag?n) (s—k)mo - ©)
used with the data acquisition system. Zs 7 for 1 < n < L be the wavelet decomposition &f; ™ as
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Fig. 2. Spatial dependencies for the 1-D case. Using a prediction wildow {s — 1, s, s + 1}, each wavelet coefficient(") depends on the three scaling
coefficients{z'™,, =(", (") }. Notice that the scaling coefficient$” contain all the information at coarser scales n.

specified by (1) and (2) using circular boundary conditions arehd whens2 = 1, the conditional covariance of " is given by
letlog p.(2) be a wavelet graph model of the form (7) with  r(™ 2 (B{™))-1 Consequently, the model is parameterized by

)\ ) () (n) A B and a global scaling constant for each scale
xa)_fn(zs axaal‘/s ) H H H

s s n. The scaling constants, will play an important role later by

gowing us to use the same adaptation mechanism for different
mplitude scalings of the image Assuming the wavelet trans-
orm W is orthonormal, thedet W = 1, and we may express

1ngz§”>|xg” (z§">

where the/{"" are parameters of the model. Assume there exiét
a unique minimizer of the relative entropy (Kullback—-Leible

distance)
logp,(x) as
V" = argmin E[— logp.(Z)]. (8)
v log ps(z) = log p.(Wx) (11)
Then,(1/§"))* is not a function ofs, implying a homogeneous 1 & (n) _ (), () |
wavelet graph modébg p. (7). T2 221 %;) HZS — Ay, b o 2B
n=1 g s

The property stated in this theorem greatly simplifies param-
eter estimation since we only need to estimate a single set of pa-
rameters at each scale. In general, this would not be the casgif e (") — (Wa:)g"’). The model (12) is used as the prior

we conditioned the inter-scale dependencies on wavelet coeffisiribution for the Bayesian reconstructionoft= (.
cients instead of the window of scaling coefficients. This homo- 14 tormulate a multiresolution reconstruction algorithm, we

geneity property is very important since it dramatically reducegs, want to directly calculate coarse scale reconstructions using
the number of free parameters in the model, thereby allowifgs prior model only for coefficients at scales coarser than the
practical model estimation from sampled data. In Section Il-Baonstruction scale. Thus, we define a coarse scale prior model

we will use this property to justify the design of a single nong,, the direct reconstruction of the scaling coefficient8 at
linear classifier for each scale. scalel as

We first consider the case of a spatially nonhomogeneous
Gaussian model. In this case, the conditional distributiongog p, (x@)
logp_ o, <n>(z,§")|xg;)) must be of the form

= mas

+ const (12)

= 10gpz<l+1>,...,Z<L>,m<L> (2<l+1)7 R Z(L)7 37(L)) (13)
weron (442) 3 3 [0 a0 ot
s 1 n n n n
n n n n 2 =73 st - As Los — anbs —2 5(n)
= —5 [z — AS )‘T((’)S) — bV ) +const () n=l+1 sC50) 7uBs
-+ const. (14)

whereA(™ is amatrix"™ is a column vecto3{™ is a positive . . .
definite matrix,o,, is a scaling constant, arid || 5 denotes the ~ Given noisy measurements and a physical data model
norm such thalje||%, = *Be. We note that for this model, thelog py|.(y|z), we obtain the data modébg . (y|z™) at

conditional mean ot{™ is an affine function of:") given by ~ scalel as

POE TN Y (10) ogpye ([oV) =logpyo (v |Z2®)  (19)
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) Adapt parameters . Adapt parameters o
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Fig. 3. lllustration of the multiresolution reconstruction algorithm. Starting at the coarsest seale, we calculate a coarse-to-fine scale sequence of MAP
estimatesr’. Each estimate (") takes into account the contributions of the adapted prior modasl abarser scales > I. After computingz(*}, we initialize
the parameterg("’ and re-adapt‘{™ for n > I.

whereZ;* denotes the interpolation from scdlto scalen. The | . [nitialize £ = 0 and 2(®) = 0 for all scales n.
interpolationZ? =" is obtained as the wavelet reconstruction c| . Compute maximum likelihood (ML) reconstruction (2.
(¥ assuming that™ = 0for1 < n < 1. 3. For L =L — 1 downto 0 {
Based on (14) and (15), the Bayesian MAP estintate of (a) Adapt Gaussian model: For | < n < L, Vs, assign (™) and
the scaling coefficients( at scald is the solution to the opti- an using (18), (19).
mization problem (b) Initialize z(*) « I{  &(+D).
50 = arg max 4 logp o loo 0 (c) Calculate. MAP recorfstruction 2 for Gaussian wavelet
= ats { Y|z (y ‘37 ) +logp.m (37 )} . graph prior model, using (16).
N (16) (d) Recompute £, 2(") for | < n < L as wavelet decomposi-
We have included the positivity constraint) > 0 since it is } tion of #(0).
important for tomographic reconstruction. Note that for the spe=

cial Cas_el = 0, expression (16) is the standard MAP equation Fig. 4. Summary of multiresolution reconstruction algorithm.
for the imager.

included to account for possible scaling of the imad@'. To
obtain a robust estimate, we compute the 10% trimmed mean

We use a multiresolution algorithm to perform the image r¢40] of #(* over the approximate support of the active image
construction and to adaptively select the parameters of the lingggion

model. As illustrated in Fig. 3, the basic concept of the multires-

olution algorithm is to compute a sequence of Bayesian MAP on — AVGirim10% [ﬂ")} . (29)

estimates from coarse to fine scale. The algorithm starts with

the reconstruction of the scaling coefficienté) at the coarsest The nonlinear operators()[-] are obtained during a training

scaleL and then successively performs the reconstructionsgtase. The structure of tHE)[-] and the training procedure

the finer scales= L —1, ..., 0. Ateach step in this sequenceare explained in Section II-D.

the current reconstruction is used to initialize the model param-The coarse-to-fine scale multiresolution reconstruction algo-

eters at the next finer scale and to re-adapt the parameters atithen is summarized in Fig. 4. Note that the final fine scale re-

coarser scales. Léf” denote the vector of model parameters aonstruction produced by this algorithm is not a conventional

locations and scale MAP estimate. Rather, it is a MAP estimate with respect to a

data dependent prior. This prior is the spatially honhomoge-

99 = [Agl)’ bgl)’ Bgl)} ; (17) neous linear model at all scales with the parameters obtained

in the last adaptation step.

B. Spatially Adaptive Multiscale Reconstruction

After computing the MAP reconstructiai® at scald, we up-
date all the parametef™ for n > I. These new parametersc - mAP Optimization for Gaussian Wavelet Graph Model
are then used to reconstruct 1) at the next finer scale.

We update the parameteﬂg‘ using a nonlinear classifica-
tion method derived from recent work in image mterpola‘uoHn
[39]. More specifically, we updaté(") by applying the non-
linear operatof” (™[] to the window of scaling coefficien

In this section, we describe a computationally efficient
plementation of the MAP optimization in step 3(c) of
. 4. The MAP optimization is performed for the Gaussian
Wavelet graph prior model with fixed model parameters
o0 — [A,Sl), b,g), B,Sl)] and o,,. The parameter selection is
) n) a;g;) described in Section II-D.
0" —T on | (18) The positivity constraintz(¥ > 0, is an essential component
of the MAP optimization equation (16). However, enforcement
Note that based on Theorem 1, we can use a sifijl¢f-] for  of positivity can be very difficult in the wavelet domain, partic-

all locationss at scalen. The normalization byr,, in (18) is ularly for general wavelet transforms. Fig. 5 illustrates our ap-
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y
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processing

1. Initialize e = (I — AWz — b
2. Until convergence do
Forite S { )
(a) de = (I — A)W,;
(b) o1 = etBde, ay = (de)tBde
(¢) A =argmaxy>_p, {108 py.(ylz + ve:) + a1y + 0.5a27%}
(
(

z
wavelet
domain

X
space
domain

wavelet transform forward model

prior modeling positivity

d) T, — x; + A

Fig.5. Theimage is modeled in the wavelet domain but the MAP optimization e) £ e+dsA

is performed in the space domain. This allows the positivity constraint to be| }
easily enforced.

Fig. 6. General formulation of the iterative coordinate descent (ICD)

proach for solving this problem. The optimization is performegf, IS8 00, T 0% Fhee e e kept a5 A stae.
in the space domain, while the prior model is formulated in thRctor. The sef = S denotes the set of image pixels at scale- 0.

wavelet domain and the system model is formulated in the pro-

jection domain. This makes enforcement of positivity simpl@®ased on (23), we can then write the gradi®ntlog p,, () as
Another advantage of space domain optimization is that it sim-

plifies the forward model in tomography. This is because th¥= 108 Pz (<)

transformation from toy is generally less sparse than the trans-

formation fromz to .

In the following, we derive the space domain MAP optimiza- = ¢'B (I - A) w.

tion algorithm. Since (16) has the same structure forlame
develop the algorithm for reconstruction at the finest stale.

This allows us to simplify the notation by omitting the supe

script (1) and writingz = 2(®. The solutions fod > 0 are

obtained using the same algorithm as described at the end of

this section.
To derive the optimization algorithm, define matridés” as
the subsets of the inverse wavelet transfé¥m! such that

piey;

200 = g, = o) (20)

Further, letU$" denote the rows ot/ such thatz}” =
U{S’;)z. Using this notation, we can rewrite (10) as

pi = AU 2 4+ 6,00, (21)
To simplify the notation, let us defind{™ = AT U™, 5" =
oS, and B = 0-2BM™ . Furthermore, letd, b, and B
denote the parameters for all locationsnd all scales.. We
can then re-write the model (12) as

. 12
z—Az—bH~ -+ const
B

log p.. () (22)

B 12
—-1 H (1 _ A) W — bHB +const  (23)

— Wt (I—A)tB(I—A)W—BtB (I—A)W (25)
(26)

If we now lete; denote the unitary vector in directian, we can

rWrite the first derivativen; as

o = 5 logpa(a) 27)
= (Vg logpa(z))e; (28)
—¢'B (I - A) W (29)

where W,,; denotes theth column of W. Similarly, for the

second derivativer, we obtain
2

Qg = 8—353 log p. () (30)

—w, (I - A)t B (I - A) Was. (31)

Notice that( — A)W.,, is the derivative of the prediction errors
in the wavelet domain with respect 9. Let us definede =
I - AW, then

a; =¢'Bde

oz = (de)t B de.

(32)

(33)

The priorlog p,. can now be written as a function of the pertur-
bation~ of pixel z;

(34)
Using (34), we can apply a standard iterative coordinate de-

scent (ICD) [41], [42] algorithm inz to iteratively optimize
the MAP equation (16) with respect to a single pixel at a time.

log px(z + ve;) = cny + % apy® + const.

wherex = W~1z. Given the space domain formulation (23)Fig. 6 summarizes the basic steps of the ICD optimization al-
a variety of optimization strategies can be used to perform therithm for MAP reconstruction using the Gaussian wavelet
constrained optimization of (16). In the following, we derive graph prior model. The prediction errorsare kept as a state

coordinate descent strategy which is the focus of our work.

To optimizelog p,. () with respect to a single pixel valug,
we need the first and second derivatives with respegt thet
us defines as the prediction error — 4 of the linear model in
the wavelet domain

e = (I—A)Wx—é. (24)

vector. The sef = S(? denotes the set of image pixels at scale
n = 0. The positivity constraint is enforced by limitingy in

step 2(c) to valuea > —z;. If the update in step 2(c) is per-
formed exactly and the log-posterior function is strictly convex
and continuously differentiable, the constrained ICD optimiza-
tion will converge to a global minimum. However, we use a
Newton—Raphson procedure for the update in step 2(c) which
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0@ x40 %0 x50  x,0 x50 x50 %0 x50 xg@  x4g® x11©O %120 %150 3140 x50

Fig. 7. lllustration of ICD update computation for pi>aeﬂ°> using a Haar wavelet basis and a 3-point windbwTo updatenEf), only the nodes in the sétfj”,
shown in circles, must be considered. Each nage’ for n > 0 contains the variables{™, z{", (™ as well as the temporary variablés{*’ anddz{"
required for the computation of the ICD update.

in practice has robust convergence. See [43] for the detailslofations whose prediction window includes node§§ﬁ). We
the convergence analysis with Newton—Raphson updates. define the set of these |ocationsggb>
In the following, we derive a computationally efficientimple-

mentation of the ICD algorithm by incorporating our model as- S = {k s € Ok for somes € Si(n)} (40)
sumptions of conditional independence and limited spatial sup-

port. For illustration, we augment the tree structure of the linear - U Os. (41)
model as shown in Fig. 7 for the 1-D case. In this representation, scs(™

each tree nodd/\™ contains the wavelet coefficient§™, the The last equation is a result of the symmetry of the prediction
s(c%ling %O;EﬁiCi%n)trg(")) as)?’%" as the F;urren(t goredict!on errofwindow. Notice, that since the prediction winddw includes

es’ =zs — A5 xy, —bs . Inaddition ;™ contains the s we haveg7§"> c 55") such that bothz{™ = 0 andda:g;) _
temporary variableslzs”’) and da:é"’). These variables are theg for s ¢ 57@ and consequentl;isgn) = 0fors ¢ §7§n)_
derivatives ofz{" andz{" with respect to the pixel value; Fig. 7 illustrates the definitions ™ andS™ for the specific
that is currently being updated in the space domain. To co@kample of a 1-D Haar wavelet decomposition.

putedzgn) anddargn), let W () denote the subset of the wavelet We can now compute the nonzero componenigais
transform such that™ = W)z, Further, letD™ denote the

decimation operation used to obtain the scaling coefficieffts e = dz — AW dx§) s e 5. (42)
from the original imager, so that The first and second derivatives anda are then given by
2 = DO = 0 (35) L
— (n) g(n) g-(n) 43
« 55 s 55

For the update of pixel value;, we computel>{™ andd=" as ' ; §> (43)

a7 =W, (36) - () Fy(n) g (0)
da{ =D (37) a2 = Zl 2(:) de, B, de (44)

n=Lsc S

. . . ) n)
The notation in (36) is for the 1-D case, where batty"’ and The derivativesy; and s are used to perform the MAP opti-

(n) . () ; .
dx; ~ are sce}la}rs. Forthe.2 D cagle, ” is the three component i ation with respect ta@; in steps 2(c) and 2(d) of Fig. 6. After
vector containing the derivatives corresponding to the high—low

datingz;, the state variables™ dated
low—high, and high-high components df". Definedxg;) as Updatingz;, the state variables are updated as

the vector with component&:\™ for k € ds. Using this nota- e — e 1 den s s (45)

: o ()

tion, we can writede, ~ as for 1 < n < L. This completes the efficient implementa-
e — gz _ 40 da:g”). (38) tion of the iterative coordinate descent optimization. Note that

dz$™, dz{™), Si("’), S‘i("), del™, anda are not data dependent
To computede efficiently, we want to consider only the loca-but are only a function of. If desired, these variables can be
tions (s, n) for which de'™ is nonzero. Let us define the setsrrecomputed and stored for all Fig. 8 summarizes the opti-
Si(") as mization algorithm.

While this development assumes optimization at the finest

s = {31 dz{ # 0 ordal™) # 0} . (39) scalel = 0, the same algorithm can be used for the coarse scale
reconstructiong:(”) for I > 0. To optimize (16) ford > 0, we

Notice, that the set§\™, 1 < n < L, are only a function of treat scalé as if it were the finest scale = 0. Thus, instead of

the wavelet transfori#,;. The changela:g;) is nonzero only at iterating over the pixel locationsat fine scale, we now index
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1. Initialize ¢ — (I — )Wz — b The classifiersK™[.] and parameteré,ﬁ?s are obtained
2. Until convergence do during a training phase. For our implementation, we use a
fori€ S { tree-based agglomerative clustering method which is described

(a) (*) compute d$™ = WS(?), dzl™ = Dg?), Vs,n >0

(b) (*) assign Si(") ={s: dzgn) #0V d:cgn) #0}
(c) (*) assign 5‘1.(") =U g(m0s

in detailin Appendix C. To summarize the approach, we initially
it ini (n) ()

partition the space of training samplgs, '/o,, zs ' /on}

by performing a vector quantization (VQ) ({m:g;) Jon}. For

() _ g, _ 4 g () &(n) .

(d) (*) des” = dzg™ = A" day; for s €S, each clustef:, we then calculate the filtefse{™, 5] as the
(e) a1 = ZL E ~ 5(")(0'23(n))d5(") .. . . ) .

n=1 Luges(m & \In s s minimum mean square error linear predlctors;fo . Starting
6 Maz=3" | 3 det™ (07 B )ael with this initial partitioning, we then form a cluster tree by
(8) A = argmax, {1ogpy . (yle +ve:) +a17 + 050272 } merging pairs o_f clusters in a greedy fashion. At any given
(h) z; 2 + A stage, we combine the two clusters whose merging results in
(i) el ™ 4 delMA for se 5™ the smallest increase in prediction error on the training set.

Thus we form a binary tree where each node is associated with
its optimal linear prediction filter for the conditional mean. To
not overfit the classification model, we perform optimal tree

Fig. 8. Detailed algorithm for efficient ICD updates using wavelet grappruning [45], [46] using a second data set for cross-validation.
model. The operations marked wiifx) can be pre-computed. Excluding ; (n)

the forward model term of step 2(f), the computational complexity is order The matrlcesBk are ComDUted as
N(log N)? for one full update of¢(®’.

3. Recompute 2™, 2(") 1 < n < L, as wavelet decomposition of &

n 1
B,(C):ERkl (48)

overi € SU. The state variableg™, z{™, £ as well as the . . .
directionsdzgn), dxgn)7 4™ are computed using the wavelehoereR’“ is the conditional sample covariance for classee

transform of+® and are computed for > { onl Appendix), andw is a regularization parameter. The effect
P Y- of w is similar to that of the scale parameter of a Gaussian

The computational complexity associated with the %Rarkov random field (GMREF) prior. Smaller values®ofimply

%n]{f(%t'?n‘;fa)tge I||1Ie_a|( 'mage medel ]isllon dthe gg?gr O‘L,tronger regularization resulting in smoother images whereas
(log )> multiplications for one full update ' larger values will result in less regularized, noisier images. In

where N is the number of image pixels at the reconstructio[gr‘,ﬂctical applicationay can be adjusted experimentally.

sc_:alel and K = |0s| IS the number of coefficients m_the . We have found it to be advantageous to constrain the classi-
window ds. For the special case of a Haar wavelet basis, thf'lé\rs K[ and the linear model predictoﬁ;gn)xf?") to only

complexity reduces tak NW1log N, The details can be " " ) . n
Xty 8 depend omgs) — 2{", that is the difference betweea@s) and

found in Appendix B. ) . - : :
Note, that the concept of optimizing the Gaussian wavells center scaling coefficient. This constraint makes the model
! invariant to additive shifts in the gray value of the image and

graph model in the space domain is general and not limited _ L .
therefore improves robustness of training on smaller training

the ICD algorithm. Specifically, given (23) and (26), other op- ) . ) :
timization methods such as preconditioned conjugate gradiéﬁfs' The detalls are listed in Appendix C.

(PCG) [44] can be used instead of ICD. In our experimentation,
however, we have found that PCG with preconditioner as in [44]
is not well suited for use with the multiresolution algorithm in |n this section, we discuss the application of the proposed
Fig. 3 due to poor convergence of the PCG algorithm for nomodel to Bayesian tomographic reconstruction. First, we
constant initialization. present the statistical data modélsg p,,(y|z) for both
emission and transmission tomography using the exact Poisson
counting statistics [42]. Lety denote the vector of photon
counts for allAM projections at different angles and displace-
The nonlinear operatofE™[-] used for the parameter selecments. Furthermore, lef” be the tomographic projection
tion (18) are obtained using a method derived from recent womkatrix so thatP;,. denotes the vector formed by it row. For
in image interpolation [39]. The selection éf*’ is performed transmission tomography, the log-likelihobg p, . (y|) may
by first classifying the input vectar's”) /o, into aclasg:,, , and then be written as
then selecting9§") as a parameter vector associated with this
class. To simplify the notation, we denote the parameter vecl8§’py|“‘(y|x)

. . n n n n M
=1

Ill. TOMOGRAPHIC RECONSTRUCTION

D. Nonlinear Classifiers for Parameter Selection

K™[.] denote the classifier at scaleThe classification and pa-
rameter assignment can then be written as

wherey denotes the dosage. For emission tomography, the log-
~(n) likelihood is given by
Los
&)

K, s K

M
l0g pyja(ylz) = Y (=Pi + yilog( Piexr) — log(yi!)). (50)

i=1

80— (47)
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Both (49) and (50) have the common form comparison is based on two sets of simulated emission tomog-
M raphy data; the first is a bar-phantom used for quantitative
log pyj(ylz) = — Z fi(Pie) (51) comparison of the algorithms in terms of reconstruction bias
Py and noise variance, and the second is a more realistic case used

for comparison of visual reconstruction quality, mean square
Shor, and computational efficiency.
q’he wavelet graph model (WGM) was implemented using an
orthonormal 2-D Haar wavelet decomposition with= 5 reso-
y lution levels. Two different training sets were used. For each set,
the training samples were obtained by computing the wavelet
log py |z (y ‘x(1)> - Z Ji (B*Il%(l)) (52) decomposgi]tion oﬁ‘) the training images¥ The Fr)luml(s:]er of recon-
=1 struction iterations was a fixed function of scale such fKat-
J 0) (v/2) iterations were performed for the reconstruction at stale
==Y £ (P00) 3
=1

where thef;(-) are convex and differentiable.

Based on the this model, we can compute the coarse s
data modeldog p, .. (y|+V) for I > 0. Combining (15) and
(51), we obtain

Note, that the convergence speed could potentially be improved

by using a stopping criterion based on the change in successive
wherePfi) = P.Z;. Thus, the coarse scale data models awalues of the log-posterior (16) at each scale. However, since
equivalent to a standard model of the form (51) with a projeésr MAP reconstruction in general, very small changes of the
tion matrix P> whose columns are linear combinations of thivg-posterior can result in large visual differences, we prefer
columns ofP. to run a fixed number of iterations at each scale. For the eval-

To derive the MAP optimization for the tomographic dataiation of reconstruction quality, the number of iterations was

model, we write the equations for the emission case only, hoget to be very large to insure complete convergence at each
ever, all methods analogously apply to the transmission caseale. The convergence behavior as a functioKgfis shown
Since the form olog p, .« (y|z(®) is the same for any, we in Section IV-C.
simplify the notation by omitting the superscrigts. To imple- To demonstrate how the wavelet graph structure by itself
ment the optimization of Section II-C we need to solve can reduce the blockiness commonly encountered with Haar
wavelet models, we also implemented a spatially homogeneous
linear version of the wavelet graph model. The linear model
uses no adaptation and only a single parameter vector at each

A =arg max {logpy(y|z +~ve:) + cuv + 5 04272} (54)
VZ—E

where the constraing > —x; enforces positivity in the space n)
domain. The basic concept of the ICD algorithm [41], [42] is t§¢@le such that,™” = f(n).

solve (54) using a Newton—Raphson strategy. Importantly, theThe two fixed resolut_ion MAP reconstruc_tion algorithms
algorithm exploits the sparse nature of the projection matrix Were based on a Gaussian Markov random field (GMRF) and

by maintaining a state vectgr= Pz of the current forward pro- & 9éneralized Gaussian Markov random field (GGMRF) prior
jection ofz. Givenj, we can write the first and second derivamModel, respectively. The GGMRF [10] is an edge-preserving,

tivesty andy, of log py;.(y|z) with respect to the pixel value spatially homogeneous MRF that uses a nonqugdratic penglty
term. For the results shown here, the generalized Gaussian

x; as L
parameter was set tp = 1.2. The algorithms used ICD
o 9 log pyj(y|z) = — Z Py <1 — ﬂ) (55) optimization with a large, fixed number of iterations to insure
Iz; (k: Pps >0} Pr complete convergence. The CBP algorithm was implemented

using a ramp filter and a generalized Hamming filter with

2 P2
1y = % log py|(ylz) = — Z Yk < f”) . (56) frequency respons#(w) = id(w)(o.g + 0.5 Cos(7.rw/wc))
i (ki Pry >0} Pr for |w| < w. whereH, 4(w) denotes the ideal ramp filter.

Based on this notation, the second order approximation £o
log p | (¥|x 4 ~e;) with respect toy is

Bar Phantom Results

Simulated emission data were generated using the bar
log pyj(ylz + ve;) = log pye(yl@) + Y17 + 5 ¥27°. (57) phantom shown in Fig. 9(a) of size 116 115 pixels with
\yéﬂues of 1.0 for the bars and 0.02 in the background. The
image was embedded into a zero background of size2856
pixels which was forward projected at 128 angles and 256
1 +a1} (58) displacements. The projection beam was assumed to be an
o + g | ideal line. The data samples were formed by Poisson random

- - . variables with the appropriate means. The average number of

The state vectorp can be updated efficiently using -
) . counts per projection was 83.
P’ = Pl + pi for {k: By # 0} Two different training sets were used for the proposed
algorithm; the first set consisted of 40 MRI images of size
256 x 256 pixels and was intended to capture typical character-

In this section, we compare the proposed algorithm to twstics of medical images; the second set added 3000 amplitude
fixed-resolution Bayesian methods using Markov random fielthd rotational variations of a bar phantom to demonstrate how
prior models and to convolution backprojection (CBP). Thehe proposed method can be adapted wé@niori knowledge

Thus, the constrained Newton—Raphson update of (54) is gi
by

A = max {—a:i, —

IV. EXPERIMENTAL RESULTS
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0.0251

"\ -+ Fix resolution MAP, GMRF prior

W Fix resolution MAP, GGMRF prior, p=1.2

0 — — Adaptive Wavelet Graph Model, trained on MRI images

1y —— Adaptive Wavelet Graph Model, trained on MRI & bar imgs.

0.015-
8
o
0.01r
(b)
Fig. 9. Bar phantom and magnified high frequency region of sample 0,005
reconstructions. (a) Bar phantom and (b) magnified reconstruction of th
high-frequency region (rotated). Top: Fix-res. MAP, GMRF prior. Middle:
Fix-res. MAP, GGMRFp = 1.2. Bottom: Adaptive wavelet graph model,
trained on MRI and bar images. 0 s s s s s |
0 0.01 0.02 0.03 0.04 0.05 0.06
Variance
about special characteristics of the phantoms is available. The (a)
phantom shown in Fig. 9(a) was not included in the training .,
; i ‘ - Fix resolution MAP, GMRF prior
Because of the discrete nature of the second training set, v ° - Linear Wavelet Graph Model, trained on MR images
increased the value @fin (70) of Appendix C toé = 0.3 to ‘ ~ Linear Wavelet Graph Model, trained on bar images
3 . . ) 0.025F \ o CBP Hamming filter 100% cutoff

obtain reliable covariance parametéis. The windowds was ' o CBP ramp filter

set to 3x 3 coefficients.
For quantitative comparison of the different algorithms, we ooz;
calculated reconstruction bias and variance for the reconstruct
imagez;; using the fact that the original phantom is constanmoms,
along columns. We first calculatglj ands? as the mean and °
variance of thejth column in the reconstructiofy;. Bias and

variance were then computed as ooty

N

. 1 N 2 L
bias = 1 > Gy — ) CONRCE
Jj=1
1 N 0 ‘ ‘ ‘ s s ‘
- 0 0.01 0.02 0.03 0.04 0.05 0.06
var = N 0']2 (60) Variance
i=1 (b)
wherey; is the value of thgth column in the original phantom Fig. 10. Bias-variance reconstruction performance of each algorithim as a
andN = 115 is the number of columns. function of regularization parameter. The triangles in (a) correspond to the

.bias-variance values for the sample reconstructions in Fig. 9(b).
Bias and variance were computed for each reconstruction

technique as a function of the regularization parameter. For the
wavelet graph model, the parameterin (48) was varied in While the GGMRF performed best in the low variance region,
the rang€0.1, 10], for the MRF priors the scale parameter its residual bias in the high variance region was slightly higher,
was varied in the rang@.1, 1.4], and for CBP reconstruction aintroducing bias even when very little regularization is applied.
ramp filter and a Hamming filter with cutoff. = = were used. When trained on the combination of bar phantoms and MRI
The proposed algorithm was initialized with a constant imadgenages, the adaptive wavelet graph model outperformed both
and performed a fixed number @b x (1/2)! reconstruction fixed resolution Bayesian methods. The smooth shape of the
iterations at scalé The fixed resolution ICD MAP algorithms curve for the adaptive wavelet graph model indicates that the
were initialized with a CBP reconstruction and performed 4@constructions are not overly sensitive to small variations of
iterations. w, but rather, smoothly depend on the regularization parameter.
Fig. 10(a) shows a comparison of the results for the adaptikey. 9(b) shows the magnified high frequency region of sample
wavelet graph model and the two fixed resolution Bayesiaaconstructions corresponding to the bias/variance points
methods. Each plot corresponds to the bias/variance curvenwdrked by triangles in Fig. 10(a). The adaptive wavelet graph
a single reconstruction method as a function of the regulanodel reconstruction better resolves the high frequency bars
ization parameter. The upper left hand corner of the graptsn the two fixed resolution Bayesian reconstructions.
corresponds to strong regularization (high bias, low variance)Fig. 10(b) shows the bias/variance curves for the linear, non-
whereas the lower right hand corner corresponds to weattaptive, wavelet graph model in comparison to fixed resolu-
regularization (low bias, high variance). The results indicaten ICD with a GMRF prior and to CBP. Trained on the set of
that the adaptive wavelet graph model trained on the set of MRRI images, the linear wavelet graph model performed compa-
images performed significantly better than the GMRF methadbly to the GMRF method. When trained on the combination of
and performed comparably to the GGMRF based methdshr phantoms and MRI images, the linear wavelet graph model



766 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 7, JULY 2002

Fig. 11. (a) Original phantom and reconstructions: (b) convolution backprojection, RMBE64; (c) fixed resolution MAP with GMRF prior, RMSE 23.0;
(d) proposed algorithm using linear wavelet graph model, RMSE.59; (e) fixed resolution MAP with GGMRF prior, RMSE 22.21; and (f) proposed method
using adaptive wavelet graph model, RMSE22.6.

achieved lower bias at equal variance as compared to the GM&#ew = 1.0 for the adaptive wavelet graph model. For each

result. algorithm, a large number of iterations was used to insure com-
] plete convergence; specificallyf, = 148 for the proposed
B. Medical Image Phantom Results method with constant initialization and 500 iterations for the

Simulated emission data were generated from the magndtied resolution ICD algorithms with CBP initialization.
resonance imaging (MRI) reconstruction image in Fig. 11(a). The CBP reconstruction in Fig. 11(b) is noisy in the uniform
The 256x 256 pixel image with mean 0.32 was forward prodmnage regions and contains blurry edges. The GMRF MAP re-
jected at 128 angles and 256 displacements, assuming a fielg¢@fstruction in Fig. 11(c) is less noisy than the CBP; however,
view of 20 cm and using Poisson noise. To better illustrate thige quadratic regularization function of the Gaussian MRF re-
deblurring potential of the algorithm, we assumed a projectisults in blurred edges. The linear wavelet graph model recon-
beam with triangular profile of width 2.34 mm which is threestruction (d) is slightly sharper than GMRF result (c) but con-
times the projection spacing. The average number of counts ga&ns some blocking artifacts and has higher RMSE. However,
projection was 235. considering that this is a spatially homogeneous linear model

The adaptive and linear wavelet graph models were trainedigsing a Haar wavelet prior without shift-averaging, the recon-
the same set of 40 MRI images used for the bar phantom resutsuction is surprisingly smooth, confirming the advantage of
The phantom in Fig. 11(a) was not included in the training. THbe wavelet graph structure. Fig. 11(e) shows the fixed resolu-
size of the windowds was set to 5¢< 5 coefficients. tion GGMRF MAP reconstruction. The result has sharper edges

The regularization parameter for each reconstruction algas compared to the GMRF case (c) and achieves the lowest mean
rithm was adjusted manually to minimize reconstruction meaguare error of all four methods. Visually, however, the recon-
square error; this resulted in, = 0.637 for the CBP Ham- struction (e) is of poor quality since it suffers from consider-
ming filter, + = 0.2 for the GMRF prior,c = 0.24 for the able loss of detail. The reconstruction using the adaptive wavelet
GGMRF prior,w = 1.075 for the linear wavelet graph model,graph model in Fig. 11(f) is superior to that of the other four
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24.5

: ‘ ~~ Fix resolation MAP, ICD, GMRF prior Fig. 12 shows the reconstruction error convergence for the
| Fix resolution MAP, ICD, GGMRF prior different algorithms as a function of CPU-time on a 700 MHz
[ - - Fix resolution MAP, PCG, GMRF prior . .

ol — Wavelet Graph Model | Pentium IIl. The plots correspond to reconstructions of the

data set in Fig. 11. The reconstruction error was calculated as
the RMSE to the ground truth image. For ICD and PCG, the
CPU-time was measured after each iteration; for the proposed
method each data point corresponds to the total execution
time of the algorithm for a certaii(y. Fig. 12(a) shows the
convergence results when all algorithms are initialized to the
CBP reconstruction of Fig. 11(b). ICD and PCG converge
very quickly, particularly for the GMRF prior. The proposed
algorithm has slightly slower convergence. The RMSE curves
for the proposed algorithm and for PCG reach a minimum
followed by a slight increase for larger CPU-time. This is
not surprising since the RMSE measure favors the slightly

N
w
o

Reconstruction error (RMSE)
N
w

22,51

2 . . .
0 500 1000 1500 2000

CPU-time in seconds oversmoothed intermediate results over the visually superior
() converged reconstructions.
80 : : , Fig. 12(b) shows the convergence results when all recon-
- - Fix resolution MAP, ICD, GMRF prior : ; P :
Fix resolution MAP. ICD, GGMRF prior struction algorithms were initialized to a constant image.
- - Fix resolution MAP, PCG, GMRF prior The constant was calculated from the projection data as
70r —— Wavelet Graph Model [l

‘ (22 %)/ (X2, 22, B, ;) to match the number of total measured

: counts. This initialization is typically used for PCG in practice.
For this case, the fixed resolution ICD algorithm has slow
i convergence due to the slow low-frequency convergence of the
ﬂl i ICD algorithm [41]. The proposed algorithm converges fastest,

! indicating that the multiresolution technique can provide a
Y computational advantage in cases where an initialization with
1 the correct low-frequency behavior is not available. Specifi-
- cally, the multiresolution approach allows us to use an ICD

(o2
j=]
T

I

Reconstruction error (RMSE)
& [
o <

30F 1 optimization technique without requiring a CBP initialization.
' \14 This is an advantage for systems with noncircular geometry
20 e SEEm SR e e e e [47] or limited angle problems where CBP initializations are
0 200 400 600 800 1000  not easily obtained.

P _#i i . . . .
cPU “meb'” seconds Since the computation of the proposed algorithm is largely
() dominated by the forward model, the size of the windifor
Fig. |1$- EJXL Convefgtencte_ of th?thprglfli/?;?:d a'gogg”'\‘/l Fc{:gmp_ared todfii(@ﬁe wavelet graph model has a limited effect on efficiency. For
resolution reconstructions wi an prior moae . . . .
(a) CBP initialization and (b) constant initialization. Sthe data set in Fig. 11, a window of sizex55 as compared to

3 x 3results in a 35% increase in CPU-time for the sdiize

methods. In comparison to the GMRF case (c), the reconstruc-
tion (f) contains sharper edges while the noise in the uniform re-
gions is better suppressed. The mean square error is lower than
for the GMRF case (c) but higher than for the GGMRF result \ye propose a wavelet graph prior model in conjunction with a

(€)- In comparison to (€), however, the proposed method pigytiresolution Bayesian reconstruction algorithm applicable to

serves more detail. tomographic reconstruction. The wavelet graph prior model has
adependency structure that is more general than a quadtree. This
enables the model to produce smooth estimates even for a Haar
wavelet basis. Furthermore, the wavelet graph structure is such
that the optimal model for a stationary process is homogeneous,

Reconstruction error convergence was compared for the presulting in a substantial reduction in the number of model pa-
posed algorithm, fixed resolution ICD, and for a preconditione@meters. The multiresolution reconstruction algorithm uses the
conjugate gradient (PCG) MAP reconstruction algorithm fawavelet graph prior model but performs a sequence of MAP op-
tomographic data which was developed in [44]. The PCtnizations in the space domain. The space domain formulation
algorithm uses the GMRF prior model and was implementedlows us to efficiently enforce the pixel positivity constraint and
with preconditioner and bent line search exactly as in [44] btd preserve the sparseness of the tomographic projection oper-
did not use a factorization of the tomographic projection matrator. Our experimental results indicate that the proposed frame-
P which can potentially speed-up computation in practicalork can improve reconstruction quality over commonly used
applications [44]. fixed resolution Bayesian methods.

V. CONCLUSIONS

C. Computational Efficiency Comparison
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APPENDIX A size windowds. Therefore,|S;| « K(log N®¥)? and conse-
PROOF OFTHEOREM quently steps (42)—(45) can be executed in oddéiog N V)2

First note that¥ (™ is a circularly stationary random proces§numplicaﬁ°8)s' Th“i;)”;e complexity for a full update M)
for each resolutiof < n < L. Thisresults from the assumption's_orderKN (log(]l;f )" I(:lgjr.a Haebrl)vvavele.t decompogmon,
that X © is circularly stationary together with the form of thel 'S reduces ta N*% log N7 sinceS;™ contains only a single
recursions (1) and (2). Next, notice that node at each scate The complexities for the 1-D and the 2-D

case are the same.

(»)
X(—p-l—?(s—w))monN
pesary (n) APPENDIX C
s ] =Q (=p+2(s—w)+1)mod2™ TREE-STRUCTURED NONLINEAR CLASSIFIER
(n+1) : . . . . .
Zs In this section, we describe the agglomerative clustering

x™ method used to obtain the classifiée&)[-] and the parameter

o _ (prt2(e)mod2” vectorsg™ for classk. For the classifier at scale, we assume

where isa f|X(_ad matrix, Whgre is s_uch that the support of the training sel{a:g")/on, Zgn)/gn}. We then define a normalized
ke_rnelsh an_dg in (1) and (2) is withi—p, p] and the_ centered training set{z} Sw } with samplesv _ V(x(n) . x(n))/o_

window ds is of length2w + 1. Based on the previous equa- AN y 9s > N

_ i i i
tion and the fact thak ™ is a circularly stationary process, theand ws = z [on WhereV is the matrix that eliminates

distribution of[XénJrl), Z§n+1)] does not depend ofn Using the zer.o center component mf;;) N xgn) and is the) idgntity

the assumption that* — arg max,, E[log p.(Z)] exists and is OtheI‘WI.S('%. Thusus has one fewer component thab’; . Since
unique, we write the tr_ammg is performed s_e_parately for each scalewe

simplify the notation by omitting the dependence @nOur

max Eflogp.(Z)] objective is to form a classification tree for such that each

v tree node is associated with a MMSE linear predictor to predict

w, from v,. We first perform a vector quantization (VQ) of
{v, } with a pre-specified, fixed number of clustdxs currently

K =150, 100, 100, 50, 50 for scales= 0 throughn = 4.

Xg;) )} +const  The distance metric for the VQ is the Euclidean distance. The

— max & Z logngn)lmgm) (Zgn)

Xéz) ) + const

= max Z E |:1ng471)|$(871) (Zgn)

(s,n)€S number of iterationsy/ for the VQ is set to a constant value,
_ . ) (n) (n)):| currently A/ = 5. The next step is to compute the MMSE
Z o E [logp gy (ZS Xoo” )| Feomstjiear predictors for the VQ clusters. Let, ..., c¢x denote
(s,m)eS 7° .
the K clusters. Definey., ., and u., ., as the means and
= Z max B [ £ (ZS("), x5, 1/8("))} + const. C.,.ve @ndC., .. as the covariance matrices of the samples
(s,m)€S Vs in clusterc; with respect tov andw. Let C,, .., denote the

) ] o (1) (1) cross-covariance of the samples in clusieWe then compute
S'”Ce (rjlenher thef,, nor the distribution of X5, Z;""] 3 MMSE linear predictofA,. , b., | for clusterc;, as
epend ors,

* A, =Ct Ct . 63

(’/gn,)) = arg max E |:fn (Zgn)7 ngl)7 ’/gn,)):| k kW ek, ( )

1,271) bck = ch,'w - Ack ch,'u (64)

is not a function ofs. This proves the theorem. Ay = A, V. (65)

Further, the total prediction errar., of clusterc;, over the
training set is obtained as

APPENDIX B
COMPUTATIONAL COMPLEXITY

The number.of muItipIicationg for optimizing thg wayelet e, = trace (Oc“ww — 240, Cop vio + A, Ccm_wzlzk) )
graph model with respect to a single scaling coefflcmz(ﬁ)t is (66)

. . Zo A ~(n . . .
proportional to the size of the st = Un>lSi( ), where the  Now consider merging two clusters, and ¢; into a new
Si(") are as defined in (40). For a general wavelet transform, thisterc,,, = ¢ U ¢ with MMSE predictor[A.., , ., ] and
size|S™| of the setsS™ as defined in (39) is proportional to prediction error., . The total increase in prediction error due
n — [. Defines; 2 U Si(n)’ then to the merging_isksckj o = e, _—(sck J_rs(_:l). Merging clusters_

based on minimum increase in prediction error is not sensible
L
5= > |5

for small clusters whose linear predictor may be over-parame-
x Y (n-1) (61) terized such that,, = 0. To merge small clusters in a mean-
n=i+l n=it+l ingful way, we introduce a regularization tepn, ., based on
2 .
(L — l)? < (bg N(z)) . (62) cluster distance

n>1

N . 2 2
Based on (41), the size of the s&tis upper bounded b |S;| ~ Per e = (|ck| |Hen, v = e, ol el (10,0 = pe, o] )
whereK = |ds| denotes the number of coefficients in the fixed (67)
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wherec is a small regularization constant ajad| denotes the  [2]
number of samples in clustér We then define the cost function 3
M., ., for the merging ok and¢; as 3]
[4]
MCk,Cl = AECk,Cl + Pey, e (68)
Starting with the initial VQ partitioning, we successively
combine the two clusters,, ¢; whose merging results in the [5]

smallestM,, .,. This results in a binary tree where each node
is associated with its optimal linear prediction filter for,.
The leaves of the tree are the VQ clusters. To not overfit the
classification model, we perform optimal tree pruning [45], [7]
[46] using a second data set for cross-validation. The pruning
set{v;, ws} is classified into the tree by assigning each data 8]
sample to the closest VQ cluster and to all of its parents in the 9
tree. The prediction error for the pruning samples in each nodé
is computed using the node filters computed on the training set.
The tree is then pruned in a bottom-up fashion by considerin&ol
all nodes at each level before moving up by one level. If the
prediction error for a node filter is lower than the combined[11]
errors in the leaves of the subtree originating at this node,
the model is considered overparameterized and the subtree is
effectively removed by marking its nodes as pruned. [12]
The covariance paramet#&y, for each tree node is computed
as a linear combination of the conditional covariance of the
pruning samples in clagsand the expected conditional covari- [13]
ance over the entire pruning set. L&g{ ; be the conditional
covariance matrix of the pruning samples in class

1 . - - .
Rl k=7 Z (ws_Ackvs_bck)(ws - Ackvs - bck)t
{s:0sCen}

(6]

(14]
’ e [15]

(69)
where|c; | is the number of pruning samples that fall into néde  [16]
Further, let use defin&; as the expected conditional covariance
over the entire pruning sety = (1/N,) 3 1., ey |ok[ B (7]
where L is the set of tree leaves after discarding the pruned
nodes andV,, is the total number of samples in the pruning set.[18]
We then compute the covariance paramétgifor nodek as

whereé is a small constant. The teréii?; is added to impose a
lower limit on the RZ;,. For our experimentation, we use a fixed [20]
valueé = 0.001 except for one case where the training set of
discrete images requires a larger valué of 0.3.

In order to perform the classification (46) at runtime, we
first find the VQ cluster with minimum Euclidean distance to
V(a?g;) — 28 /a,,. We then follow the tree upwards until we
reach the first node that is not marked pruned. This node corre-
sponds to the class, , and contains the associated parametei23]

vectore,(:) .

[21]

[22

[24]
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