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Abstract—In the long-term evolution of software systems, 
various maintenance activities such as functionality extension, 
bug fixing, refactoring may positively or negatively affect the 
quality of design and implementation. The trend of quality 
degradation caused by negative affections may accumulate and 
cause serious difficulties for future maintenance of the 
software if they were not addressed properly in time. In this 
paper, we propose an approach for monitoring the degradation 
trends of software design in evolution and providing useful 
feedbacks for evolution decisions. The approach is based on 
the assumption that the deviations between different 
modularity views and their trends in evolution can be used to 
monitor the degradation trends of design. Currently, our 
approach considers three modularity views, namely package 
view, structural cluster view and semantic cluster view. 
Package view denotes the package structure reflecting the 
desired modularity view; Structural cluster view and semantic 
cluster view are the modularity views extracted from 
implementation by software clustering based on formal 
information and non-formal information, respectively. Then 
based on the three modularity views extracted from each 
version, our approach calculates the similarity between 
different views as the measurement of modularity deviations, 
and analyzes the deviation trends over a series of versions. We 
conduct an empirical study on three open-source systems, 
which confirms that continuous monitoring of deviation trends 
of modularity views can provide useful feedbacks for future 
evolution decisions. 

Keywords- evolution analysis, software quality evolution, 
software modulairty, software clustering, maintenance history 

I. INTRODUCTION 
Software usually undergoes a continuous process of 

evolution driven by evolutionary development processes, 
design improvement, bug fixing, and request for new 
features [1], [2], [9]. In the long-term evolution, 
maintenance actions are made for specific evolution intent 
and objectives in different phases [2]. For example, in some 
phases a large number of new features can be introduced, 
and in other phases the design structures can be refactored 
to provide better maintainability and extensibility for future 
evolution. These maintenance actions may positively or 
negatively affect the quality of design and implementation 
of a software system and result in the deviation of the 

modularity quality from the desired level. The trend of 
quality degradation caused by negative affections may 
accumulate and cause serious difficulties for future 
maintenance of the software if they were not addressed 
properly in time. Therefore, monitoring and controlling the 
trends of software quality evolution is essential for high-
efficiency software maintenance. 

Modularity is extremely important for software 
development and evolution. Good modularity can improve 
the flexibility and comprehensibility of the software system 
[3], [4], while bad modularity can cause expensive 
refactoring and software defects [5]. Thus, modularity is 
often used as an important criterion for evaluating the 
quality of software design and implementation [39]. 

For software systems developed in object-oriented (OO) 
languages such as Java, the packages (or namespaces used) 
largely reflect the desired modularity view of the designers. 
This modularity view may be carefully designed initially. 
However, as software evolves, it may be violated frequently. 
For example, newly introduced elements may be put into an 
inappropriate existing module or may result in inappropriate 
inter-module interactions. This may violate well-defined 
modularity principles such as information hiding and 
functional independence.  

Software clustering techniques [6], [7] are often used to 
recover the modularity views implied in the actual 
implementation. More specifically, software clustering can 
be divided into structural clustering and semantic clustering, 
depending on the information used for clustering. Structural 
clustering is based on formal information such as method 
calls and variable references, while semantic clustering is 
based on non-formal information such as identifiers and 
comments [6]. 

Using structural clustering and semantic clustering, we 
can recover two different kinds of implied modularity views 
from the implementation. Structural clusters group program 
units by structural relations implemented in source code 
thus can be considered as a modularity view reflecting the 
de-facto implementation. Semantic clusters are groups of 
program units that use similar vocabulary and reveal 
linguistic topics and intention of the code [7], and thus can 
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be regarded as providing a modularity view by the 
implemented concerns and intentions.  

These two modularity views recovered by software 
clustering, together with the package structure (the desired 
modularity view), constitute the three modularity views 
discussed in this paper. In an ideal modular design and 
implementation, the three modularity views are well aligned. 
For example, implementation units for relevant concerns are 
within the same package, which presents good structural 
characteristics of high cohesion and low coupling. Therefore, 
the alignment among the three modularity views may 
indicate the quality of modular design and implementation. 

We hypothesize that we can monitor software quality 
evolution and provide useful feedback for evolution 
decisions by analyzing the deviation trends of the three 
modularity views. We are only interested in the quality 
essential in software evolution, such as maintainability. To 
validate our hypothesis, we propose an approach for 
monitoring quality evolution based on the alignment among 
three preceding modularity views and conduct an empirical 
study on three open-source systems.  

Our approach involves three main activities. First, we 
extract the three modularity views from each version of the 
subject systems using automatic program analysis and 
clustering techniques [24]. Second, we calculate similarity 
or alignment measurements among the three modularity 
views. Third, we perform a longitudinal analysis of the 
deviation trends over a series of the versions of the subject 
systems.  

Our empirical study focuses on the following research 
questions: 1) What deviation trends of different modularity 
views does a software system show during its evolution? 2) 
How do we understand software quality evolution by 
analyzing the deviation trends? 3) Can we get useful 
feedback for evolution decisions by monitoring the 
deviation trends of modularity views? 

Our contribution in this paper is three-fold. First, we 
propose an approach for quality evolution monitoring based 
on the analysis of deviation trends of different modularity 
views. Second, we present an empirical study that confirms 
that continuous monitoring of deviation trends of 
modularity views can provide useful feedbacks for future 
evolution decisions. Third, we identify some typical 
deviation trend patterns of modularity views that are proved 
to be useful for reflecting quality evolution. 

The remainder of this paper is organized as follows. 
Section II summarizes related work on software evolution 
analysis and software modularity. Section III defines basic 
terminology used in our study. Section IV introduces our 
approach for monitoring deviation trends of different 
modularity views. Section V presents our empirical study on 
three open source Java systems and explains the result with 
concrete examples from our study. Section VI discusses 
threats to validity of our approach and experiments. Section 
VII concludes our work and findings and outlines future 
work. 

II. RELATED WORK 

A. Monitoring and understanding software evolution  
Evolution is an essential characteristic of software 

systems. There have been several research efforts to date 
aiming at understanding evolution in open source software. 
In [45], Breivold et al. made a systematic review of studies 
of open source software evolution. Godfrey and Qiang took a 
case study about open source software projects’ evolution in 
[41]. Meanwhile, another line of research has focused on the 
investigation of how metrics can be applied to software 
evolution [43], [44]. In [8], Mens and Demeyer provided a 
classification of various approaches that use metrics to 
understand, analyze, control and improve the software 
evolution process, namely predictive analysis and 
retrospective analysis. Software growth metrics such as line 
of source code (LOC) and number of modules are usually 
used to monitor the software evolution [41], [9], [10]. 

Exploiting the development history is a widely used 
approach. Ali and Maqbool proposed an approach to monitor 
software evolution using multiple types of changes [42].  
Mockus and Votta showed that textual descriptions of 
software change are useful in version control system and 
proposed suggestions to utilize change data to diagnose the 
state of a software project [13]. This implies that software 
quality evolution can be monitored and inferred by analyzing 
software maintenances actions. Van Rysselberghe and 
Demeyer proposed an approach to find unstable components, 
coherent entities and design changes by visualizing change 
history [1].  

Xing and Stroulia presented a method for understanding 
software evolution by analyzing design-level structural 
changes in source code [12]. The changes detected by a 
differencing tool were categorized into several types to show 
whether the development is under rapid expansion or just 
steadily going. This indicates various evolution phases for 
maintainers to plan necessary actions to keep maintainability 
of the software. Instead of comparing code changes, our 
approach analyzes modularity deviations to find the change 
trend for evolution.  

B. Software modularity 
There are several ways to describe software modularity. 

Different expressions on software modularity reflect 
different design considerations. Cohesion and coupling 
metrics [14] are frequently used to measure absolute values 
of the degree to which modules are encapsulated, or 
interrelated with each other. Structural [16] and conceptual 
[17], [18], [19] information is considered in measuring 
coupling and cohesion, providing different modularity views. 
However, what is the relationship between these two 
modularity views has not been thoroughly investigated. The 
deviations of different modularity views express a relative 
measure that shows how a system is consistent in structure as 
inspected from various perspectives. 

There have been researches in checking the consistency 
of modularity views between design and implementation [3], 
[5]. However, we only consider design modularity, and 
analyze the deviations between different views. We assume 
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that when viewed from different perspectives, the modularity 
views may be in nature different and the deviations between 
them are an indicator for software quality problems.  

A commonly used way to obtain implied modularity is 
software clustering [15], which exploits implicit 
relationships among modules. It is usually applied for 
understanding the inherent structure of complex systems [7], 
[20], [21] or for discovering a better design of systems [22], 
[23]. Cluster analysis has been proved useful for re-
modularizing legacy systems [24], and various algorithms 
have been used for various software analysis purposes [6], 
[20], [22], [23].  

Recently, clustering algorithms have been also applied in 
analyzing software evolution. Wu et al. applied several 
clustering algorithms on the history of five open source 
systems to find how well each algorithm with different 
parameters performs [25]. Kothari et al. focused on change 
clusters extracted from the evolution history of a software 
system to help project managers to classify different code 
change activities and monitor the progress of the project 
[26]. These approaches either focus on evaluation clustering 
algorithm or use software changes as input to the clustering 
algorithm. On the contrary, we apply software clustering 
techniques to different aspects of the same version of 
software to obtain two different kinds of modularity views of 
that version, and then we compare and contrast these 
modularity views and desired modularity views to 
investigate the deviation trends of software quality. 

III. CONCEPTS 
In this section, we explain a set of important concepts in 

our approach, such as modularity views and deviation trends. 

A. Modularity views 
A modularity view is a modular structure of the target 

system that is desired by designers or implied in the 
implementation. Specifically, in this paper, we consider three 
modularity views, namely Package View, Structural Cluster 
View and Semantic Cluster View. 

1) Package View (Pkg) 
Package view prescribes how developers intentionally 

group related source files as modules. It is the desired 
modularity view of the designers.  

2) Structural Cluster View (St) 
Structural cluster view is the modularity view implied by 

file-level based structural clusters. It reflects the nature of 
inter-file dependencies and method invocation relations. 

3) Semantic Cluster View (Se) 
Semantic cluster view presents the semantically cohesive 

conceptual structure implied by file-level based semantic 
clusters. It reflects the nature of vocabulary used and topics 
involved in different source files and their correlations. 

B. Modularity Deviations 
An essential assumption of our work is that the deviation 

trends between different modularity views can be used as 
indicators for quality evolution monitoring. If different 
modularity views of a system are well aligned, the 
developers can easily locate relevant concepts and localize 

the changes in single packages. Otherwise, the developers 
may need to explore a series of places scattered in different 
packages for specific tasks of maintenance, which is time-
consuming and error-prone. 

A well-designed package structure groups semantically 
and structurally relevant design elements into the same 
package. It is usually the case that the desired design 
prescribed by the package view is well followed initially. 
However, as software evolves, especially due to quick and 
dirty changes, deviations between the desired modularity 
view and the implied modularity views implied by the 
implementation may be introduced and accumulated. The 
developers usually can reduce the deviations by reorganizing 
the packages to make them better aligned with the implied 
modularity views. 

C. Similarity between the Modularity views (SiMo) 
To measure the deviations between two different 

modularity views, we propose to use a set of SiMo 
(Similarity between the Modularity views) metrics. The 
smaller the SiMo metrics are, the higher the deviations are. 
We use the following three SiMo metrics in our approach:  

SPkg_St, i.e., the similarity between package view and 
structural cluster view;  

SPkg_Se, i.e., the similarity between package view and 
semantic cluster view;  

SSt_Se, i.e., the similarity between structural cluster view 
and semantic cluster view.  

We apply MoJoFM method [27] to quantify the three 
SiMo metrics, which are explained in Section IV. 

D. Deviation Trends as Indicators of Quality Evolution 
After we compute the modularity deviations of individual 

versions, we perform longitudinal analysis to analyze the 
deviation trends in a sequence of versions as the indicators 
for quality evolution. Given a SiMo metric, a similarity 
change is classified as one of the three following types: a 
remarkable increase of similarity is denoted as a rise (“ ”); 
a remarkable decrease of similarity is denoted as a drop 
(“ ”); otherwise, no significant change of similarity is 
found, denoted as a hold (“ ”). The criteria of classifying a 
change to be a rise, drop or hold is project-specific and 
experiential, which is discussed in Section IV. 

Based on the concept of similarity changes, we define the 
deviation trend of modularity views as a combination of the 
changes of the three SiMo metrics. Formally, a deviation 
trend is a three-tuple (Similarity Change of SPkg_St, Similarity 
Change of SPkg_Se, Similarity Change of SSt_Se). For example, 
for an evolution that involves the changes of SPkg_St rise, 
SPkg_Se drop, and SSt_Se hold, the deviation trend can be 
denoted as ( , , ). 

IV. METHODOLOGY 

A. Overview 
Figure 1 presents an overview of our approach and our 

empirical study. The three main activities involved include 
construction of modularity views, computation of similarity 
metrics and analysis of deviation trends. 
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Figure 1.  An overview of the monitoring process and the empirical study 

Based on the source code of each version of a software 
system, we first construct three modularity views by static 
code analysis and software clustering. Then, we compute the 
three SiMo metrics between different modularity views. 
Finally, we evaluate the deviation trends of the three SiMo 
metrics in a sequence of consecutive versions. 

To evaluate the effectiveness of our approach and answer 
the research questions raised in Section I, we conducted an 
empirical study in which we investigated the evolution 
history of three open-source systems. In the empirical study, 
we identified typical patterns of modularity deviation trends. 
Furthermore, we related the patterns of deviation trends with 
the evolution intention, using several information sources 
such as release notes, change logs, and design differences.  

B. Extraction of Modularity Views 
In our approach, we extract the following three 

modularity views of each individual version of the software 
system.  

1) Package view 
Package view can be directly extracted from the package 

structure implemented in each version of the software system. 
Since the similarity comparison algorithm MoJoFM works 
only on flat decompositions, we use the leaf-level package 
partition ignoring the package hierarchy so that the package 
view can be compared with the other two modularity views 
obtained by clustering. 

2) Structural cluster view 
In this study, we consider the following types of 

structural dependencies for structural clustering, including 
inheritance, interface implementation, aggregation, and 
usage dependency (e.g., method calls, method parameters, 
local variables). And relationships among classes are “lifted” 
to file level. We use the Design Structure Matrix [40] to 
describe the structural dependencies among source files. 
Each row or column represents a source file. Each cell is 1 if 
the two corresponding files are related, or 0 otherwise. In this 
representation, each source file is represented as a vector that 
describes how it is related to the other files. The similarity 
between source files is measured by computing the cosine 
similarity between two vectors of the two files.  

Based on the structural similarities between source files, 
we apply agglomerative hierarchical algorithm (implemented 
in Weka [29]) to produce the structural modularity view. The 
agglomerative algorithm starts with an initial cluster set that 
treats each file as a cluster. After that, an iterative process is 
conducted to merge two clusters with the largest similarity 
iteratively until all the clusters are merged into one cluster. 
To get a partition of the systems, we would use a cut-point 
height [6] to output the clusters at specific level as the results 

of clustering. In our current implementation, the cut point 
height is automatically determined in that the number of 
clusters produced is as close as possible to the number of 
packages in the package view.  

3) Semantic cluster view 
In order to extract semantic information of the subject 

system, we preprocess the source code files to eliminate non-
textual tokens (i.e., operators, numbers, etc.), Java keywords 
and stop words and to split identifiers (e.g. based on case 
switching and underscore). Then, we build a term-document 
matrix. Next, we use Latent Semantic Indexing (LSI) [28] to 
compute the concept space of the subject system. LSI is an 
indexing and retrieval technique that uses a mathematical 
technique called Singular Value Decomposition (SVD) to 
identify patterns in the relationships between the terms and 
concepts contained in an unstructured collection of text. 
SVD reduces the number of dimensions and represents 
documents as vectors in the reduced concept space. In this 
paper, we take similar choice as [22] to determine the 
dimensions of the concept space, that is, the number of 
concepts in concept space is the number of singular values in 
diagonal matrix S greater than 1. Finally, we get the 
corresponding vectors of the source files in the concept space.  

The similarity measurement and clustering algorithm 
used in semantic clustering are the same as those used in the 
structural clustering. 

C. SiMo Metrics Computation 
In our approach, the three SiMo metrics are calculated 

using a widely adopted similarity comparison method, 
MoJoFM [27]. MoJoFM is a normalized revision of MoJo 
[30], [31] that calculates the minimum number of Move-and-
Join operations to transform one partition into another. Given 
two partitions A and B, the similarity between A and B can 
be measured by MoJoFM with the formula 

��������� 	
 � �
 � ������ 	

����������� 	
�� � 
��� 

where mno(A,B) means the minimum number of Move-and-
Join operations to transform partition A to partition B, ����������� 	
�  means the maximum distance from any 
partitions to partition B (see [27] for details). MoJoFM 
ranges from 0% to 100%. The larger the MoJoFM value is, 
the more similar the two partitions are. 

The three SiMo metrics can then be defined as: 
SPkg_St=MoJoFM(Pkg, St), 
SPkg_Se=MoJoFM(Pkg, Se), and 
SSt_Se=Max(MoJoFM(St, Se), MoJoFM(Se, St)). 
Note that SPkg_St and SPkg_Se are asymmetric. The reason is 

that deciding how to organize a package is subjective. 
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Designers may take a structural biased consideration or a 
semantic biased consideration to organize the packages. 
Therefore, we simply measure to what degree the package 
view deviates from cluster views, ignoring the reverse 
deviation.  

D. Analyzing deviation trends  
Based on the SiMo metrics between different modularity 

views, three curves of similarity metrics are obtained for a 
software system (see Figure 2, 3, 4 for examples). Change 
trends of each SiMo metric can be defined in a project-
specific and experiential manner. In our study, a hold is 
defined as the change of similarity metric being within 1 
percentage of the MoJoFM value (approximations are used 
instead of the real difference). Any changes beyond 1 
percentage range are regarded as rises or drops respectively. 

As mentioned in Section II, a deviation trend of different 
modularity views is a combination of three change trends (i.e. 
rise, drop, hold) of three SiMo metrics (i.e. SPkg_St, SPkg_Se, 
SSt_Se).There can be up to 33=27 patterns of deviation trends. 
We expect to encounter some of these patterns in software 
evolution history, indicating the issues of software quality 
evolution, in our follow-up empirical study. 

V. EMPIRICAL STUDY 

A. Research questions and subject systems 
In our empirical study, we aim at answering the 

following research questions: 
Q1. What deviation trends of different modularity views 

does a software system show during its evolution? 
Q2. How do we understand software quality evolution by 

analyzing the deviation trends?  
Q3. Can we get useful feedback for evolution decisions 

by monitoring the deviation trends of modularity 
views? 

To answer these questions, we conducted an empirical 
study on three open-source Java systems, JFreeChart [32], 
JHotDraw [33], [34] and JEdit [35]. We picked these three 
subject systems not only because they are well-known and 
believed to be well maintained, but also because they have 
rich sets of release notes and documents to confirm our 
observations.  

All three subject systems have been developed and 
maintained for about ten years. The projects JEdit and 
JHotDraw are still active, while JFreeChart is relatively 
stable and does not change very often. We checked out major 
versions of the subject systems from SourceForge.net 
Subversion (SVN) repositories. There are 124 versions in 
total for three subject systems. Table I summarizes basic 
statistics about the three subject systems used in our study. 

B. Deviation trends shown by subject systems (Q1) 
To answer the first research question, we calculated SiMo 

metrics for each pair of consecutive versions of a subject 
system and render the change of SiMo metrics in a line chart. 
As we have three types of SiMo metrics (SPkg_St, SPkg_Se, 
SSt_Se), we obtained three curves for each subject system. 
Figure 2, Figure 3 and Figure 4 present our analysis results 

for JFreeChart, JHotDraw and JEdit, respectively. To 
facilitate the understanding of the deviation trends, we also 
overlaid lines of code (LOC) and lines of comment (LOCom) 
metrics in the figures. In each of these figures, the X axis 
represents software versions, the left Y axis represents the 
SiMo metrics between different modularity views, and the 
right Y axis represents the LOC and LOCom metrics of the 
system.  

The first interesting observation is that different subject 
systems present different characteristics in their deviation 
trends of SiMo metrics. For example, the SiMo metrics of 
JFreeChart vary greatly in the beginning (about one fifth of 
its lifespan, from v0.5.6 to v0.9.0), and then become smooth 
during the rest of its lifespan, while JHotDraw shows quite 
smooth curves over time. JEdit presents yet another different 
characteristic; its modularity view similarities keep changing 
over its lifespan, especially the similarities between Package 
View and Structural Cluster View (SPkg_St) and between 
Structural Cluster View and Semantic Cluster View (SSt_Se).  

The different characteristics of the deviation trends of 
SiMo metrics show different evolution stages. In JFreeChart 
(Figure 2), for example, three main stages are identified. We 
checked our speculation by a closer analysis of the release 
notes, change logs and UMLDiff results. 

At the very beginning (versions 0.5.6 till 0.9.0), the SiMo 
metrics between different modularity views changed 
dramatically. This indicates a chaotic stage: the software was 
built from scratch and actively under development, and 
developers focused on adding new features without much 
consideration on maintaining a “good” modularity. 
Consequently, the consecutive versions show quite different 
SiMo metrics between different modularity views. 
Furthermore, most likely because the system was built from 
scratch, developers have more freedom to change the desired 
modularity as they wish. Therefore, the modularity views 
may undergo dramatic changes between versions.  

Due to the changes introduced in the chaotic phase, 
JFreeChart might get less and less extensible and 
maintainable and then entered an adjustment phase (version 
0.9.0 till 0.9.21) in which JFreeChart has been actively 
restructured at the same time of feature addition and 
extension. During this adjustment phase, the SiMo metrics 
between different modularity views changed dramatically 
from one version to another. After the version 0.9.21, the 
changes of the three SiMo metrics become similar. This 
indicates that a reasonable balance was achieved between the 
structural perspective and semantic perspective of the 
package organization of the system. 

After the adjustment stage, JFreeChart entered a 
relatively stable stage – the fine-tuning stage. This stage may 
indicate that the system was mature and functional. As a 
result, the focus shifted from adding new features and 
restructuring existing ones to mainly small enhancements 
and bug fixes. As shown in Figure 2, from version 1.0.0.pre1 
on, JFreeChart became stable. In other words, it indicates 
that the package structure of the system is now considered 
well organized and new features are rarely introduced to the 
system. This is evident in JFreeChart release notes: 
JFreeChart underwent no major changes since version 1.0.13. 
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TABLE I.  SUBJECT SYSTEMS 

Projects Time  # 
Versions # Packages # Source Files KLOC KLOCom. Source file restrictions 

JFreeChart 2000/11/27-
2009/4/20 50 5-63 86-805 8.0-107.4 5.9-107.6 Restricted to the source folder 

JHotDraw 2000/10/13- 
2011/1/6 14* 7-41 128-429 9.3-55.9 4.6-29.2 Restricted to the source folder; excluding 

test cases and sample files 

JEdit 2001/11/05-
2011/2/3 60 11-29 138-503 29.2-105.8 10.4-48.4 Restricted to JEdit core 

* We ignored JHotDraw versions 7.0.1 to 7.0.6 since these versions are not available 

 
Figure 2.  Similarity of modularity views and system size of JFreeChart  

 
Figure 3.  Similarity of modularity views and system size changing of JHotDraw 

 
Figure 4.  Similarity of modularity views and system size changing of JEdit 

The second interesting observation is that the SiMo 
metrics are stable in general, with some periodical changes. 
This indicates that, although the high similarity between 
modularity views represents better design, the subtle 
differences between the modularity views cannot be 
overlooked. The similarity between modularity views cannot 
be monotonously rising, simply because these modularity 
views are from different perspectives and the designers have 
to continuously balance these aspects to obtain good quality 
of the system. 

C. Understanding deviation trends (Q2) 
Among the 27 patterns of deviation trends mentioned in 

Section IV, we find that some are closely related to 
maintenance actions and frequently found in the evolution 
history. Table II shows some deviation trend patterns found 

in the evolution history, together with our intuitive 
understandings in terms of maintenance actions. 

The deviation trend patterns with our intuitive 
understandings have covered 65% evolutions (79 out of total 
121), which is somehow representative in the whole 
evolution history. In order to evaluate our intuitive 
understandings with deviation trend patterns, we look for 
maintenance evidences in the release notes provided by 
software developers and the source code changes obtained in 
two versions. These two types of evidences compensate each 
other. Release notes express explanations of software 
maintenance from developers’ perspective at a relatively 
higher abstraction, while source code differences between 
versions show detailed factual changes that developers have 
made to the software.  
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TABLE II.  TYPICAL DEVIATION TREND PATTERNS IN OUR SUBJECT SYSTEMS 

Typical deviation trend 
pattern JFC JHD JE Total Intuitive 

understanding Explanation of the intuitive understanding 
SPkg_St SPkg_Se SSt_Se 

   5 2 2 9 Low quality 
evolution 

All SiMo metrics drop. Maintainers have made casual or irresponsible changes that 
degrade the modularity of the project. This is probably due to lack of a thorough 
consideration of the structure of the project. 

  DNC 4 3 3 10 Structural biased 
evolution 

SPkg_St rises but SPkg_Se drops. Maintainers have made dramatic structural 
changes, ignoring some semantic information when restructuring the software. 

  DNC 9 2 5 16 Semantic biased 
evolution 

SPkg_Se rise but SPkg_St drop. Maintainers may have been focused on clarifying 
semantics in packages or improving semantic consistency within packages. 

|  |  |  14 3 27 44 Steady-going 
evolution 

The software system has been well maintained. Modularity remain unchanged or 
improved. This is a good signal for high quality evolution. 

Others 17 3 22 42   
Total 49 13 59 121   

To gather source code changes, a software difference tool, 
UMLDiff [36], is used for source code analysis. We run 
UMLDiff to find which kinds of changes occur in neighbor 
versions and how many of them have taken place. There are 
36 types of source code differences that can be identified by 
UMLDiff (e.g. “add call in/out”, “remove call in/out”, “add 
data type”, “remove data type”, “renaming identifiers”, etc. 
[37]). Among them only 33 are considered relative to 
affecting software structure or semantics (“visibility up”, 
“visibility down”, and “parameter list order change” are not 
considered). We categorize these types into three higher-
level maintenance actions: 1) a few changes to the system; 2) 
dramatic changes to the system; and 3) renaming identifiers. 
The first two actions may contribute to both structure and 
semantics, while the third is a typical semantic maintenance 
action. 

Another information source is the release notes and 
change logs. We specifically chose Java projects for which 
these materials are available. Eleven typical higher-level 
maintenance actions in the release notes/change logs are 
considered relative to our evolution patterns. Such 
information is usually not observable by direct source code 
analysis. 

A guideline for relating the collected evidences to 
evolution patterns is listed in Table III. The evolution 
patterns are the inferred conclusions with our analysis to the 
deviation trends of the different modularity views. These 
patterns should be supported by one or more higher-level 
maintenance actions. In Table III, the meanings of symbols 
are as the following: a ‘ ’ means that the evidence (row) 
strongly supports the corresponding evolution pattern 
(column), a ‘ ’ means some support; a ‘ ’ means that the 
evidence (row) has a strongly negative influence on the 
corresponding evolution pattern (column), a ‘ ’ means some 
negative impact, and a ‘ ’ means neutral.  

We invited five software professionals to be our valued 
evaluators. All of the evaluators are students from the School 
of Computer Science of Fudan University. Two of them are 
PhD students and the others are master-level students. The 
programming experience of this group ranges from 4 to 8 
years, with a median of 6 years. And two evaluators have 
software industry experience above 2 years. 

Table III is used for our guest evaluators to evaluate how 
well the evidences support the intuitive understandings. In 

our experiment, the professionals were given the projects, the 
curves of SiMo indicators and Table III, and asked to look 
into the release notes, change logs and UMLDiff results to 
collect evidences for each evolution individually.  

TABLE III.  MAPPING TABLE TO  RELATE EVIDENCES AND EVOLUTION 
PATTERNS 

Evid. 
Src. 

Higher-level 
maintenance actions 

Intuitive understanding 
Low 

quality 
Structural

Biased 
Semantic 

Biased 
Steady-
going 

R
el

ea
se

 N
ot

es
 &

 C
ha

ng
e 

Lo
gs

 
Add numerous new 
features at one time     

SVN Commit without 
comments      

Relevant change logs 
are not found     

Relevant Release notes 
are not found      

Package-level 
restructuring (e.g. 
adding/deleting/merging
/splitting packages) 

    

Program refactoring 
(e.g. adopting design 
patterns, extracting 
methods, etc.) 

    

Add or update 
comments in source 
files 

    

API additions, removes, 
or changes     

Update Javadoc     
Update release notes, 
change logs     

Only bug fixes and 
enhancements     

Main release number 
updated, or final release 
number is created  

    

U
M

LD
iff

 Few changes to the 
system     

Dramatic changes to the 
system     

Renaming identifiers     

First, the deviation trend of an evolution is identified to 
decide the intuitive understanding (column in Table III). 
Then, the software professionals search for evidences listed 
in rows in Table III. If evidences are found, a score is added 
according to the symbol in the corresponding cell. A 
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Weighted Score Method (WSM, also used in Galster’s 
work[38]) is adopted, where   ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’ 
stands for -2, -1, 0, 1, 2, correspondingly. After that, the 
scores of all evidences for the intuitive understanding are 
summed up for final evaluation where a Likert scale is used. 
The conclusions are categorized in five levels: (1) Strongly 
Disagree, if summed score<-2, (2) Disagree, if -2 summed 
score <0, (3) Unsure, if summed score=0, (4) Agree, if 0< 
summed score 2, and (5) Strongly Agree, if summed 
score>2. The final summed score shows the trueness of our 
modularity-view-based understanding of software evolution. 
Note that the evaluators are not required to review the source 
code files manually, as this work is tedious and time-
consuming, and very likely to affect the evaluators’ moods 
and reduce the quality of their evaluations. 

Table IV shows the number of the evaluators’ responses 
along the Likert scale. The evaluators agreed or strongly 
agreed with our hypotheses on 70 evolutions (out of a total 
79, >88%), which confirmed partly the reasonability of our 
hypotheses. All disagree cases are those versions with few 
change logs or release notes but UMLDiff shows dramatic 
changes. Also, three near-by evolutions (JFreeChart v0.9.16 
to v0.9.17, v0.9.18 to v0.9.19, v0.9.20 to 0.9.21) involving 
six neighbor versions show that, during a certain period of 
time, developers may “forget” to write release notes. We 
believe that these cases are allowable in real development. 
Further discussions on periodical analysis on the deviation 
trends are in the next subsection. 

TABLE IV.  EVALUATION RESULT OF THE INTUITIVE UNDERSTANDINGS  

Intuitive 
understanding 

S.  
Disagree Disagree Unsure Agree S.  

Agree Total 

Low quality 0 0 0 6 3 9 
Structural Biased 0 0 1 6 3 10 
Semantic Biased 0 0 0 5 11 16 
Steady-going 0 8 0 18 18 44 

Total 0 8 1 35 35 79 

D. Feedbacks for evolution decisions (Q3) 
1) Feedbacks on low quality evolutions 

As the target systems in our experiments are publicly 
accepted as well maintained systems, there should be few 
casual maintenance actions. Our experiments confirmed this 
conjecture as there are only 9 casual evolutions in 121 
evolutions. 

All of these casual actions were confirmed by the 
evaluators. In JFreeChart (Figure 2), we find all casual 
maintenances occurred between earlier versions, when the 
project was not stable yet. In JHotDraw and JEdit (Figure 3 
and 4), this situation spans all the history. We believe this is 
reasonable, because JFreeChart is an inactive project that is 
quite stable in recent years, while JHotDraw and JEdit are 
still quite active and not stabilized yet. The recent existence 
of “casual maintenance” in JHotDraw and JEdit reflects this 
fact. 

A typical example of casual maintenance is the evolution 
from version 5.3 to version 5.4b1 in project JHotDraw, as 
can be seen in Figure 3. The release note for version 5.4b1 
says: 

“...It has not been extensively tested but is aimed to give 
developers access to a more recent version of JHotDraw than 
5.3…. 
…The release includes numerous new features… 
…Finally, developers who require a more stable release or are 
not willing to bear with some bugs and exceptions should not 
use this beta release…” 
As we can see in these notes, the developers faithfully 

recorded that the beta version 5.4b1 was not stable and not 
thoroughly tested. In the next version (v6.0b1), the situation 
did not take a favorable turn. We believe that such tentative, 
unorganized modifications should not be encouraged.  

Low quality evolution is a hint for quality declining. If 
low quality evolution occurs, it is probably not suitable to 
release a new version and developers are suggested to 
double-check modified modules for any undesirable 
purposes.  

2) Feedbacks on structure biased evolutions 
Structure biased evolution features a significant rising of 

SPkg_St and a declining of SPkg_Se. A typical example is 
between versions 4.0.pre2 and 4.0.pre3 of JEdit. In the 
release note of 4.0.pre3, we found 9 primary new features 
and a long list of enhancements and bug fixes. In the results 
provided by UMLDiff, we also found that 4.0.pre3 added 
numerous data types (389, median 75), objects (492, median 
97.5) and method parameters (194, median 41.5) but 
removed much less ones (94 data types, 110 objects, and 91 
method parameters). This is a typical function-expanding 
evolution. A similar situation can be found in the next 
evolution, from 4.0.pre3 to 4.0.pre4, and several other 
evolutions with the same deviation trend pattern. 

Such a pattern usually infers dramatic structural changes 
to the software, but we find it not necessarily true that 
dramatic changes of structure will significantly influence the 
similarity between Pkg and St (SPkg_St). A representative 
example is the evolution from JHotDraw6 (v6.0b1) to 
JHotDraw7 (v7.0.7). Getting insight into the logs, we found 
most of the changes were mostly structural: 

“…JHotDraw7 is a major departure of JHotDraw – Only the 
cornerstones of the original architecture remain. The API and 
almost every part of the implementation have been reworked to 
take advantage of the Java 2 SE 5.0 platform… 
…Added new package org.jhotdraw.application… 
…Moved all packages from ch.randelshofer to org.jhotdraw… 
…Reorganized package structure…” 
However, the changes are not reflected in Figure 3. The 

SPkg_St was almost stable (with a little increasing) between 
v6.0b1 and 7.0.7. It is very likely the case that, when a deep 
restructure of a project is to happen, the new version may 
have a completely different structure. Meanwhile, our 
approach does not track the structure between versions, but 
measures only similarity between different views instead of 
different versions. Therefore, even if the changes are 
numerous, the metrics may not be so sensitive. 

3) Feedbacks on semantic biased evolutions 
One typical example of semantic bias evolution type is 

the evolution of JFreeChart between version 0.9.4 and 0.9.5. 
Some evidences were found in the release notes that support 
our understanding, such as “lots of Javadoc updates”. 
Meanwhile, there are also some logs for structural 
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adjustment, such as “created separate packages for the axes 
(com.jrefinery.chart.axis), plots (com.jrefinery.chart.plot) 
and renderers (com.jrefinery.chart.renderer)”. Obviously, 
we cannot clearly separate the semantic and structure 
adjustment from each other. Since these two kinds of actions 
are often intertwined with each other during the evolution, 
the boundary between them, if exist, is ambiguous. Another 
example is hidden in the only unsure response of structural 
biased evolution type (JFreeChart versions 0.7.3 to 0.7.4). In 
this evolution, although the deviation trend showed a 
structural biased evolution, some evidences that support 
semantic biased evolution was found, such as “…Various 
Javadoc comment updates…” in the v0.7.4 release note. 
Therefore, whether the curve will present a semantic biased 
evolution is largely related to both structural changes and 
internal doc updates, due to the strong relationship between 
semantic and structural adjustments.  

4) Feedbacks on steady-going evolutions 
There are two extreme cases of steady-going evolutions, 

according to our intuitive understandings. One is that all 
SiMo indicators rise. Typical examples of this case are the 
evolutions of project JFreeChart from version 0.9.20 to 
version 0.9.21 and the evolution of JEdit from version 
4.3.pre11 to version 4.3.pre12. In these evolutions, few 
changes were made to the systems, and the release notes and 
change logs often have detailled descriptions about the 
changes applied to the systems. This reflects the maintainers 
did these changes very carefully.  

The other extreme case is that all SiMo indicators hold. 
The period between versions 0.9.21 and 1.0.1 of JFreeChart 
is a typical example. UMLDiff showed few changes and 
release notes recorded few new features but only some bug 
fixes or minor enhancements. This reflects a comparatively 
stable phase of software evolution. In our empirical study, 
the evaluators agreed or strongly agreed 36 evolutions (about 
81%) out of total 44 indicated steady-going evolutions. The 
other 8 evolutions get disagree responses. The common 
characteristic of these evolutions is that there are dramatic 
changes to the system without accompanying carefully 
maintained documentation. To check the reliability of these 
disagree responses, we further manually checked the source 
codes of the relevant versions of these evolutions, and finally 
found that, as the source codes were changed, a lot of 
maintenance changes were applied to the embedded 
comments. But unfortunately, this information was neither 
captured by UMLDiff nor recorded in the release notes or 
change logs. Embedded comments in source code should be 
important evidence but it is not feasible to find this evidence 
manually in the source. How to gather required evidence 
remains an open question for the evaluation. 

VI. THREATS TO VALIDITY 

A. Internal validity 
In our empirical study, we largely depend on evaluators’ 

software development experiences to get the evaluation 
results. Also, the scoring criterion (the -2 to +2 scale) is quite 
simplified. To minimize the threats, we introduced concrete 
and objective guidelines for the evaluators. Some evaluators 

worked collaboratively on the same project to eliminate 
random errors. After all, it would be definitely a good idea to 
find someone familiar with the project’s evolution history 
and intensions to be our evaluator. As to the scoring criterion, 
although more complicated scoring rules can be invented, the 
five-level Likert approach has been proved to be effective. 
Inventing a complex scoring rule might reflect some truth of 
evolution intensions, but may also confuse the evaluators and 
bring more arbitrary issues.  

B. External validity 
Our study is based on only three open source Java 

projects. Although the projects are representative as they are 
typical in recent software development community, the 
particular evolution history of the projects may not be 
applicable to other projects. To minimize the threats, we 
carefully chose the projects that have a comparatively long 
evolution history with almost complete maintenance record. 
We do not expect to fully conclude software quality by 
observing the deviation trends but hope to provide a different 
way to evaluate possible evolution trends and quality during 
software maintenance. Also, commercial software systems 
would be a future work for us to evaluate and generalize our 
approach and experiences. 

C. Construct validity 
In our approach, the modularity views are extracted 

based on existing techniques. The reliability of program 
analysis tools and software clustering algorithms affects the 
result of the extraction process. To minimize the threats, we 
tried several approaches for software clustering before 
conducting a systematic empirical study. We finally adopted 
a widely used algorithm to reflect the state-of-art of 
clustering technique. Typically, there are two criteria for 
evaluating the quality of clustering results, namely 
Authoritativeness (the produced partition should be very 
similar to authoritative partition) and Non-extremity 
distribution (clusters in the produced partition should be 
neither black holes nor gas cloud [6]). However, an 
authoritative partition is often hard to find. Furthermore, we 
investigate the target systems from different modularity 
views; this makes the task even more complex. We think 
non-extremity clusters may reveal the reasonability of the 
partition.  This criterion was assessed by NED (non-extreme 
distribution) measure [22]. In our presented experiments, 
more than three-quarters of the NED values are above 0.72 
for structural clustering and 0.85 for semantic clustering, 
showing acceptable clustering results.  

VII. CONCLUSION AND FUTURE WORK 
In this paper, we propose an approach for monitoring 

design quality evolution of software systems in long-term 
evolution by analyzing the deviation trends of different 
modularity views. Currently, we consider three modularity 
views, namely the desired modularity view reflected by the 
package structure, and two implied modularity views 
extracted by structural and semantic clustering. Based on the 
approach, we conduct an experience study to evaluate our 
approach on the one hand, and identify typical deviation 
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trend patterns on the other hand. We find that the deviation 
trends of different modularity views largely indicate the 
status of design quality evolution, especially the trends of 
quality degradation. And the continuous monitoring of 
deviation trends provides useful feedback for the future 
evolution decisions. 

We have noticed that our hypothesis and approach are 
still to be further confirmed with wider range of software 
projects. In order to overcome the difficulty of the lack of 
evolution intensions and comprehensive maintenance logs, 
we are trying to extend our experience study to internal and 
external projects to increase the generality of our conclusion. 
In the future work, we will also involve more modularity 
views and provide more comprehensive deviation trend 
monitoring for evolution decisions.  
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