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Abstract—The precise localization of rail vehicles is fundamen-
tal for the development and employment of more efficient train
control systems in security, logistics and disposition applications.
Current research in train navigation systems tries to solve the
task with an increasing number of onboard sensors or addi-
tional infrastructure installations in combination with satellite
navigation (GNSS). Both approaches are cost intensive and rely
on undisturbed satellite signals, commonly not given in railroad
applications. In contrast, we describe a novel, single sensor,
onboard localization system in this contribution, based on a newly
developed eddy current sensor (ECS). We outline an onboard
localization system within a probabilistic framework, with special
attention on signal processing for speed estimation and pattern
recognition. In particular, we employ Bayesian methods such as
hidden Markov models for turnout detection and classification
and, in a final step, sequential Monte Carlo sampling to combine
the extracted information in a topological map to obtain a reliable
position estimate.

Index Terms—Train Localization, Eddy Current Sensor, Hid-
den Markov Models (HMM), Sequential Monte Carlo (SMC).

I. INTRODUCTION

TRAIN localization systems nowadays operate with a
high amount of track side infrastructure installations.

Future train operating systems, e.g. the European Train Control
System (ETCS) on level three [1], are based on an onboard
localization of rail vehicles to enable more efficient disposition
techniques such as moving block. Therefore, current research
focuses on reliable onboard train localization systems. In-
spired by localization techniques in air and automotive traffic,
the commonly chosen system architecture combines onboard
speed measurement with global navigation satellite systems
(GNSS), commonly GPS, to estimate a reliable position in-
formation [2]. One drawback of this approach is the relatively
low accuracy of inductive odometrial measurements and the
GNSS reliability, given that tracks contain tunnels and roofed
station halls and are often situated either in urban areas,
forests or valleys with dense vegetation and high buildings.
Hence, the reliability of the obtained solution is insufficient
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for the requested security and technical standards. Current
disposition methods such as ETCS on level two try to improve
accuracy with additional infrastructure installations to gain re-
calibration points, which leads to high track maintenance costs.

Eddy current sensors (ECS) are commonly used for the mea-
surement of inhomogeneities within ferromagnetic materials
(e.g. see [3]). Based on this principle, we developed a sensor
system capable of precise non-contact and slipless speed
measurement in rail vehicles [4], [5]. Besides the increase
in odometrial measurements the sensor additionally allows
the detection and classification of turnouts. In contrast to
vision based systems for track and turnout recognition [6], the
ECS working principle is robust against weather influences
and day time. The sensor outperforms accelerometer based
systems as [7], [8] with the possibility to detect turnouts passed
unbending and to classify individual turnouts.

Rail networks naturally possess a large amount of turnouts,
e.g. the German rail network has a total length of approx.
38000 km containing about 72000 turnouts. We propose to
use these as beacons that are intrinsically distributed according
to the need of local precision, i.e. lots of turnouts within
stations that contain a lot of parallel tracks for a landmark
based localization.

The sensor information is one-dimensional and therefore
suited to be employed with topological maps. These are, in
contrast to precise metric maps, easy to obtain or can easily be
created by any person that knows the track. Localization with
topological maps is commonly researched in indoor robotics
and examples can be found in [9] or [10]. We illustrate
how a combination of robust velocity estimation and reliable
turnout detection are sufficient for track specific onboard train
localization with ECS rendering other relative and absolute
positioning systems obsolete.

For this purpose we consider and setup the complete local-
ization system, which can roughly be subdivided into three
parts. Speed estimation, the recognition of turnouts and the
final information fusion within a map. To cope with the re-
quirements of the system such as heavy duty conditions of rail
vehicles, different vehicle types, independent noise sources,
very large rail networks, and changes in rail infrastructure, we
employ probabilistic methods. The advantages of a stochastic
concept are shown in many robotics [11], tracking [12] and
machine learning [13] applications. The Bayesian framework
we employ for turnout extraction and map based localization
is intuitive, robust, and easy augmentable to incorporate ad-
ditional sensors. With this our system can be employed as a
standalone solution on side tracks or in combination with other
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onboard sensor systems for safety applications in ETCS level
three. Nonetheless, in this contribution we try to emphasize
the individual capability of our localization system.

The remainder of the paper is organized as follows: Sec-
tion II will introduce the eddy current sensor system and its
application to speed estimation. We propose a novel method
that alleviates acceleration influences to significantly improve
the velocity estimate quality based on cross-correlation of the
signals, especially when driving in low speed. Recognition
of turnouts with hidden Markov models is subject of Sec-
tion III. It is shown how probabilistic models can be employed
to detect and continuously extract turnouts. Afterwards, the
classification of the detected samples is analyzed with respect
to signal preprocessing, parameter adaptation and model se-
lection. Velocity and turnout information must be combined
in a most optimal way within the map, which is subject of
Section IV. We resolve ambiguous position hypotheses, that
are represented by an a posteriori probability density function,
with sequential Monte Carlo (SMC) methods. This allows
handling uncertainties in track association that occur while
passing turnouts or due to misclassifications. The final Section
gives a summary and conclusions of the localization concept
as well as possible augmentations.

II. EDDY CURRENT SENSOR SYSTEM (ECS)

A. Sensor setup

Eddy current sensors are commonly used to detect inhomo-
geneities in the magnetic resistance of ferromagnetic materials
(e.g. see [3]). This basic approach has been further developed
and adapted to possible applications on railway vehicles.
These include speed measurement and pattern recognition.
For correlation of two signals the eddy current sensor system
consists of two identical sensor devices, each built up with a
transceiver coil and two pick up coils. Both sensors are placed
sequentially within a housing, mounted approximately 10 cm
above the rail head. Figure 1(a) displays the principle of a
single sensor unit: The transmitter coil E excites a magnetic
field HE, that induces eddy currents in metallic materials like
the rail. The eddy currents induce an antipode magnetic field
HEC, that generates the voltage uP1(t) and uP2(t) within the
pick-up coils P1 and P2 respectively. By interconnecting them
differentially, the output signal s(t) = uP1(t) − uP2(t) is a
measure for rail inhomogeneities. These mainly result from
rail clamps, turnouts and other irregularities, e.g. cracks or
signal cables (for details see [4]). The signals s1(t) and s2(t)
represent a stochastic process. Clamps produce a stationary
process for rail vehicles driving on open tracks with constant
velocity. Turnouts, cables, and metallic clutter represent non-
stationary signal components, whereas both parts are superim-
posed by a noise process that can be regarded as zero mean
white Gaussian noise. The overall signal comprises a high
signal-to-noise ratio (SNR), given that preprocessing low pass
filters are installed in the sensor hardware [14].

B. Velocity estimation

The described working principle is, in contrast to vision
based systems or doppler radar sensors, widely unsusceptible

to environmental perturbations and, because of the differential
setup, robust against systematic influences. These properties
are highly desirable for a reliable speed measurement under
rough railway conditions. Velocity estimation can commonly
be achieved via cross-correlation of the two sensor signals
s1(t) and s2(t), that are idealized depicted in Figure 1(b). First
approaches, intended and optimized for hardware realization,
apply a closed loop correlator (CLC) assuming a known sensor
distance l and a measured time difference ∆t (for details
see [4]) and [15].

H
E H
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S1S2

signal s (t)1

signal s (t)2

(b)

Fig. 1. (a) Single ECS sensor S1 (b) Example signal of ECS (two sensors)
s(t) when crossing a rail clamp.

The presented approaches rely on the assumption of a
stationary stochastic process, which holds for constant velocity
within the cross-correlation interval. Whereas this assumption
is correct in most situations, it is heavily violated in low
speed manoeuvres, where large changes in the relative velocity
may occur. This is unfortunately the case in areas of interest,
i.e. within stations, where most turnouts are present. The need
of a precise spatial signal s(x) for pattern recognition (see
Section III) makes it necessary to apply a velocity estimation,
that can cope with these situations. Therefore, we augment
the common cross correlation analysis by a correlation based
estimation of the current train acceleration. With this, the
signal can be resampled to eliminate correlation window
averaging effects on an accurate velocity estimate.

The basic idea is to find the time shift ∆t of the signals
s1(t) and s2(t), which corresponds to the maximization of
the cross correlation according to

∆t = arg max
τ

(E {s1(t− τ) · s2(t)}). (1)

We assume a constant acceleration â in a signal of equal
length before and after resampling. With an average velocity
v0 within the interval TM , the traveled distance dTM

becomes

dTM
=

∫ TM

0

v(t) dt =

∫ TM

0

[v0 + ât] dt = v0TM +
1

2
âT 2

M ,

(2)
and using signal length equality

dTM
= vmN Ts = d̃TM

= v0N Ts +
1

2
â(N Ts)

2, (3)

for a discrete sequence of length N and sampling time Ts.
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Fig. 2. Cross correlation coefficients plotted against warping factor κ using a 4s window. By varying κ, one can determine κmax that locally maximizes
correlation coefficients. The right figure displays two example coefficients as functions of κ (indicated by the corresponding lines in the left figure).

The association of an original sample no to the resampled
output sample ni is expressed with (3) and the auxiliary
variable

ζ :=
v0

â · Ts
, ζ ∈ (−∞,−N ] ∪ [0,∞), (4)

which results in

ni = −ζ + ζ

√
1 +

2no
ζ

+
N · no
ζ2

. (5)

A more practicable domain is obtained by reparametrization of
(5) with a warping factor κ. Under consideration of extreme
values ( [16]) it follows

κ :=
4 ∆n

N
=

N

2ζ +N
, κ ∈ [−1, 1]. (6)

This gives κ a limited range of values with κ ∈ [−1, 1]. For
the determination of â and v0, ζ is replaced in (6) with

ζ =
1− κ
2 κ

N. (7)

Thus, the signal resampling for the purpose of maximizing
the cross correlation coefficient is characterized by κ, that
describes the signal straining. Figure 2 shows the influence
of κ for the cross correlation quality, and its applicability
for acceleration estimates. After resampling, the correlation
maximum is determined with parabolic approximation for
subsample accuracy. The average speed v̂(t) and acceleration
â(t) within a given interval is calculated with

v̂(t) =
l

∆t
, â(t) =

2κ · v̂(t)

L · Ts
, (8)

where L is the number of samples within the correlation
integral and TS the sampling time. The estimates of v̂(t)
are subsequently interpreted as observations and merged in a
Kalman Filter (see [17], [12]) with constant acceleration model
to track the final velocity estimate vest(t). In contrary to a CLC
this approach allows speed estimates down to zero velocity.
The additional knowledge of the Kalman Filter acceleration
estimate aest(t) is used for validation of the calculated â(t).

Further details on error propagation and results for the velocity
estimation are outlined in [16].

The high accuracy of this method allows for subsequent
velocity integration to determine the covered distance in
sufficient quality, which is first pre-requisite to solve any
localization problem and calculation of spatial signals s(x),
with x =

∫ T
0
vest(t)dt as covered distance in time T .

III. PATTERN RECOGNITION WITH HMM’S

First step for enabling pattern recognition is the transfor-
mation of the time signal s(t) into a spatial signal s(x) to
yield invariance against velocity influences, that strain the
turnout signal when passing over several times. Afterwards,
we apply a model based approach, that assumes a common
physical turnout structure to model the various kinds of
turnouts [18]. Figure 3 depicts the chosen basic modeling type
and a corresponding ECS signal s(x) of a real turnout. In our

Fig. 3. Turnout model depicting standard turnout, straightened signal s(x)
(recorded with an ECS mounted above the right railhead), and the six
assumpted segments of a turnout.

contribution we assume that any turnout can be segmented
into six areas, each characterized by a specific length lseg and
average amplitude āseg. In Figure 3, an example for passing
over is depicted where the train bends off to the right. An
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ECS sensor system mounted on the right train side yields the
shown signal s(x). In contrast to velocity estimation, turnout
detection can be conducted from the information of a single
channel. For convenience we will consider only one signal
s(x), whereas implicitly both channels can be used separately
for the sake of redundancy.

The signal is segmented as follows: The starting area I,
where commonly welding points are situated, the switchblade
actuator in segment II, the following third segment with the
bending area of the switchblade, an interconnecting segment
IV, in which rail clamps are laid that show higher amplitude
compared to open track clamps depending on the sleepers.
The, due to its discriminative character, important segment V
where either frog or, like in the given case, a rail guard induces
the signal shape, followed by a final sixth segment in which
again turnout rail clamps characterize the signal. A noteworthy
result of this model is, that each possible turnout driving
direction, in the following called facing right/left and failing
right/left, provides a different and unique sequence of the main
turnout parts, switchblade, frog and rail guard (see Table I).
The detection of turnouts makes use of the characteristic
features of each component sequence and tries to allocate
it in the signal. Assuming a stationary Gaussian stochastic
process [19] for open track signals, turnouts give need for a
non-stationary signal interpretation. The non-stationary signal
is separable into sub processes, e.g. for a turnout six, whose
realizations are connected by the stationary clamp signal.

Therefore, the recognition is solved in a probabilistic way.
Detection and Classification are formulated according to Bayes
rule as

P (Tm|O) =
P (O|Tm)P (Tm)

P (O)
, (9)

where P (Tm|O) represents the Bayesian a posteriori probabil-
ity of recognizing Tm out of a set of T = {T1, ...TM} possible
classes, given the feature vector sequence O = (O1, ..., OL)
of length L. The class set T for detection includes rail
clamps, basic turnout types and possible disturbances that
are commonly present on rail tracks. Classification aims to
determine a particular turnout Tm out of a set of 4 · M
classes that represent all possible passings for an overall of
M turnouts.

The true turnout conditioned probability density P (O|Tm)
in (9) is not known. We model this density with P (O|λm),
where the parameter set λm represents a hidden Markov model
(HMM). The modeling and estimation of λm is subject of
the following sections. In the following we introduce the
basic model descriptions and their notation for clarification
of subsequent sections.

A. Hidden Markov Models

HMMs are stochastic models widely used in speech pro-
cessing [20], bioinformatics [21], time series analysis [22]
and other machine learning and pattern recognition fields. In
this contribution we propose to model the sequence of turnout
segments as a Markov chain. With this, HMMs that represent
a doubly stochastic process are predestined to be employed

for detection, given their capabilities in coping with both,
variations in length and amplitude within a given signal.

We adopt the notation of Rabiner [23], to describe a HMM
as a two staged stochastic process. A Markov chain of N
possible states and initial state distribution vector π, obeying∑N
i=1 πi = 1, is completely defined by its state transition prob-

ability matrix A = {aij}N×N , with
∑
j aij = 1. aij defines

the transition probability P (qt|q1...qt−1) = P (qt = j|qt−1 =
i) for any state qt at time step t. A second process generates
symbols of a given set at every time step, of which only the
emitted series of symbols is visible depending on the states
taken at every time step. This probability P (Ot|qt) is defined
in the emission matrix B = {bjk}N×K , where bjk = bj(vk) =
P (Ot = vk|qt = j) and

∑
j bjk = 1. For turnout segmentation

and classification, HMMs with continuous probability density
functions according to P (Ot = x|qt = j) = bj(x) with
bj(·) obeying

∫
x
bj(x)dx = 1 are used. A HMM is hence

completely determined by its parameter set λ = (π,A,B).
For further details on HMMs and there applications we refer
to [20], [24] or [21].

B. Detection of Turnouts with HMMs

The ideal turnout model described in the beginning of
Section III involves several unknown parameters and additive
noise. The length lseg depends on different turnout types
(for examples see [18]), speed estimation inaccuracies and
additional individual structural features for each turnout. The
average amplitude āseg is liable to filter effects, unpredicted
bogie movements, clamp types, and varying sensor settings.
Additional noise sources involve thermal noise and measure-
ment effects. With this, we assume, due to the central limit
theorem [19], an additive zero mean white Gaussian noise with
individual variance for the true parameters lseg and āseg. As
depicted in Figure 4, the transformation in the two dimen-
sional feature space discriminates each segment sufficiently
by its mean and variance. Mean and variance of the depicted
Gaussians are won from recorded test data via maximum
likelihood (ML) estimation [13] and the Gaussian assumption
successfully confirmed by a χ2-test with significance level
of 5%. The biggest discriminative power lies in the main
component models II and V that are also depicted in Figure 3.
They show a good separability to each other and can be
distinguished from open track areas and disturbances such as
cables, metallic clutter or unique infrastructure such as bridges.
The latter can have similar shape to turnout components,
e.g. switchblades, but can be distinguished by knowledge of
the turnout set-up. Turnouts are thus represented by both, a
distinct sequence of components and their respective features.
HMMs are perfectly suited to model the underlying turnout
sub-component sequence and their conditioned features. In
addition, if the signal component space is discrete and finite
they are optimally in a Bayesian sense.

1) Signal preprocessing for turnout detection: In a pre-
processing step the time domain signal is transformed to
spatial space. This alleviates the velocity dependent signal
straining proportional to the quality of the speed estimation
(see Section II-B). Afterwards, exploiting the signal property
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Fig. 4. Feature space with Gaussian assumption for lseg and āseg , displaying
main turnout components (solid lines) and common disturbances (dotted line).

of having zero mean, the signal power Ps(x) over an interval
of length 2I is calculated via the variance, determined as

σ2(x0) =
1

2I

∫ x0+I

x0−I
s(x)2dx = Ps(x0). (10)

Result is a non-periodic signal that serves as observation
sequence O for the HMM.

2) Feature representation in detection HMMs: After pre-
processing the signal, the HMM framework from Section III-A
must be adapted to detect turnouts according to the assumed
physical model. The signal s(x) represents a discrete stochas-
tic process of infinite length that is comparable to continuous
speech data or gesture recognition [25]. The HMM topology
best suited to process sequential data of this kind is a linear
left-right model, depicted in Figure 3. This topology assumes
only self transitions aii or transitions to a state higher than
the current (aij = 0 ∀j < i ∧ j > i − 1). Subsequently we
represent each segment in Figure 3 as one state of the HMM
as depicted in the upper half of Figure 5.

II VIVIIII IV

II
2

II
1

II
k

Fig. 5. Applied left to right model structure with state tied substates.

The detection HMM must represent the two features length
and average amplitude. Assuming independence, we separately
model āseg in the emission matrix and lseg in the transition
matrix. This keeps O univariate and formalizes the transition

density calculation. However, a common drawback of the basic
HMM modeling is the geometrically distributed state duration
model that must be improved to represent lseg adequately. In
our approach, the expectation of state duration corresponds
to component length and must be adapted accordingly. We
employ the state tying technique [20] to approximate the
Gaussian distributed lseg. This implies replacing each state
qt = i with an amount of k sub states, each sharing the
same emission density bi(·). Henceforward we can statistically
interpret the duration as sum of k independent geometrically
distributed random variables. The resulting probability mass
function for this kind of state duration is the negative binomial
distribution defined as

P (lseg = n) =

(
n− 1

k − 1

)
pk(1− p)n−k, (11)

where P (lseg = n) is the probability mass function over
staying n time steps in a state until the first time k successes
occur within a sequence. The quantity p is the probability
of success in a Bernoulli experiment and can be calculated
via the state transition probability aii, given state qt = i. By
interpreting the number of necessary successes as sub states
k, the expectation of 11 becomes

Enegbin{lseg} = k · (1− Egeo{lseg}), (12)

where Egeo is the expectation of a single sub state geometric
probability. The interpretation of k as design parameter allows
to place the mode and shape of the resulting distribution
as close as possible to the ones in our Gaussian model
assumption. By doing this, the complete information of the
segment length lseg is coded within the transition matrix A.

The distribution of the average signal amplitude āseg is
coded within the emission matrix and is expressed with con-
tinuous state emission models as mentioned in Section III-A.
The parameters of each Gaussian bj(·) are estimated via
maximum likelihood estimation of training samples. These can
be recorded in a laboratory test bed to avoid test drives.

3) Online state estimation: As mentioned at the beginning
of the Section, a turnout can be driven over in four directions,
each one comprises of a characteristic sequence of turnout
parts. The possible sequences of turnout parts are listed in
Table I. Each turnout passing direction is associated with a

TABLE I
SEQUENCE OF MAIN TURNOUT PARTS FOR DIFFERENT DRIVING

DIRECTIONS

Driving direction 1st Component 2nd Component

facing right Switchblade Guard rail
facing left Switchblade Frog

failing right Frog Switchblade
failing left Guard rail Switchblade

sub-model λ1..4. These HMMs represent all different turnout
types and their individual characteristics and distinguish only
in direction which is sufficient for a correct turnout start
determination. This information is used for localization and
in the subsequent classification step as a priori information.
Assuming rail track characteristics such as double clamps on
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wooden sleepers, bridges, metallic clutter and electric instal-
lations, additional failure models are necessary. The detection
model operates with two failure models λ5,6 that are used
to detect longer areas with mediocre average amplitude and
shorter disturbances with higher amplitudes (examples are
depicted in Figure 7). Figure 6 shows the final HMM structure
with six sub-models interconnected by a sleeper model GS.
After defining the topology, the sequence T̂ of the most

Fig. 6. HMM continuous recognition model. Six submodels λ1..6 are
connected via a glue state GS that models open track areas.

probable events given the set of events T = (T1, ..., Tc) is
estimated. The solution space T∗ incorporates the set of all
possible sequences given T leading to

T̂ = arg max
T ∈T∗

P (T |O), (13)

where the posterior P (T |O) corresponds to

P (T |O) =
P (O|T )P (T )

P (O)
. (14)

The likelihood P (O|T ) is again approximated by P (O|λ),
the prior can be used to code syntactic relations for event
sequences. With the min-sum or Viterbi algorithm [26] the op-
timal path in the sense of a maximum a posteriori (MAP) esti-
mation subject to the minimum sequence error probability [24]
is calculated continuously. In contrary to MAP estimator
with minimum symbol error probability (e.g. the sum-product
algorithm) only reachable paths are allowed, which is crucial
for modeling the event sequence within turnout sub-states.
The observation sequence O must be restricted to remain
computable. The algorithm adjusts the length of O to start and
end on open track and therefore adaptively to the detection
of possible events within it. The justification is depicted in
Figure 7. The correct result for the given observation sequence
is shown in the upper half. Two subsequent turnouts, one
crossed facing right the other facing left are situated behind
a road crossing detected as disturbances. The correct main
turnout component sequence is switchblade → guard rail →
switchblade → frog. In the lower half possible errors with a
too short observation sequence window are depicted: While
the window fully covers the first turnout (depicted in the
lower middle cut out), the turnout is correctly detected. If
the sequence shifts forward, the cut out in the lower right
represents O that starts at the end of the first turnout and ends
at the beginning of the second turnout. Although this results
in a valid combination of turnout components, namely guard
rail and switchblade, a not existing turnout passed failing left
is detected.

Fig. 7. Example segmentation results. The lower sequences clarify the
problem of sufficient Viterbi path length and the importance of component
sequence coding in HMMs. In the lower left the beginning turnout is false
classified as facing, in the lower middle one can see that the component
association can lead to sensible but yet wrong results. The lower right shows
the same cutout as the middle one with a larger window and so a longer
Viterbi path which results in a correct classification.

To prevent the appearance of these phantom turnouts, the
length of O is adapted until the sequence starts and ends on
open tracks. The observation sequence now corresponds to a
sliding window of minimum 100 meters on open tracks, where
in stations with many turnouts the size can be up to 600 meters.
Within the window, the forward probabilities (see (21)) are
computed incrementally, while the Viterbi path is updated in
every step for the whole sequence. The detection algorithm
performance is in real time up to a sequence length of 800
meters, calculated with MATLAB on a 2 GHz laptop processor
with 3 GByte RAM.

C. Classification of Turnouts with HMMs

The first HMM stage described in the previous subsec-
tion yields segmented sequences corresponding to possible
turnouts. Although this is already sufficient to localize specific
positions within a track plan, the ECS signals can be used for
further classification. The common rail infrastructure makes
it possible to reduce possible turnouts into basic types. But,
especially on side tracks a lot of individual features such
as slightly different placed signal boxes, cables, or other
distinctions, exhibit additional discriminative features. We use
this attribute to classify individual turnouts and the passing
over direction in a given track system. Again, we apply HMMs
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to cope with variations in the signals from bogie movements,
sensor deterioration, and velocity estimation errors.

1) Signal preprocessing for turnout classification: In con-
trary to the preprocessing described in Section III-B1, where
individual turnout attributes are smoothed to be allocated into
basic types, a different signal preprocessing is chosen for
classification to better distinguish individual features. With
regard the non-stationarity nature of the turnout signals three
different signal processing techniques were implemented. A
cross validation comparison [27] of spatial signals, power
signatures, short time Fourier transformed (STFT) signals and
the application of the discrete Wavelet transform (DWT) [28],
the superiority of the latter was identified. This coincides
with its intrinsic capability to cope with local non-stationarity.
An example of the wavelet transformation of a real turnout
is depicted in Figure 8. Three scales from the transformed
signal are taken as feature vector and henceforth employed as
observation sequence for the classification HMMs.

2) Classification and model adaptation: Output of the
preprocessing is a feature vector for every detected turnout
that represents an observation sequence Oj for the second
HMM stage. Given J passings for a turnout one can assign OJ

sequences to a HMM Λm, with m = 1...M and M = 4 · M
for M turnouts. In this notation each driving direction of
a turnout is represented by a single HMM. The association
of the sequences is manually done for initial test drives.
Henceforth each newly classified sequence can be used for
the parameter estimation, what allows an adaption on slowly
changing influences, such as ECS deterioration or track abra-
sion. The implementation is realized with the Baum-Welch
algorithm [29] adapted for multiple training sequences of
each class. The last K classified sequences with associated to
each turnout are used to estimate the model parameters Λm.
This ensures a constant computational effort and a sufficient
repression of misclassified samples within the training set.
While the detection HMM has only a single Gaussian as
emission density, the classification emission densities Bm are
designed to express individual features more accurate. Under
consideration of the constrained training data for rail vehicle
applications, we employ semi-continuous hidden Markov mod-
els (SCHMMs) [30]. These are best suited if only few training
samples are available and the emissions may be modeled as
mixture of multivariate Gaussians with a shared amount of
basis functions.

The initialization for the iterative Baum-Welch training is
made individually for transition probabilities, model size, and
emission densities. The initial values for the transition matrices
Am are chosen according to the self transition probability and
the average length T of the training set. Is the state transition
treated as success and T as number of trials, the probability
for being in a state k in a left-right topology is described with
the binomial distribution according to

P (X = k) =

(
T

k

)
aT−kii (1− aii)k. (15)

With respect to expectation and variance of the distribution,
we approximate the initial state number N for each model

Fig. 8. Spatial signal s(x) and corresponding scalogram of a turnout.

with

N = E(X)+2V ar(X) = T (1−aii)+2T aii(1−aii). (16)

The model size is hence a function only dependent of the
initial self transition aii. This ensures that all free parameters
are used by the designed models to adapt the training samples.
In addition, a balanced weighting of emission and transition
probabilities is ensured. When compared to analytical model
selection techniques, (16) estimates the number of initial states
comparable to the Akaike information criterion (AIC) [31]
used with the additional penalty term of Sugiura [32] (AICC),
according to

AICC = −2 ln Lmax(Λ|O) + 2N︸ ︷︷ ︸
AIC

+
2N(N + 1)

T −N − 1
, (17)

where Lmax(Λ|O) is the average of the maximum likelihood
values of all training, test, and validation sequences for the
model given its parameters and the number of states N with

Lmax(Λ|O) =
1

J

J∑
j=1

pmax(Oj |Λ). (18)

The Bayesian information criterion (BIC) [33] underestimates
the needed number of states for the given application too
strong, resulting in a lower classification performance. Equa-
tion (16) allows for a good model size estimation without
calculating the log-likelihood as necessary in the mentioned
analytical model selection criteria. This substantially reduces
the computational complexity that is impractical even for very
small rail networks with one hundred turnouts comprising
an average length of T=400 samples. Our estimate assures a
sufficient model length to cover all features, prevents an over
fitting, and is easily applicable for new turnout models of any
size.

For the initialization of the continuous Gaussian mixtures
in B we apply the Linde-Buzo-Gray (LBG) algorithm [34].

After estimation of Λm, the classification is conducted by
choosing the model that maximizes

T ∗ = arg max
m

{P (Λm|O)}. (19)
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Here, T ∗ represents the associated turnout and its driving di-
rection. Assuming an uniform prior over all possible turnouts,
the posterior P (Λm|O) is proportional to the likelihood and
calculated with the forward algorithm [23] according to

p(O|Λm) =

N∑
j=1

αT (j), (20)

αt(j) =

(
N∑
i=1

αt−1(i) · aij

)
· bj(Ot), (21)

where αt(j) represents the probability of being in state qt = j
at time step t, for likelihood computation.

IV. LOCALIZATION IN TOPOLOGICAL MAPS

Rail vehicles are not steerable and can be modeled with
one degree of freedom preset by the rail network. With this,
the train position is determined by the current track segment,
the position upon it and the current driving direction. The
ECS solves this with the combination of the velocity estimate
vest(t) described in Section II and turnout extraction described
in Section III. Yet, the information must be merged within
a map. We employ topological maps as natural choice to
represent a rail network. In our contribution a static map
with known distances is assumed. The map can be set up
with basic information of edge length and turnout connections
that is accessible for every rail network. Although we imply
that the on-board localization is solely based on the ECS
system, our probabilistic framework can easily be enhanced
with additional sensors, e.g. satellite navigation systems or
inertial measurement systems to fulfill further security aspects.

A. Map representation

Topological maps are graph-based abstract representation of
the environment. They are an adequate choice for the given
application due to their intuitive understanding, the scalability,
and compact representation [9]. We interpret the turnouts as
vertices V and the connecting rail tracks as edges E in a graph.
Figure 9 displays a map commonly used in signaling centers.
It contains information of the distances between turnouts and
is enhanced with track specific features, such as road crossings
or platform positions. This kind of map is easily transformed
into a directed graph, represented by the adjacency matrix G.
In addition, if the turnouts are known in advance, each turnout
Ts with s = 1...M is associated with four HMMs Λm, where
for convenience m = s, i with i = 1..4. The graph deduction
and turnout association is depicted in detail in Figure 10. The

Fig. 9. Topological representation of a railway station on a side track.

nodes V and edges E in G are augmented with additional

information, such as turnout coordinates, metric distances, or
distinct features for classifiers, and their relative position in
the graph.

Fig. 10. Association of HMMs to specific turnouts and transformation of
given map from Figure 9 into graph representation.

B. Information Fusion and Tracking

Positioning in topological maps corresponds to a one di-
mensional problem with multiple hypotheses conditioned on
turnout bending decisions. This results in a multimodal po-
sition probability. Common object tracking within a Kalman
filter framework [12] can only handle one hypothesis and is
not applicable to this task. We employ sequential Monte Carlo
methods (SMC) to recursively update a multimodal probability
density function (pdf) over all possible train positions within
the considered rail network. SMC approximate the conditional
density

p(xt|y1:t) =
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(yt|y1:t−1)
.

(22)
This pdf formulates the recursive Bayes filter of the state x at
time step t given all measurements y up to the time t. Given
a set of P samples or particles, in each discrete time step t
associated with its weights wpt obeying

∑
p w

p
t = 1, one can

approximate (22) with

p(xt|y1:t) ≈
P∑
p=1

wpt δ(xt − xpt ). (23)

In this contribution we apply the sequential importance resam-
pling (SIR) algorithm, for further details on SMC methods we
refer to [35] or [11]. The linear model is expressed in state
space form according to [36] as

xt+1 = Axt +Buut +Bfft (24)
yt+1 = h(xt+1, et+1), (25)

with the current relative position on a graph edge xrel as state
variable xt. The velocity estimate according to Section II-B
is used as system input ut = vest(t), where Bu = Bf = Ts
with sampling time Ts. The uncertainty ft is defined as

ft = eestt + emo, (26)
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and contains velocity uncertainty eestt ∼ N (0, (σest
t )2), esti-

mated by the Kalman filter and additional constant Gaussian
white noise emo ∼ N (0, (σmo)2) for model inaccuracies.

Each particle is additionally augmented with two pseudo
states: The track segment IDt, corresponding to an edge E
within G, and its current driving direction dir defined as
binary variable. The pseudo states explicitly determine the
position in the map depending on xrel.

The measurement model (25) is nonlinear and reflects
discrete measurement events such as turnout detections. We
assume a constant zero mean Gaussian distribution for mea-
surement uncertainty et+1 ∼ N (0, σ2), reflecting variations in
the detection HMM stage or misclassification. With this, (25)
becomes

p(yt+1|xt+1) = N (d(xt+1)|µ = 0, σ2). (27)

The term d(xt+1) in (27) expresses the distance to the near-
est node, given the current state and edge length l(IDt+1)
according to

d(xt+1) =

{
l(IDt+1) · xt+1, xt+1 < 0.5

|l(IDt+1) · (xt+1 − 1)|, xt+1 > 0.5
. (28)

The state space formulation combined with SMC approx-
imation allows an elegant incorporation of turnout driving
restrictions stored in the map G. Detection and classification
probabilities are directly integrated in the particle weights
in (23). The complete formulation is kept compact and can
be augmented easily.

For localization it is sufficient to subsequently detect
turnouts and estimate the driven distance between to exclude
step by step false hypotheses. For this case only velocity
estimation and the detection HMM (see Section III-B) are
necessary to accomplish the localization. If turnouts are addi-
tionally associated to individual HMMs as described in III-C,
an instantaneous localization is possible. The employment of
the classification HMMs comes at the cost of needed prior
knowledge of track topology and the necessity of turnouts
that exhibit discriminative features. Depending on this, two
scenarios can be distinguished:

• Side track scenario: Side tracks are characterized by few
stations and turnouts and relatively long spaces of over
1 km between them. The turnouts differ in type and
occurrence and comprise individual features like signal
box wires, axle counters, and others. Therefore even two
turnouts of the same type are distinguishable as seen in
Section III-C.

• Classification yard scenario: Rail yards and other freight
specific surroundings are specified by a significant higher
turnout density. They are often laid nearly identically,
being of same type. The distances between turnouts
are typically small but different. An example setup is
shown in Figure 11, that displays only a small area of
a classification yard near Ludwigshafen.

Both scenarios are intrinsically solvable with our approach by
choosing the HMM input accordingly.

Fig. 11. Cutout of a classification yard near Ludwigshafen showing the vast
amount of laid turnouts (black triangles) and its challenges for the shunt yard
scenario.

V. EXPERIMENTAL RESULTS

All proposed algorithms were verified with real data. These
were recorded on a test train that operates on a secondary
track. It incorporates roughly 22km track length, seven stations
and an overall of 54 turnouts. In test runs we were passing
repeatedly six stations and 23 turnouts in different directions.

A. Velocity Estimation

The verification of the velocity estimation is achieved by
comparing the results with a reference measurement system.
We use a combination of satellite measurements (GPS) and a
dead reckoning inertial navigation system (INS) as reference.
Figure 12 shows an example result for a sequence of approx.
300 seconds. It proves that, due to the densely vegetated valley

Fig. 12. Comparison of velocity estimation with ECS and reference GPS/INS
system.

in which the test track is situated, our approach outperforms
the GPS/INS combination in normal or higher velocities.
In very low speed regions, filter effects and difficulties in
determining the effective correlation length lead to a higher
standard deviation for the ECS system. Yet, in an overall
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comparison, the ECS approach in Section II-B proves more
reliable and robust in average.

B. HMM Results

The algorithms and models described in Sections III-B and
III-C are evaluated separately, indicating that a localization is
possible with only applying the detection HMM.

1) HMMs for Detection: To verify the detection capabil-
ities of our approach, we run 26 test drives (52 passings
of the turnouts) on the side track. The employed HMM is
constructed according to Figure 6 and consists of 196 states
and six submodels as described in Section III-B. The emission
densities where estimated out of a set of real turnout signals
with manually labeled components. An overall of 845 true
turnout events are present on the test track, of which 831 were
detected correctly given only one false positive, which yields
an overall recognition rate of 98.23% for solely detection.
Moreover, we evaluated the driving direction preclassification
in the detection step. From the 831 properly detected turnouts
774 were positively classified in the correct driving direction
when distinguished in facing and failing. This corresponds to
a classification rate of 93.14%.

2) HMMs for Classification: The same data set was ex-
amined for classification performance. The data set was con-
strained on turnouts, respectively classes, with at least 20
passings to ensure a correct data set separation in training, vali-
dation, and test set. This preselection left an overall of M = 34
classes. The output of the second HMM stage yields a specific
turnout and therefore node V , as well as a specific driving
direction described in Table I, in contrast to the preclassifying
of the detection HMM that separates only in facing/failing and
an unspecified turnout. The SCHMM emission densities were
set with 13 mixture components for a three dimensional input
vector consisting of bior wavelet family scales. The average
model size N is 232 states, given an average length T = 423.2
of O. The maximum iterations of the Baum-Welch algorithm
were set to 15, whereas the number of training observation
sequences K were set to nine. The overall error is computed
on the test and validation sets that contain 277 turnout events.
One false positive results in a classification performance of
99.64%. Additional examinations showed that the approach is
robust up to a velocity estimation error of 15%.

The classification is also nonsensitive against cutting offs at
the beginning or end of turnouts, that can occur in the detection
HMM. Figure 13 depicts six segments at turnout start and
end that were cut off depending on a drawn number from an
uniform distribution in multitudes of sleeper distances. It is
possible to cut up to 2.5m from the switchblade area and up
to 6m from the end, which only reduces the performance to
99.28% (corresponding to two errors out of 277).

C. Localization Results

As outlined in Section IV-B, there are two different appli-
cation scenarios for rail vehicle localization with SMC.

Fig. 13. Bounds of stochastically cut turnout start and end points.

1) Side Track Scenario: The side track scenario assumes
sufficiently discriminant individual turnouts. Each classified
turnout event corresponds to a certain position and the bending
in a specific direction. The results in V-B suggest that the
probability of the main hypothesis is typically above 95%. This
leads to an almost sure convergence of the SMC filter after
first classification. The most probable position corresponds to
the maximum of p(xt|z1:t). This complies to the expectation
x̂ and its variance σ̂ given with

x̂t =

P∑
p=1

wpt x
p
t , and σ̂ =

P∑
p=1

wpt (xpt − x̂t)2, (29)

assuming a converged filter and Gaussian errors and influ-
ences. A simple threshold is applied to only display the most
probable position. The first initialization of the position is
achieved in different ways depending on prior knowledge. The
initial filter distribution is either set uniform for the whole
network or concentrated on only few initial segments of G if
rough knowledge is available.

2) Classification Yard Scenario: The classification or shunt
yard scenario is conditioned on the assumption of turnouts
too similar for unambiguous distinction. Still it is possible
to detect turnouts and associate the position to geographic
coordinates, that can be used as re-calibration for velocity
estimation. A Localization based on solely ECS and the
detection HMM is possible, whereas the accuracy is based
on the capability of the HMM detection to also pre-classify
the driving direction in facing and failing sufficiently. The
initialization problem is one dimensional within the graph
framework and corresponds to the lost robot problem described
in [11]. Therefore we assume a uniform a priori distribution
over the whole considered rail network. Each time a turnout
is detected, the distribution converges to only very few or
even one hypothesis. This process is visualized in Figure 14
for a simulated station setup nearly identical to a real station
from our test track. The HMM detections were simulated at
specific time instants. For visualization purposes, the densities
are clustered in discrete cells of length 1m and the Z-axis
is scaled. The problem to decide whether the train bends
right or left is shifted from the classification stage to the
distance measurement between turnouts and is therefore done
implicitly. On every turnout decision point the particle cloud
is separated according to the probability of the bending. This
probability can be given a priori in form of a scheduled time
table or is assumed uniform if no information is given. Filter
convergence is verified with a 5% rejection probability in a
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(a) Initialization (b) First turnout event

(c) Second turnout event (d) Filter converged

Fig. 14. Example for initialization procedure on an example rail net. The probability p(x, y) is scaled accordingly in each subfigure.

χ2 test [37]. Each edge E is tested independently on possible
positions by applying a kernel density estimation (for details
see [27]) on the associated particles. The highest maxima of
each kernel function are locally separated and tested against
the null hypothesis of a Gaussian distribution, relying on
the assumptions of Section IV-B. Afterwards, an application
dependent threshold for the accumulated probability mass is
chosen for the final position decision.

3) Overall Localization Performance: The evaluation of the
ECS-only train tracking with the SMC approach is complicated
by the lack of ground truths. In the side track scenario it is
obvious that the precision is directly correlated with the results
in Section III-C, whereas the tracking in the second scenario
depends on a fast convergence. In the side track scenario,
estimated velocities and turnout detections were used from
real data. The shunt yard scenario V-C1 was validated with the
same data sets sparing the classification HMM. Convergence
in both scenarios was reached when at least one particle is ini-
tialized for each meter of rail and direction. For medium sized
shunt yards and stations this corresponds up to 4000 particles.
For the whole test track, which represents a common side
track and contains 22 km of rail tracks and 7 stations, 44000
particles are sufficient. Results were won by simulating dif-
ferent levels of position errors and its rectification by turnout
detection on the one hand, and using test drive data without
giving starting position to verify the initialization process on
the other. The results were as follows: The filter converges

in every scenario for different configurations. Convergence is
assumed after one mode of the whole rail network got 80%
of the probability mass. In scenario one this is the case after
the first turnout event, scenario two finishes the initialization
after an average of 3 turnouts for real data, whereby the
results rely on the dissimilarity of the topological segment
lengths and the actual position. Tracking after convergence
was tested with several wrong initial positions simulating a
distance error up to 15m, which corresponds to a maximum
distance between two turnouts of 1500m given a velocity error
of ≈ 1%. These deviations occur after passing inter-station rail
tracks and are subsequently reduced by passing turnouts. The
algorithm works in real time up to a number of 48000 particles
in a Matlab framework given a 2 GHz processor with 2 GB
Ram.

VI. CONCLUSIONS

This paper proposes a novel method to localize a train with
probabilistic Bayesian methods employing an eddy current
sensor and an enhanced topological map. The sensor accu-
rately estimates velocity, based on cross correlation methods,
and extracts turnout information. Hidden Markov models are
employed for both, detection and classification, one physi-
cally motivated, the other trained from data. The subsequent
incorporation of continuous velocity estimates and turnout
recognition in topological maps is realized with sequential
Monte Carlo methods. Our approach copes with a large variety
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of turnouts in shape and style, mechanic and electromag-
netic disturbances, misclassification and longitudinal drift. The
Bayesian tracking is capable to compensate misclassifications
and velocity errors to robustly estimate the position and can
be used to reconstruct the driven path even in large railroad
networks. Our framework can easily be augmented by addi-
tional track characteristics or additional sensors if necessary.
Future work will incorporate additional ECS information such
as the discrete number of sleepers in each segment to combine
spatial and time information in one position estimate.
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