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Abstract In this chapter, we propose a comparison between two techniques for one-
shot person re-identification from soft biometric cues. One is based upon a descrip-
tor composed of features provided by a skeleton estimation algorithm; the other
compares body shapes in terms of whole point clouds. This second approach relies
on a novel technique we propose to warp the subject’s point cloud to a standard
pose, which allows to disregard the problem of the different poses a person can as-
sume. This technique is also used for composing 3D models which are then used at
testing time for matching unseen point clouds. We test the proposed approaches on
an existing RGB-D re-identification dataset and on the newly built BIWI RGBD-ID
dataset. This dataset provides sequences of RGB, depth and skeleton data for 50
people in two different scenarios and it has been made publicly available to foster
advancements in this new research branch.

1 Introduction

The task of identifying the person that is in front of a camera has plenty of important
practical applications: Access control, video-surveillance, and people tracking are a
few examples of such applications.

The computer vision problem that we tackle in this paper is inside the branch
of non-invasive and non-cooperative biometrics. This implies not having access to
more reliable and discriminative data such as the DNA sequence and fingerprints,
but simply relying on the input provided by a cheap consumer depth camera.
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We decided to take advantage of a depth-sensing device to overcome a few short-
comings intrinsically present in standard video-based re-identification. These in-
clude for example non-invariance to different viewpoints and lighting conditions,
in addition to being very sensitive to clothing appearance. On the other hand the
known disadvantages of consumer depth cameras, i.e. sensitivity to solar infra-red
light and limited functioning range, do not usually constitute a problem in standard
re-identification scenarios.

The set of features that we adopt to identify a specific person are commonly
known as soft biometrics. This means that each feature alone is not a univocal iden-
tifier for a certain subject. Still, the combination of several soft biometrics features
can show a very good discriminative performance even within large sets of persons.

We take into account both skeleton lengths and the global body shape to be able
to describe a subject’s identity. Moreover, we extract also facial features for com-
parison purposes. All the necessary information is collected using a single device,
namely a Microsoft Kinect. Given that a body shape can vary also because of the
different poses the subject can assume, we warp every point cloud back to a standard
pose before comparing them.

Both the approaches we propose in this chapter aim at a one-shot re-identification.
After a training phase, during which the classifier parameters or the training models
are learned for each of the subjects in the dataset, the system is able to estimate the
ID label of detected people separately for each input frame, in real-time. To improve
robustness in the estimation, the output of multiple consecutive frames can be easily
integrated, for example using a voting scheme.

The contributions of this chapter are three-fold: On one hand we propose a novel
technique for exploiting skeleton information to transform persons’ point clouds
to a standard pose in real-time. Moreover, we explain how to use this transformed
point clouds for composing 3D models of moving people which can be used for
re-identification by means of an ICP matching with new test clouds and we com-
pare this approach with feature-based approaches which classify skeleton and face
descriptors. Finally, we present a novel biometrics RGB-D dataset including 50 sub-
jects: For each subject we provide a sequence including standard video input, depth
input, a segmentation mask and the skeleton as provided by the Kinect SDK. Addi-
tionally, the dataset includes several labeled testing sequences collected in a differ-
ent scenario.

2 State of the Art

As cheap depth-sensing devices have started appearing in the market only very re-
cently, the literature in this specific field is quite limited. We will first introduce
several vision-based soft biometrics approaches, and then analyze in more detail a
few depth-based identification techniques.

The integration of multi-modal cues for person identification is an active research
topic since the 90s [14]. For example, in [9] the authors integrate a voice-based



One-Shot Person Re-Identification with a Consumer Depth Camera 3

system with face recognition using hyper basis function networks. The concept of
information fusion in biometrics has been methodically studied in [22], in which
the authors propose several different architectures to combine multiple vision-based
modalities: Fusion can happen at the feature extraction level, which usually con-
sists in concatenating the input feature vectors. Otherwise there can be fusion at
the matching score level, by combining the scores of the different sub-systems, or
at the decision level, i.e. each sub-system takes a decision and then decisions are
combined, for example through a majority voting scheme.

Most vision-based systems fall in the category of soft-biometrics, which are de-
fined to be a set of characteristics that provide some biometric information, but are
not able to individually authenticate the person, mainly due to lack of distinctiveness
and permanence [15].

Vision-based biometrics systems can be either collaborative, as for example iris
recognition or fingerprint analysis, or non-collaborative. We will mainly focus on
non-collaborative traits, as they are more generally applicable and easier to process:
Face-based identification is a deeply studied topic in the computer vision litera-
ture [34]. Efforts have been spent in making it more robust to different alignment
and illumination conditions [28], and to small training set sizes [35]. The problem
has also been tackled in a real-time setup [1, 16] and from a 3D perspective [6].
Another type of vision-based analysis that has been used for people identification
is gait recognition [29, 21], which can be either model-based, i.e. a skeleton is first
fitted to the data, or model-free, for example by analysing directly silhouettes. This
is by definition a soft biometrics, as it is in general not discriminative enough to
identify a subject, but can be very powerful if combined with other traits. Finally,
also visual techniques have been proposed, that try to re-identify a subject based on
a global appearance model [12, 4, 31]. The intrinsic drawback of such approaches
is that they can only be applied to tracking scenarios and are not suitable for long
time-span recognition.

As mentioned above, due to the very recent availability of cheap depth sensing
devices, only a few works exist that focused on identification using such multi-
modal input. In [19], it is shown that anthropometric measures are discriminative
enough to obtain a 97% accuracy on a population of 2000 subjects. The authors ap-
ply Linear Discriminant Analysis to very accurate laser scans to obtain such perfor-
mance. Also the authors of [26] studied a similar problem. They in fact used a few
anthropometric features, manually measured on the subjects, as a pre-processing
pruning step to make face-based identification more efficient and reliable. In [23],
the authors have recently proposed an approach which uses the input provided by a
network of Kinect cameras: the depth data in their case is only used for segmen-
tation, while their re-identification techniques purely relies on appearance-based
features. The authors of [2] propose a method that relies only on depth data, by
extracting a signature for each subject. Such signature includes features extracted
from the skeleton as the lengths of a few limbs and the ratios of some of these
lengths. In addition, geodesic distances on the body shape between some pairs of
body joints are considered. The choice of the most discriminative features is based
upon experiments carried on a validation dataset. The signatures are extracted from
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a single training frame for each subject, which renders the framework quite prone to
noise, and weighted euclidean distances are used to compute distances between sig-
natures. The weights of the different feature channels are simply estimated through
an exhaustive grid search. The dataset used in the paper has also been made pub-
licly available, but this does not contain facial information of the subjects, in contrast
with the dataset proposed within this paper. Also Kinect Identity [17], the software
running on the Kinect for XBox360, uses multi-modal data, namely the subject’s
height, a face descriptor and a color model of the user’s clothing to re-identify a
player during a gaming session. In this case, though, the problem is simplified as
such re-identification only covers a very short time-span and the number of differ-
ent identities is usually very limited.

3 Datasets

With the recent availability of cheap depth sensors, a lot of effort in the computer
vision community has been put into collecting novel datasets. In particular, several
groups have proposed databases of human motions, usually making available skele-
ton and depth data in conjunction with regular RGB input [33, 18, 30, 25, 32, 20].
Nonetheless, the vast majority of these are focusing on human activity analysis and
action recognition, and for this reason they are generally composed by many ges-
tures performed by few subject.

On the other hand, the problem we tackle in this paper is different and requires
data relative to many different subjects, while the number of gestures is not crucial.
From this perspective, only a dataset has been proposed so far [2]. It consists of 79
different subjects collected in four different scenarios. The collected information,
for each subject and for each scenario, includes five RGB frames (in which the face
has been blurred), the foreground segmentation mask, the extracted skeleton, the
corresponding 3D mesh and an estimation of the ground plane. This dataset contains
very few frames for each subject, thus machine learning approaches can be hardly
tested because of the little data available for training a person classifier. Moreover,
the faces of the recorded subjects have been blurred for privacy reasons, making the
comparison with a baseline built upon face recognition impossible.

3.1 BIWI RGBD-ID Dataset

To perform more extensive experiments on a larger amount of data we also collected
our own RGB-D Identification dataset called BIWI RGBD-ID1. It consists of video
sequences of 50 different subjects, performing a certain routine of motions in front
of a Kinect, such as a rotation around the vertical axis, several head movements

1 The BIWI RGBD-ID dataset can be downloaded at: http://robotics.dei.unipd.it/
reid.
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and two walks towards the camera. The dataset includes synchronized RGB images
(captured at the highest resolution possible with the Kinect, i.e. 1280 × 960 pixels),
depth images, persons’ segmentation maps and skeletal data (as provided by the
Kinect SDK), in addition to the ground plane coordinates. These videos have been
acquired at about 10fps and last about one minute for every subject.

Moreover, we have collected 56 testing sequences with 28 subjects already
present in the dataset. These have been collected on a different day and therefore
most subjects are dressed differently. These sequences are also shot in different
locations than the studio room where the training dataset had been collected. For
every person in the testing set, a Still sequence and a Walking sequence have been
collected. In the Walking video, every person performs two walks frontally and two
other walks diagonally with respect to the Kinect.

4 Approach

The framework we have designed allows to identify a subject standing in front of
a consumer depth camera, taking into account a single input frame. To achieve this
goal, we consider two different approaches. In the former, a descriptor is computed
from the body skeleton information provided by the Microsoft Kinect SDK [24] and
fed to a pre-trained classifier. In the latter, we compare people point clouds by means
of the fitness score obtained after an Iterative Closest Point (ICP) [5] registration.
For tackling the problem of different poses people can have, we exploit the skeleton
information for transforming a person point cloud to a standard pose before applying
ICP.

4.1 Feature-Based Re-Identification

In this section, our feature-based approach to person re-identification is described.
In a first phase, as a subject is detected in front of the depth sensing device, the
descriptor is extracted from the input channels. Our feature extraction step relies
on the body skeleton obtained through the Kinect SDK, since the data is already
available and computation is optimized.

4.1.1 Skeleton Descriptor

The extraction of skeleton-based information is substantially the computation of a
few limb lengths and ratios, using the 3D location of the body joints provided by the
skeletal tracker. We extended the set of skeleton features used in [2], in order to col-
lect measurements from all the human body. In particular, we extract the following
13 distances:
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a) head height,
b) neck height,
c) neck to left shoulder distance,
d) neck to right shoulder distance,
e) torso to right shoulder distance,
f) right arm length,
g) left arm length,
h) right upper leg length,
i) left upper leg length,
j) torso length,
k) right hip to left hip distance,
l) ratio between torso length and

right upper leg length (j/h),
m) ratio between torso length and left

upper leg length (j/i).

a b 
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e 

g f 

h i 

j 

k 

All these distances are concatenated into a single skeleton descriptor xS. In Fig. 1,
the skeleton computed with Microsoft Kinect SDK is reported for three very differ-
ent people of our dataset, while in Fig. 2 and 3, we show how the value of some
skeleton features varies along time when these people are still and walking, respec-
tively. We also report the average standard deviation of these features for the people
of the two testing sets. As expected, the heights of the head and the neck from the
ground are the most discriminative features. What is more interesting is that the
standard deviation of these features doubles for the walking test set with respect to
the test set where people are still, thus suggesting that the skeleton joint positions
are better estimated when people are static and frontal.

(a) (b) (c)

Fig. 1 Examples of estimated skeletons for three people of the testing videos of the BIWI RGBD-
ID dataset.

When a person is seen from the side or from the back, Microsoft’s skeletal track-
ing algorithm [24] does not provide correct estimates because it is based on a ran-
dom forest classifier which has been trained with examples of frontal people only.
For this reason, in this work, we discard frames with at least one not tracked joint2.
Then, we keep only those where a face is detected [27] in the proximity of the

2 Microsoft’s SDK provides a flag for every joint stating if it is tracked, inferred or not tracked.
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Fig. 2 (a-i) Estimated skeleton features for some frames of the Still test sequence for the three
subjects of Fig. 1. Those subjects are represented by blue, red and green curves, respectively. In
(l), the standard deviation of these features is reported.
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Fig. 3 (a-i) Estimated skeleton features for some frames of the Walking test sequence for the three
subjects of Fig. 1. Those subjects are represented by blue, red and green curves, respectively. In
(l), the standard deviation of these features is reported.
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head joint position. This kind of selection is needed for discarding also those frames
where the person is seen from the back, which come with a wrong skeleton estima-
tion.

4.1.2 Classification

For classifying the descriptor presented in the previous section, we tested four differ-
ent classification approaches. The first method compares descriptors extracted from
the testing dataset with those of the training dataset by means of a Nearest Neigh-
bor classifier based on the Euclidean distance. The second one consists in learning
the parameters of a Support Vector Machine (SVM) [10] for every subject of the
training dataset. As SVMs are originarily designed for binary classification, these
classifiers are trained in a One-vs-All fashion: For a certain subject i, the descriptors
computed on that subject are considered as positive samples while the descriptors
computed on all the subjects except i are considered as negative samples.

The One-vs-All approach requires all the training procedure to be performed
again if a new person is inserted in the database. This need makes the approach
not suitable for a scenario where new people are inserted online for a subsequent
re-identification. For this purpose, we also trained a Generic SVM which does not
learn how to distinguish a specific person from all the others, but it learns how to
understand if two descriptors have been extracted from the same person or not. The
positive training examples which are fed to this SVM are of the form

pos =
∣∣di

1−di
2
∣∣ , (1)

where di
1 and di

2 are descriptors extracted from two frames containing the same
subject i, while the negative examples are of the form

neg =
∣∣∣di

1−d j
2

∣∣∣ , (2)

where di
1 and d j

2 are descriptors extracted from frames containing different subjects.
At testing time, the current descriptor dtest is compared to the training descriptors di

k
of every subject i by using this Generic SVM for classifying the vector

∣∣dtest −di
k

∣∣
and the test descriptor is associated to the class for which the maximum SVM con-
fidence is obtained.

Finally, we tested also a Naive Bayes approach: as a training stage, we computed
mean and standard deviation of a normal distribution for every descriptor feature
and for every person of the training dataset; at testing time, we used these data to
calculate the likelihood with which a new descriptor could belong to each person in
the training set.
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4.2 Point Cloud Matching

The skeleton descriptor explained in Sec. 4.1.1 provides information about the char-
acteristic lengths of the human body. However, it does not take into account many
shape traits which are important for discriminating people with similar body lengths.
In this section, we propose a process which takes the whole point cloud shape into
account for the re-identification task. In particular, given two persons’ point clouds,
we try to align them and then compute a similarity score between the two. As a
fitness score, we compute the average distance of the points of a cloud to the nearest
points of the other cloud. If P1 and P2 are two point clouds, the fitness score of
P2 with respect to P1 is then

f2→1 = ∑
pi∈P2

‖pi−q∗i ‖, (3)

where q∗i is defined as
q∗i = arg min

q j∈P1

∥∥pi−q j
∥∥ . (4)

It is worth to notice that this fitness score is not symmetric, that is f2→1 6= f1→2.
For what concerns the alignment, the position and orientation of a reference

skeleton joint, e.g. the hip center, is used to perform a rough alignment between
the clouds to compare. Then, that alignment is refined by means of an ICP-based
registration, which should converge in few iterations if the initial alignment is good
enough. When the input point clouds have been aligned with this process, the fitness
score between them should be minimum, ideally zero if they coincide or if P2 is
contained in P1.

For the purpose of re-identification, this procedure can be used to compare a test-
ing point cloud with the point clouds of the persons in the training set and to select
the subject whose point cloud has the minimum fitness score when matched with
the testing cloud. However, for this approach to work well, a number of problems
should be taken into account, such as the quality of the depth estimates and the
different poses people can assume.

4.2.1 Point Cloud Smoothing

3D point clouds acquired with consumer depth sensors have good resolution but the
depth quantization step increasing quadratically with the distance does not allow to
obtain smooth people point clouds beyond two meters from the sensor. In Fig. 4(a),
the point cloud of a person three meters from the sensor is reported. It can be noticed
that the point cloud results divided into slices produced by the quantization steps.
As a pre-processing step, we improve the person point cloud by applying a voxel
grid filter and a Moving Least Squares surface reconstruction method to obtain a
smoothing, as reported in Fig. 4(b).
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(a) Raw

(b) Smoothed

Fig. 4 (a) Raw person pointcloud at 3 meters of distance from the Kinect and (b) point cloud after
the pre-processing step.

4.2.2 Point Cloud Transformation to Standard Pose

The point cloud matching technique we described is derived from the 3D object
recognition research, where objects are supposed to undergo rigid transformations
only. However, when dealing with moving people, the rigidity assumption does not
hold any more, because people are articulated and they can appear in a very large
number of different poses, thus these approaches would be doomed to fail.

Bronstein et al. ([7], [8]) tackle this problem by applying an isometric embedding
which allows to get rid of pose variability (extrinsic geometry) by warping shapes to
a canonical form where geodesic distances are replaced by Euclidean ones. In this
space, an ICP matching is applied to estimate similarity between shapes. However,
a geodesic masking which retains the same portion of every shape is needed for
this method to work well. In particular, for matching people’s shape, a complete
and accurate 3D scan has to be used, thus partial views cannot be matched with
a full model because they could lead to very different embeddings. Moreover, this
approach needs to solve a complicated optimization problem, thus requiring several
seconds to complete.

For these reasons, we studied a new technique which exploits the information
provided by the skeleton for efficiently transforming people point clouds to a stan-
dard pose before applying the matching procedure. This result is obtained by roto-
translating each body part according to the positions and orientations of the skeleton
joints and links given by Microsoft’s skeletal tracking algorithm.

A preliminary operation consists in segmenting the person’s point cloud into
body parts. Even if Microsoft’s skeletal tracker estimates this segmentation as a first
step and then derives the joints position, it does not provide to the user the result
of the depth map labeling into body parts. For this reason, we implemented the
reverse procedure for obtaining the segmentation of a person point cloud into parts
by starting from the 3D positions of the body joints. In particular, we assign every
point cloud point to the nearest body link. For a better segmentation of the torso and
the arms, we added two further fictitious links between the hips and the shoulders.
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Once we performed the body segmentation , we warp the pose assumed by the
person to a new pose, which is called standard pose. The standard pose makes the
point clouds of all the subjects directly comparable, by imposing the same orien-
tation between the links. On the other hand, the joints/links position is person-
dependent and is estimated from a valid frame of the person and then kept fixed. This
approach allows the standard pose skeleton to adapt to the different body lengths of
the subjects. This transformation consists in rototranslating the points belonging to
every body part according to the corresponding skeleton link position and orienta-
tion3. In particular, every body part is rotated according to the corresponding link
orientation and translated according to its joints coordinates. If Qc is the quater-
nion representing the orientation of a link in the current frame given by the skeleton
tracker and Qs is the one expressing its orientation in standard pose, the whole rota-
tion to apply can be computed as

R = Qs (Qc)
−1 , (5)

while the full transformation applied to a point p can be synthesized as

p′ = TVs (R(TVc (p))) , (6)

where TVc and TVs are the translation vectors of the corresponding skeleton joint at
the current frame and in the standard pose, respectively.

As the standard pose, we chose a typical frontal pose of a person at rest. In Fig. 5,
we report two examples of person’s point clouds before and after the transformation
to standard pose. For the point cloud before the transformation, the body segmen-
tation is shown with colors, while the points with RGB texture are reported for the
transformed point cloud.

(a) (b)

Fig. 5 Two examples of standard pose transformation. On the left, the body segmentation is shown
with colors, on the right, the RGB texture is applied to the transformed point cloud.

3 It is worth noting that all the links belonging to the torso have the same orientation, as the hip
center.
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It is worth noting that the process of rotating each body part according to the
skeleton estimation can have two negative effects on the point cloud: some body
parts can intersect each other and some gaps can appear around the joint centers.
However, the parts intersection is tackled by voxel grid filtering the transformed
point cloud, while the missing points do not represent a problem for the matching
phase, since a test point cloud is considered to perfectly match a training point cloud
if it is fully contained in it, as explained in Section 4.2.

4.2.3 Creation of Point Cloud Models

The transformation to standard pose is not only useful because it allows to compare
people clouds disregarding their initial pose, but also because more point clouds
belonging to the same moving person can be easily merged to compose a wider
person model. In Fig. 6, a single person’s point cloud (a) is compared with the model
we obtained by merging together some point clouds acquired from different points
of view and transformed to standard pose. It can be noticed how the union cloud is
denser and more complete with respect to the single one. We also show, in Fig. 6(c)
and (d), a side view of the person model when no smoothing is performed and when
the smoothing of Sec. 4.2.1 is applied. Our approach is not focused on obtaining
realistic 3D models for computer graphics, but on creating 3D models which can be
useful for the re-identification task. In fact, these models can be used as a reference
for matching new test point clouds with the people database. In particular, a point
cloud model is created for every person from a sequence of frames where the person
is turning around. Then, a new testing cloud can be transformed to standard pose
and compared with all the persons’ models by means of the approach described in
Sec. 4.2. Given that, with Microsoft’s skeletal tracker, we do not obtain valid frames
if the person is seen from the back, we can only obtain 180◦ people models.

(a) (b) (c) (d)

Fig. 6 (a) A single person’s point cloud and (b) the point cloud model obtained by merging together
several point clouds transformed to standard pose. Person’s point cloud model (c) before and (d)
after the smoothing described in Sec. 4.2.1.
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5 Experiments

In this section, we report the experiments we carried out with the techniques
described in Sec. 4. For evaluation purposes, we compute Cumulative Matching
Curves (CMC) [13], which are commonly used for evaluating re-identification al-
gorithms. For every k from 1 to the number of training subjects, these curves express
the mean person recognition rate computed when considering a classification to be
correct if the ground truth person appears among the subjects who obtained the k
best classification scores. The typical evaluation parameters for these curves are the
rank-1 recognition rate and the normalized Area Under Curve (nAUC), which is the
integral of the CMC. In this work, the recognition rates are separately computed for
every subject and then averaged to obtain the final recognition rate.

5.1 Tests on the BIWI RGBD-ID Dataset

We present here some tests we performed on the BIWI RGBD-ID dataset. For the
feature-based re-identification approach of Sec. 4.1, we extracted frame descriptors
and trained the classifiers on the 50 sequences of the training set and we used them
to classify the Still and Walking sequences of the 28 people of the testing set. In
Fig. 7, we report the CMCs obtained on the Still and Walking testing sets when
classifying the skeleton descriptor with the four classifiers described in Sec. 4.1.2.
The best classifier for this kind of descriptor proved to be the Nearest Neighbor,
which obtained a rank-1 recognition rate of 26.6% and a nAUC of 89.7% for the
testing set where people are still and 21.1% and 86.6% respectively for the testing
set with walking people.
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Fig. 7 Cumulative Matching Cuves obtained with the skeleton descriptor and different types of
classifiers for the both the Still (a) and Walking (b) testing sets of the BIWI RGBD-ID dataset.

For testing the point cloud matching approach of Sec. 4.2, we built one point
cloud model for every person of the training set by merging together point clouds
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extracted from their training sequences and transformed to standard pose. At every
frame, a new cloud is added and a voxel grid filter is applied to the union result for
re-sampling the cloud and limiting the number of points. At the end, we exploit a
moving least squares surface reconstruction method for obtaining a smoothing. At
testing time, every person’s cloud is transformed to standard pose, aligned and com-
pared to the 50 persons’ training models and classified according to the minimum
fitness score ftest→model obtained. It is worth to notice that the fitness score reported
in Eq. 3 correctly returns the minimum score (zero) if the test point cloud is con-
tained in the model point cloud, while it would return a different score if the test
cloud would only partially overlap the model. Also for this reason we chose to build
the persons’ models described above, i.e. by having training models covering 180◦

while the test point clouds are smaller and for this reason only cover portions of the
training point clouds. In Fig. 8, we compare the described method with a similar
matching method which does not exploit the point cloud transformation to standard
pose. For the testing set with still people, the differences are small because people
are often in the same pose, while, for the walking test set, the transformation to
standard pose outperforms the method which does not exploit it, reaching a rank-1
performance of 22.4% against 7.4% and a nAUC of 81.6% against 64.3%.
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Fig. 8 Cumulative Matching Curves obtained with the point cloud matching approach with and
without transformation to standard pose on the testing sets of the BIWI RGBD-ID dataset.

We compare the main approaches we described in Fig. 9. As a reference, we
report also the results obtained with a face recognition technique. This technique
extracts the subject’s face from the RGB input using a standard face detection algo-
rithm [27]. To increase the computational speed and decrease the number of false
positives, the search region is limited to a small neighborhood of the 2D location of
the head, as provided by the skeletal tracker. Once the face has been detected, a real-
time method to extract the 2D location of 10 fiducials points is applied [11]. Finally,
SURF descriptors [3] are computed at the location of the fiducials and concatenated
forming a single vector. Unlike the skeleton descriptor, the face descriptor provided
the best results with the One-VS-All SVM classifier, reaching 44% of rank-1 for the
Still testing set and 36.7% for the Walking set. An advantage of the SVM classifi-
cation is that descriptors referring to different features can be easily fused by con-
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catenating them and leaving to the classifier the task to learn the suitable weights.
We report, as an example, the results obtained with the concatenation of the face
and skeleton descriptors which are then classified with the One-VS-All SVM ap-
proach. This method allows to further gain 8% of rank-1 for the Still test set and
7.2% for the Walking test set. In Table 1, all the numerical results are reported, to-
gether with those obtained by executing a three-fold cross validation on the training
videos where two folds were used for training and one for testing. In the remaining
experiments, all the training videos were used for training and all the testing data
were used for testing. The point cloud matching technique performs slightly better
than the skeleton descriptor classification for the Still test set and slightly worse for
the Walking test set, thus proving to be useful too for the re-identification task.
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Fig. 9 Cumulative Matching Curves obtained with the main approaches described in this paper for
the BIWI RGBD-ID dataset.

Table 1 Evaluation results obtained in cross validation and with the testing sets of the BIWI RGBD-
ID dataset. The One-VS-All classifiers do not perform very well because the positive and negative
samples are likely not well separated in feature space, due to the negative class being very widely
spread. Although it is possible that pairwise classifiers may perform better, this would lead to
a very large number of classifiers, which may be impractical given the number of classes. This
non-separability at the category level is supported by the good performance of the nearest neigh-
bor classifier, which further suggests that there are overlaps among categories, but locally some
classification is possible.

Cross validation Test - Still Test - Walking
Rank-1 nAUC Rank-1 nAUC Rank-1 nAUC

Skeleton (SVM) 47.5% 96.1% 11.6% 84.5% 13.8% 81.7%
Skeleton (NN) 80.5% 98.2% 26.6% 89.7% 21.1% 86.6%
Point cloud matching 93.7% 99.6% 32.5% 89.0% 22.4% 81.6%
Face (SVM) 97.8% 99.4% 44.0% 91.0% 36.7% 87.6%
Face+Skeleton (SVM) 98.4% 99.5% 52.0% 93.7% 43.9% 90.2%

For analyzing how the re-identification performance changes for the different
people of our dataset, we report in Fig. 10 the histograms of the mean ranking for
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every person of the testing dataset, which is the average ranking at which the cor-
rect person is classified. The missing values in the x axis are due to the fact that not
all the training subjects are present in the testing set. It can be noticed that there
is a correspondence between the mean ranking obtained in the Still testing set and
that obtained in the Walking test set. On the contrary, it is also clear that different
approaches lead to mistakes on different people, thus showing to be partially com-
plementary.
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Fig. 10 Mean ranking histograms obtained with different techniques for every person of the Still
(top row) and Walking (bottom row) test sets of the BIWI RGBD-ID dataset.

5.2 Tests on the RGB-D Person Re-Identification Dataset

As explained in Section 3, the RGB-D Person Re-Identification dataset is the only
other public dataset for person re-identification using RGB-D data. Unfortunately,
there are only few examples available for each of the subjects, which makes the use
of many machine learning techniques, including SVMs trained with a One-VS-All
approach, quite complicated. However, given that the Generic SVM described in
Sec. 4.1.2 is one for all the subjects, we had enough examples to train it correctly.
In Table 2, we compare the results reported in [2] with our results obtained when
classifying the skeleton descriptor with the Nearest Neighbor and the Generic SVM.
Unfortunately, the authors of [2] report performances only in terms of normalized
Area Under Curve (nAUC) of the Cumulative Matching Curve (CMC), thus their
rank-1 scores are not available except for one result that can be inferred from a fig-
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ure. The classification of our skeleton descriptor with the Generic SVM performed
better than [2] and of our Nearest Neighbor classifier for the tests which do not in-
volve the Collaborative set, where people walk with open arms. We also tested the
geodesic features the authors propose, but they did not provide substantial improve-
ment to the skeleton alone. We did not test the point cloud matching and the face
recognition techniques on this dataset because the links orientation information was
not provided and the face in the RGB image was blurred.

Table 2 Evaluation results on the RGB-D Person Re-Identification dataset.

Training Testing [2] Ours - NN Ours - Generic SVM
Rank-1 nAUC Rank-1 nAUC Rank-1 nAUC

Collaborative Walking1 N/A 90.1% 7.8% 81.1% 5.3% 79.0%
Collaborative Walking2 13% 88.9% 4.8% 81.3% 4.1% 78.6%
Collaborative Backwards N/A 85.6% 4.6% 78.8% 3.6% 76.0%

Walking1 Walking2 N/A 91.8% 28.6% 89.9% 35.7% 92.8%
Walking1 Backwards N/A 88.7% 17.8% 82.7% 18.5% 90.6%
Walking2 Backwards N/A 87.7% 13.2% 84.1% 22.3% 91.6%

5.3 Multi-Frame Results

The re-identification methods we described in this work are all based on a one-shot
re-identification from a single test frame. However, when more frames of the same
person are available, the results obtained for each frame can be merged to obtain a
sequence-wise result. In Table 3, we compare on our dataset the single-frame rank-1
performances with what can be obtained with a simple multi-frame reasoning, that
is by associating each test sequence to the subject voted by the highest number of
frames. On average, this voting scheme allows to obtain a performance improvement
of about 8-10%. The Nearest Neighbor classification of the skeleton descriptor for
the Walking test set seems to benefit most from this approach, thus its rank-1 almost
doubles. The best performance is again obtained with the SVM classification of the
combined face and skeleton descriptors, which reaches 67.9% of rank-1 for both the
testing sets.

5.4 Runtime Performance

The feature-based re-identification method of Sec. 4.1 exploits information which is
already pre-computed by Microsoft Kinect SDK and classification methods which
takes less than a millisecond to classify one frame, thus the runtime performance
is only limited by the sensor frame rate and by the face detection algorithm used
to select frames with a valid skeleton, which runs at more than 20fps with a C++
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Table 3 Rank-1 results with the single-frame and the multi-frame evaluation for the testing sets of
the BIWI RGBD-ID dataset.

Cross validation Test - Still Test - Walking
Single Multi Single Multi Single Multi

Skeleton (SVM) 47.5% 66.0% 11.6% 10.7% 13.8% 17.9%
Skeleton (NN) 80.5% 100% 26.6% 32.1% 21.1% 39.3%
Point cloud matching 93.7% 100% 32.5% 42.9% 22.4% 39.3%
Face (SVM) 97.8% 100% 44.0% 57.1% 36.7% 57.1%
Face+Skeleton (SVM) 98.4% 100% 52.0% 67.9% 43.9% 67.9%

implementation on a standard workstation with an Intel Core i5-3570k@3.40GHz
processor.

In Table 4, the runtime of the single algorithms needed for the point cloud match-
ing method of Sec. 4.2 are reported. The most demanding operation is the matching
between the test point cloud transformed to standard pose and the models of every
subject in the training set, which takes 250ms for performing 50 comparisons. The
overall frame rate is then of about 2.8fps, which suggests that also this approach
could be used in a real-time scenario with further optimization and with a limited
number of people in the database.

Table 4 Runtime performance of the algorithms used for the point cloud matching method.

time (ms)
Face detection 42.19
Body segmentation 3.03
Transformation to standard pose 0.41
Filtering and smoothing 56.35
ICP and fitness scores computation 254.34

6 Conclusions and Directions for Future Work

In this chapter, we have compared two different techniques for one-shot person re-
identification with soft biometric cues obtained through a consumer depth sensor.
The skeleton information is used to build a descriptor which can then be classified
with standard machine learning techniques. Moreover, we also proposed to identify
subjects by comparing their global body shape. For this purpose, we described how
to warp point clouds to a standard pose in order to allow a rigid comparison based on
a typical ICP fitness score. We also proposed to use this transformation for obtaining
a 3D body model which can be used for re-identification from a series of point
clouds of the subject while moving freely.

We tested the proposed algorithms on a publicly available dataset and on the
newly created BIWI RGBD-ID dataset, which contains 50 training videos and 56
testing sequences with synchronized RGB, depth and skeleton data. Experimental
results show that both the skeleton and the shape information can be used for effec-
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tively re-identifying subjects in a non-collaborative scenario, because similar results
have been obtained with these two approaches.

As future work, we envision to study techniques for combining skeleton clas-
sification and point cloud matching results into a common single re-identification
framework.
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