
Distributed Stable Matching Problems with Ties
and Incomplete Lists

Ismel Brito and Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas

Campus UAB, 08193 Bellaterra, Spain.
{ismel|pedro}@iiia.csic.es

Abstract. We consider the Stable Marriage Problem and the Stable
Roommates Problem, two types of the general class of Stable Matching
Problems, in presence of ties and incomplete preference lists. They can
be solved by centralized algorithms, but this requires to make public
the preference lists of members, something that members would prefer
to avoid for privacy reasons. This motivates a distributed formulation
of these problems to keep privacy. We propose a distributed constraint
approach that solves all the considered problems, keeping privacy.

1 The Stable Marriage Problem

The Stable Marriage Problem (SM ) [5] involves n men and n women. Each man
mi ranks women forming his preference list, and each woman wj ranks men
forming hers. A matching M is a one-to-one mapping between the two sexes. M
is stable when there is no blocking pair (m, w) such that m and w, no partners in
M , prefer one another to his/her partner in M . A solution is a stable matching.

There are several SM versions. In the Stable Marriage with Incomplete Lists
(SMI ) some people may consider unacceptable some members of the other sex.
In the Stable Marriage with Ties (SMT ), some people may consider equally
acceptable some members of the other sex, so there is a tie among them. For
SMT , three stability types have studied: weak, strong and super [6]. (m,w) is a
weak blocking pair for M if m and w are not partners in M , and each of whom
strictly prefers the other to his/her partner in M . (m,w) is a strong blocking
pair for M if m and w are not partners in M , and one strictly prefers the other to
his/her partner in M and the other is at least indifferent between them. (m,w)
is a super blocking pair for M if m and w are not partners in M , and each of
whom either strictly prefers the other to his/her partner in M or it is indifferent
between them. In the Stable Marriage with Ties and Incomplete Lists (SMTI),
some person may consider as equally acceptable some members of the other sex,
while others are unacceptable. The three stability types also apply here.

Solvability conditions, complexity and solving algorithms of each SM version
appear in Table 1. For SMTI-weak, different solutions may exist with different
lengths, so it is of interest to find the matching of maximum cardinality. This is
SMTI-weak-max, an optimization problem that is NP-hard.



SM version ∃ solution? Size All solutions Algorithm Compl
Length Partners

SM always n same same EGS [5] poly
SMI always ≤ n same same EGS [5] poly
SMT-weak always n same same break ties + EGS [6] poly
SMT-strong not always n same same STRONG [6] poly
SMT-super not always n same same SUPER [6] poly
SMTI-weak always ≤ n diff diff break ties + EGS [7] poly
SMTI-strong not always ≤ n same same STRONG2 [7] poly
SMTI-super not always ≤ n same same SUPER2 [7] poly
SMTI-weak-max always ≤ n same diff break ties in all possible ways + EGS [7] NP-hard

Table 1. Solvability conditions, solving algorithm and complexity for the SM versions.

DisSM problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSMT-weak break ties + EGS [6] break ties arbitrary + DisEGS [3]
DisSMT-strong STRONG [6] No extension [2]
DisSMT-super SUPER [6] Extension [2]
DisSMTI-weak break ties + EGS [7] break ties arbitrary + DisEGS [3]
DisSMTI-strong STRONG2 [7] No extension [2]
DisSMTI-super SUPER2 [7] No extension [2]
DisSMTI-weak-max break ties in all possible ways + EGS [7] Discussion [2]

Table 2. Algorithms for solving SM and DisSM versions.

SM appears to be naturally distributed. Each person would like to keep
his/her preference lists private, which is not possible in the centralized case.
This motivates the Distributed Stable Marriage (DisSM ) [3], defined as SM
plus a set of 2n agents. Each agent owns exactly one person. An agent knows
all the information of its owned person, but it cannot access the information
of people owned by other agents. A solution is a stable matching. Similarly, we
define here the distributed versions with incomplete lists (DisSMI ), with ties
(DisSMT ) and with ties and incomplete lists (DisSMTI ) 1.

Is it possible to extend the centralized algorithms to the distributed setting
keeping privacy? DisEGS is a distributed version of Extended Gale-Shapley
(EGS ) that maintains privacy. It was used to solve DisSM and DisSMI [3]. Here
we focus on DisSMT and DisSMTI, that jointly with the three stability types,
produce six decision problems plus one optimization problem. The extension of
centralized algorithms to the distributed case appear in Table 2. Only three out of
the six decision problems can be solved by extending the centralized algorithms
to the distributed case while keeping preferences private. Details appear in [2].

2 Constraint Formulation

In [4], SM is modeled and solved as a binary CSP with 2n variables. Variable do-
mains are the preference lists. Constraints are defined between men and women:
Cij is a table with all possible partial matchings involving man i and woman j.
For any pair k, l (k ∈ Dom(i), l ∈ Dom(j)), the element Cij [k, l] represents the
partial matching (mi, wk)(ml, wj); which could be: Allowed, Illegal, Blocked or
Support. Tables with A, I, B, S are passed into 1/0 by A, S → 1, I, B → 0.

1 [9] proposes a solving method for all these versions based on encryption techniques.



For instances with ties, we consider the different definitions of stability. This
affects the usage of Blocked pair in Cij . The definition given in [4] is valid for
weak stability. For strong and super stability, we replace B definition in [4] by,

– Cij [k, l] = Blocked if (mi, wj) is a strong blocking pair for (ml, wk).
– Cij [k, l] = Blocked if (mi, wj) is a super blocking pair for (ml, wk).

Privacy is one of the main motivations for distributed CSP (DisCSP ). We
differentiate between value privacy and constraint privacy [1]. Value privacy
implies that agents are not aware of other agent’s values during the solving
process and in the final solution. On constraint privacy, the Partially Known
Constraints (PKC) model was presented. It assumes that when two agents i, j
share a constraint Cij , none of them fully knows it. Each agent knows the part
of the constraint that it is able to build, using its own information. We say that
agent i knows Ci(j), and j knows C(i)j . Similarly to [3], we use the constraint
formulation of Section 2 to solve DisSMT and DisSMTI by the DisFC algorithm
[1], keeping privacy of preference lists using the PKC model.

How can i build Ci(j)? Ordering rows of Ci(j) following his preference list, all
elements in rows above wj are 1 (except mth

i column that are 0). All elements in
rows below wj may be 1 or 0, depending on the ordering of columns (except mth

i

column that are 0). Since xi does not know the preference list of yj , columns are
ordered lexicographically, and the elements below wj row are ? (undecided). If
there is a tie between wj and wj′ elements in wj′ row are # (tie). Ci(j) is,

Ci(j) =

m1 . . . mi . . . mn
wi1

1 . . . 1 0 1 . . . 1
. . .

1 . . . 1 0 1 . . . 1
wj 0 . . . 0 1 0 . . . 0
w

j′ # . . . # 0 # . . . #

? . . . ? 0 ? . . . ?
. . .

win
? . . . ? 0 ? . . . ?

A property of these tables is that all columns of Ci(j) are equal, except mi

column. All rows of C(i)j are equal except wj row [3]. Cij = Ci(j) ¦ C(i)j , ¦
operates component to component. ¦ depends on each type of stability.

How does a distributed algorithm achieve a global solution?. DisFC does it,
using phase I only. DisFC instead of sending the assigned value to lower priority
agents, it sends the domain subset that is compatible with the assigned value.
Also, it replaces actual values by sequence numbers. After assignment, each man
agent sends the domain that each woman may take to the women involved.
For example, when an agent i assigns value k to xi, it sends to j the row of
Ci(j) corresponding to value k. This row may contain 1’s, 0’s, ?’s or #’s. For
each received domain, the agents search for a compatible value. If the domain
contains ? or # entries, they are disambiguated, following the rules of ¦ operation
specific for each type of stability. When j receives a domain with ? or # values,
it performs the ¦ operation with a row of C(i)j different from i. Since all rows in
C(i)j are equal, except i row, they will all give the same result. The ¦ operation
j will compute the corresponding row in the complete constraint Cij , although
j does not know to which value this row corresponds. After this operation the



resulting domain will contain neither ? nor # values, and the receiver will have
no ambiguity. If it finds no compatible value, it performs backtracking. The
process repeats until finding a solution or detecting that no solution exits.

The ¦ operation depends on the stability type. Weak Stability. From weak
blocking pair definition, we realize that no matched pair (m, w) will be blocked
for any other pair (m′,w′), such that either m is indifferent between w and w′ or
w is indifferent between m and m′. So #’s are replaced by 1’s in tables. Rules for
the ¦ operation of [3] apply. For DisSMTI-weak, not all stable matchings have
the same length. One may desire to find a matching of maximum cardinality.
With this aim, we consider the question ’Is there a weakly stable matching of
size k?’, where k starts with value n. If a weakly stable matching exits, it will
be of maximum cardinality. Otherwise, the value k is decreased by one, and the
problem is reconsidered. Modeling this idea with constraints, we add n variables,
u1, u2, . . . , un, plus an extra variable z, with the domains: D(ui) = {0, 1}, 1 ≤
i ≤ n, D(z) = {k}. New constraints are: if xi < n + 1 then ui = 1 else ui =
0, 1 ≤ i ≤ n and z =

∑n
i=1 ui. The agent that owns xi also owns ui. An extra

agent owns z. Strong Stability. ¦ includes #: # ¦ # = 1, 1 ¦ # = 1, #¦? = 0,
0 ¦# = 0. Super Stability. ¦ has a single change from strong stability:# ¦# = 0.

Experimentally, we observe that when it is possible to extend an special-
ized algorithm to the distributed setting while keeping preference private, the
resulting algorithm is more efficient than DisFC. However, only a fraction of
the SM versions can be solved by the specialized distributed algorithms, while
all of them can be solved by the generic distributed constraint formulation.

3 The Stable Roommates Problem

The Stable Roommates Problem (SR) consists of 2n participants, each ranks all
other participants in strict order according to his/her preferences [5]. A matching
is a set of n disjointed participant pairs. A matching is stable if it contains no
blocking pair. A pair (pi, pj) is a blocking pair for M if pi prefers pj to his/her
partner in M and pj prefers pi to his/her partner in M . There are instances that
admit no stable matching. The goal is to determine whether an SR instance is
solvable, and if so, find a stable matching. Like SM , there are versions with
Incomplete Lists (SRI ), with Ties (SRT ), and with Ties and Incomplete Lists
(SRTI ). For versions including Ties, there are three stability types, weak, strong
and super. Solvability conditions, complexity and solving algorithms of each SR
version appear in Table 3. Considering SRTI-weak, different solutions may exist
with different lengths, so it is of interest to find the matching of maximum
cardinality. This is SRTI-weak-max, an optimization problem that is NP-hard.

With a motivation similar to SM, the Distributed Stable Roommates Prob-
lem (DisSR) [3] is defined by 2n persons plus a set of agents. Each person ranks
all the other in his/her preference list. Each agent owns exactly one person. An
agent knows the preference list of its owned person, but it does not know others’
preferences. A solution is to find a stable matching, if it exists. Similarly, we de-



SR version ∃ solution? Size All solutions Algorithm Compl
Length Partners

SR not always n same same Stable Roommates [5] poly
SRI not always ≤ n same same Stable Roommates [5] poly
SRT-weak not always n same same break ties in all possible ways + Stable NP-comp

Roommates, until finding a solution [8]
SRT-strong not always n same same ? [8] ?
SRT-super not always n same same SRT-super [8] poly
SRTI-weak not always ≤ n diff diff break ties in all possible ways + Stable NP-comp

Roommates, until finding a solution [8]
SRTI-strong not always ≤ n same same ? [8] ?
SRTI-super not always ≤ n same same SRTI-super [8] poly
SRTI-weak-max not always ≤ n same diff break ties in all possible ways NP-hard

+ Stable Roommates [8]

Table 3. Solvability conditions, solving algorithm and complexity for the SR versions.

DisSR problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSRT-weak break ties in all possible ways + Stable No extension
Roommates, until finding a solution [8]

DisSRT-strong ? [8] No extension
DisSRT-super SRT-super [8] Extension
DisSRTI-weak break ties in all possible ways + Stable No extension

Roommates, until finding a solution [8]
DisSRTI-strong ? [8] No extension
DisSRTI-super SRTI-super [8] Extension
DisSRTI-weak-max break ties in all possible No extension

ways + Stable Roommates [8]

Table 4. Algorithms for solving SR and DisSR versions.

fine the distributed versions with incomplete lists (DisSRI ), with ties (DisSRT )
and with ties and incomplete lists (DisSRTI ).

We investigate if centralized algorithms can be extended to the distributed
case keeping privacy, focusing on DisSRT and DisSRTI. Their resolution is sum-
marized in Table 4. We conclude that only two decision problems can be solved
by extending the centralized algorithms to the distributed case while keeping
preferences private. Experimentally, we get similar results to those obtained SM.

References

1. Brito I., Meseguer P. Distributed Forward Checking. Proc. CP-03, 801–806, 2003.
2. Brito I., Meseguer P. Distributed Stable Marriage with Ties and Incomplete Lists.

Proc. ECAI-06 Workshop on Distributed Constraint Satisfaction, 2006.
3. Brito I., Meseguer P. Distributed Stable Matching Problem.Proc.CP-05,152–166.
4. Gent I., Irving R. W., Manlove D. F., Prosser P., Smith B. M. A constraint pro-

gramming approach to the stable marriage problem. Proc. CP-01, 225-239, 2001.
5. Gusfield D., Irving R. W. The Stable Marriage Problem: Structure and Algorithms.

The MIT Press, 1989.
6. Irving R.W.Stable Marriage and Indifference.Discr. Appl. Maths.,48:261–272, 1994.
7. Manlove D.F. Stable marriage with Ties and Unacceptable Partners. TR-1999-29,

Dep. Computing Science, Univ. Glasgow, 1999.
8. Irving, R. W., Manlove, D. F. The roommates problem with ties. J.

Algorithms,43(1):85-105, 2002.
9. Silaghi, M.C. and Zanker,M. and Bartak,R., Desk-mates (Stable Matching) with

Privacy of Preferences, and a new Distributed CSP Framework, Proc. of CP’2004
Workshop on Immediate Applications of Constraint Programming, 2004


