
Monitoring Software Quality Evolution by Analyzing Deviation
 Trends of Modularity Views

Tianmei Zhu1, Yijian Wu1, Xin Peng1, Zhenchang Xing2, Wenyun Zhao1
1School of Computer Science, Fudan University, Shanghai, China

2School of Computing, National University of Singapore, Singapore
{09212010034, wuyijian, pengxin, wyzhao}@fudan.edu.cn

xingzc@comp.nus.edu.sg

Abstract—In the long-term evolution of software systems,
various maintenance activities such as functionality extension,
bug fixing, refactoring may positively or negatively affect the
quality of design and implementation. The trend of quality
degradation caused by negative affections may accumulate and
cause serious difficulties for future maintenance of the
software if they were not addressed properly in time. In this
paper, we propose an approach for monitoring the degradation
trends of software design in evolution and providing useful
feedbacks for evolution decisions. The approach is based on
the assumption that the deviations between different
modularity views and their trends in evolution can be used to
monitor the degradation trends of design. Currently, our
approach considers three modularity views, namely package
view, structural cluster view and semantic cluster view.
Package view denotes the package structure reflecting the
desired modularity view; Structural cluster view and semantic
cluster view are the modularity views extracted from
implementation by software clustering based on formal
information and non-formal information, respectively. Then
based on the three modularity views extracted from each
version, our approach calculates the similarity between
different views as the measurement of modularity deviations,
and analyzes the deviation trends over a series of versions. We
conduct an empirical study on three open-source systems,
which confirms that continuous monitoring of deviation trends
of modularity views can provide useful feedbacks for future
evolution decisions.

Keywords- evolution analysis, software quality evolution,
software modulairty, software clustering, maintenance history

I. INTRODUCTION
Software usually undergoes a continuous process of

evolution driven by evolutionary development processes,
design improvement, bug fixing, and request for new
features [1], [2], [9]. In the long-term evolution,
maintenance actions are made for specific evolution intent
and objectives in different phases [2]. For example, in some
phases a large number of new features can be introduced,
and in other phases the design structures can be refactored
to provide better maintainability and extensibility for future
evolution. These maintenance actions may positively or
negatively affect the quality of design and implementation
of a software system and result in the deviation of the

modularity quality from the desired level. The trend of
quality degradation caused by negative affections may
accumulate and cause serious difficulties for future
maintenance of the software if they were not addressed
properly in time. Therefore, monitoring and controlling the
trends of software quality evolution is essential for high-
efficiency software maintenance.

Modularity is extremely important for software
development and evolution. Good modularity can improve
the flexibility and comprehensibility of the software system
[3], [4], while bad modularity can cause expensive
refactoring and software defects [5]. Thus, modularity is
often used as an important criterion for evaluating the
quality of software design and implementation [39].

For software systems developed in object-oriented (OO)
languages such as Java, the packages (or namespaces used)
largely reflect the desired modularity view of the designers.
This modularity view may be carefully designed initially.
However, as software evolves, it may be violated frequently.
For example, newly introduced elements may be put into an
inappropriate existing module or may result in inappropriate
inter-module interactions. This may violate well-defined
modularity principles such as information hiding and
functional independence.

Software clustering techniques [6], [7] are often used to
recover the modularity views implied in the actual
implementation. More specifically, software clustering can
be divided into structural clustering and semantic clustering,
depending on the information used for clustering. Structural
clustering is based on formal information such as method
calls and variable references, while semantic clustering is
based on non-formal information such as identifiers and
comments [6].

Using structural clustering and semantic clustering, we
can recover two different kinds of implied modularity views
from the implementation. Structural clusters group program
units by structural relations implemented in source code
thus can be considered as a modularity view reflecting the
de-facto implementation. Semantic clusters are groups of
program units that use similar vocabulary and reveal
linguistic topics and intention of the code [7], and thus can

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.35

229

be regarded as providing a modularity view by the
implemented concerns and intentions.

These two modularity views recovered by software
clustering, together with the package structure (the desired
modularity view), constitute the three modularity views
discussed in this paper. In an ideal modular design and
implementation, the three modularity views are well aligned.
For example, implementation units for relevant concerns are
within the same package, which presents good structural
characteristics of high cohesion and low coupling. Therefore,
the alignment among the three modularity views may
indicate the quality of modular design and implementation.

We hypothesize that we can monitor software quality
evolution and provide useful feedback for evolution
decisions by analyzing the deviation trends of the three
modularity views. We are only interested in the quality
essential in software evolution, such as maintainability. To
validate our hypothesis, we propose an approach for
monitoring quality evolution based on the alignment among
three preceding modularity views and conduct an empirical
study on three open-source systems.

Our approach involves three main activities. First, we
extract the three modularity views from each version of the
subject systems using automatic program analysis and
clustering techniques [24]. Second, we calculate similarity
or alignment measurements among the three modularity
views. Third, we perform a longitudinal analysis of the
deviation trends over a series of the versions of the subject
systems.

Our empirical study focuses on the following research
questions: 1) What deviation trends of different modularity
views does a software system show during its evolution? 2)
How do we understand software quality evolution by
analyzing the deviation trends? 3) Can we get useful
feedback for evolution decisions by monitoring the
deviation trends of modularity views?

Our contribution in this paper is three-fold. First, we
propose an approach for quality evolution monitoring based
on the analysis of deviation trends of different modularity
views. Second, we present an empirical study that confirms
that continuous monitoring of deviation trends of
modularity views can provide useful feedbacks for future
evolution decisions. Third, we identify some typical
deviation trend patterns of modularity views that are proved
to be useful for reflecting quality evolution.

The remainder of this paper is organized as follows.
Section II summarizes related work on software evolution
analysis and software modularity. Section III defines basic
terminology used in our study. Section IV introduces our
approach for monitoring deviation trends of different
modularity views. Section V presents our empirical study on
three open source Java systems and explains the result with
concrete examples from our study. Section VI discusses
threats to validity of our approach and experiments. Section
VII concludes our work and findings and outlines future
work.

II. RELATED WORK

A. Monitoring and understanding software evolution
Evolution is an essential characteristic of software

systems. There have been several research efforts to date
aiming at understanding evolution in open source software.
In [45], Breivold et al. made a systematic review of studies
of open source software evolution. Godfrey and Qiang took a
case study about open source software projects’ evolution in
[41]. Meanwhile, another line of research has focused on the
investigation of how metrics can be applied to software
evolution [43], [44]. In [8], Mens and Demeyer provided a
classification of various approaches that use metrics to
understand, analyze, control and improve the software
evolution process, namely predictive analysis and
retrospective analysis. Software growth metrics such as line
of source code (LOC) and number of modules are usually
used to monitor the software evolution [41], [9], [10].

Exploiting the development history is a widely used
approach. Ali and Maqbool proposed an approach to monitor
software evolution using multiple types of changes [42].
Mockus and Votta showed that textual descriptions of
software change are useful in version control system and
proposed suggestions to utilize change data to diagnose the
state of a software project [13]. This implies that software
quality evolution can be monitored and inferred by analyzing
software maintenances actions. Van Rysselberghe and
Demeyer proposed an approach to find unstable components,
coherent entities and design changes by visualizing change
history [1].

Xing and Stroulia presented a method for understanding
software evolution by analyzing design-level structural
changes in source code [12]. The changes detected by a
differencing tool were categorized into several types to show
whether the development is under rapid expansion or just
steadily going. This indicates various evolution phases for
maintainers to plan necessary actions to keep maintainability
of the software. Instead of comparing code changes, our
approach analyzes modularity deviations to find the change
trend for evolution.

B. Software modularity
There are several ways to describe software modularity.

Different expressions on software modularity reflect
different design considerations. Cohesion and coupling
metrics [14] are frequently used to measure absolute values
of the degree to which modules are encapsulated, or
interrelated with each other. Structural [16] and conceptual
[17], [18], [19] information is considered in measuring
coupling and cohesion, providing different modularity views.
However, what is the relationship between these two
modularity views has not been thoroughly investigated. The
deviations of different modularity views express a relative
measure that shows how a system is consistent in structure as
inspected from various perspectives.

There have been researches in checking the consistency
of modularity views between design and implementation [3],
[5]. However, we only consider design modularity, and
analyze the deviations between different views. We assume

230

that when viewed from different perspectives, the modularity
views may be in nature different and the deviations between
them are an indicator for software quality problems.

A commonly used way to obtain implied modularity is
software clustering [15], which exploits implicit
relationships among modules. It is usually applied for
understanding the inherent structure of complex systems [7],
[20], [21] or for discovering a better design of systems [22],
[23]. Cluster analysis has been proved useful for re-
modularizing legacy systems [24], and various algorithms
have been used for various software analysis purposes [6],
[20], [22], [23].

Recently, clustering algorithms have been also applied in
analyzing software evolution. Wu et al. applied several
clustering algorithms on the history of five open source
systems to find how well each algorithm with different
parameters performs [25]. Kothari et al. focused on change
clusters extracted from the evolution history of a software
system to help project managers to classify different code
change activities and monitor the progress of the project
[26]. These approaches either focus on evaluation clustering
algorithm or use software changes as input to the clustering
algorithm. On the contrary, we apply software clustering
techniques to different aspects of the same version of
software to obtain two different kinds of modularity views of
that version, and then we compare and contrast these
modularity views and desired modularity views to
investigate the deviation trends of software quality.

III. CONCEPTS
In this section, we explain a set of important concepts in

our approach, such as modularity views and deviation trends.

A. Modularity views
A modularity view is a modular structure of the target

system that is desired by designers or implied in the
implementation. Specifically, in this paper, we consider three
modularity views, namely Package View, Structural Cluster
View and Semantic Cluster View.

1) Package View (Pkg)
Package view prescribes how developers intentionally

group related source files as modules. It is the desired
modularity view of the designers.

2) Structural Cluster View (St)
Structural cluster view is the modularity view implied by

file-level based structural clusters. It reflects the nature of
inter-file dependencies and method invocation relations.

3) Semantic Cluster View (Se)
Semantic cluster view presents the semantically cohesive

conceptual structure implied by file-level based semantic
clusters. It reflects the nature of vocabulary used and topics
involved in different source files and their correlations.

B. Modularity Deviations
An essential assumption of our work is that the deviation

trends between different modularity views can be used as
indicators for quality evolution monitoring. If different
modularity views of a system are well aligned, the
developers can easily locate relevant concepts and localize

the changes in single packages. Otherwise, the developers
may need to explore a series of places scattered in different
packages for specific tasks of maintenance, which is time-
consuming and error-prone.

A well-designed package structure groups semantically
and structurally relevant design elements into the same
package. It is usually the case that the desired design
prescribed by the package view is well followed initially.
However, as software evolves, especially due to quick and
dirty changes, deviations between the desired modularity
view and the implied modularity views implied by the
implementation may be introduced and accumulated. The
developers usually can reduce the deviations by reorganizing
the packages to make them better aligned with the implied
modularity views.

C. Similarity between the Modularity views (SiMo)
To measure the deviations between two different

modularity views, we propose to use a set of SiMo
(Similarity between the Modularity views) metrics. The
smaller the SiMo metrics are, the higher the deviations are.
We use the following three SiMo metrics in our approach:

SPkg_St, i.e., the similarity between package view and
structural cluster view;

SPkg_Se, i.e., the similarity between package view and
semantic cluster view;

SSt_Se, i.e., the similarity between structural cluster view
and semantic cluster view.

We apply MoJoFM method [27] to quantify the three
SiMo metrics, which are explained in Section IV.

D. Deviation Trends as Indicators of Quality Evolution
After we compute the modularity deviations of individual

versions, we perform longitudinal analysis to analyze the
deviation trends in a sequence of versions as the indicators
for quality evolution. Given a SiMo metric, a similarity
change is classified as one of the three following types: a
remarkable increase of similarity is denoted as a rise (“ ”);
a remarkable decrease of similarity is denoted as a drop
(“ ”); otherwise, no significant change of similarity is
found, denoted as a hold (“ ”). The criteria of classifying a
change to be a rise, drop or hold is project-specific and
experiential, which is discussed in Section IV.

Based on the concept of similarity changes, we define the
deviation trend of modularity views as a combination of the
changes of the three SiMo metrics. Formally, a deviation
trend is a three-tuple (Similarity Change of SPkg_St, Similarity
Change of SPkg_Se, Similarity Change of SSt_Se). For example,
for an evolution that involves the changes of SPkg_St rise,
SPkg_Se drop, and SSt_Se hold, the deviation trend can be
denoted as (, ,).

IV. METHODOLOGY

A. Overview
Figure 1 presents an overview of our approach and our

empirical study. The three main activities involved include
construction of modularity views, computation of similarity
metrics and analysis of deviation trends.

231

Figure 1. An overview of the monitoring process and the empirical study

Based on the source code of each version of a software
system, we first construct three modularity views by static
code analysis and software clustering. Then, we compute the
three SiMo metrics between different modularity views.
Finally, we evaluate the deviation trends of the three SiMo
metrics in a sequence of consecutive versions.

To evaluate the effectiveness of our approach and answer
the research questions raised in Section I, we conducted an
empirical study in which we investigated the evolution
history of three open-source systems. In the empirical study,
we identified typical patterns of modularity deviation trends.
Furthermore, we related the patterns of deviation trends with
the evolution intention, using several information sources
such as release notes, change logs, and design differences.

B. Extraction of Modularity Views
In our approach, we extract the following three

modularity views of each individual version of the software
system.

1) Package view
Package view can be directly extracted from the package

structure implemented in each version of the software system.
Since the similarity comparison algorithm MoJoFM works
only on flat decompositions, we use the leaf-level package
partition ignoring the package hierarchy so that the package
view can be compared with the other two modularity views
obtained by clustering.

2) Structural cluster view
In this study, we consider the following types of

structural dependencies for structural clustering, including
inheritance, interface implementation, aggregation, and
usage dependency (e.g., method calls, method parameters,
local variables). And relationships among classes are “lifted”
to file level. We use the Design Structure Matrix [40] to
describe the structural dependencies among source files.
Each row or column represents a source file. Each cell is 1 if
the two corresponding files are related, or 0 otherwise. In this
representation, each source file is represented as a vector that
describes how it is related to the other files. The similarity
between source files is measured by computing the cosine
similarity between two vectors of the two files.

Based on the structural similarities between source files,
we apply agglomerative hierarchical algorithm (implemented
in Weka [29]) to produce the structural modularity view. The
agglomerative algorithm starts with an initial cluster set that
treats each file as a cluster. After that, an iterative process is
conducted to merge two clusters with the largest similarity
iteratively until all the clusters are merged into one cluster.
To get a partition of the systems, we would use a cut-point
height [6] to output the clusters at specific level as the results

of clustering. In our current implementation, the cut point
height is automatically determined in that the number of
clusters produced is as close as possible to the number of
packages in the package view.

3) Semantic cluster view
In order to extract semantic information of the subject

system, we preprocess the source code files to eliminate non-
textual tokens (i.e., operators, numbers, etc.), Java keywords
and stop words and to split identifiers (e.g. based on case
switching and underscore). Then, we build a term-document
matrix. Next, we use Latent Semantic Indexing (LSI) [28] to
compute the concept space of the subject system. LSI is an
indexing and retrieval technique that uses a mathematical
technique called Singular Value Decomposition (SVD) to
identify patterns in the relationships between the terms and
concepts contained in an unstructured collection of text.
SVD reduces the number of dimensions and represents
documents as vectors in the reduced concept space. In this
paper, we take similar choice as [22] to determine the
dimensions of the concept space, that is, the number of
concepts in concept space is the number of singular values in
diagonal matrix S greater than 1. Finally, we get the
corresponding vectors of the source files in the concept space.

The similarity measurement and clustering algorithm
used in semantic clustering are the same as those used in the
structural clustering.

C. SiMo Metrics Computation
In our approach, the three SiMo metrics are calculated

using a widely adopted similarity comparison method,
MoJoFM [27]. MoJoFM is a normalized revision of MoJo
[30], [31] that calculates the minimum number of Move-and-
Join operations to transform one partition into another. Given
two partitions A and B, the similarity between A and B can
be measured by MoJoFM with the formula

��������� 	
 � �
 � ������ 	

����������� 	
�� �
���

where mno(A,B) means the minimum number of Move-and-
Join operations to transform partition A to partition B, ����������� 	
� means the maximum distance from any
partitions to partition B (see [27] for details). MoJoFM
ranges from 0% to 100%. The larger the MoJoFM value is,
the more similar the two partitions are.

The three SiMo metrics can then be defined as:
SPkg_St=MoJoFM(Pkg, St),
SPkg_Se=MoJoFM(Pkg, Se), and
SSt_Se=Max(MoJoFM(St, Se), MoJoFM(Se, St)).
Note that SPkg_St and SPkg_Se are asymmetric. The reason is

that deciding how to organize a package is subjective.

232

Designers may take a structural biased consideration or a
semantic biased consideration to organize the packages.
Therefore, we simply measure to what degree the package
view deviates from cluster views, ignoring the reverse
deviation.

D. Analyzing deviation trends
Based on the SiMo metrics between different modularity

views, three curves of similarity metrics are obtained for a
software system (see Figure 2, 3, 4 for examples). Change
trends of each SiMo metric can be defined in a project-
specific and experiential manner. In our study, a hold is
defined as the change of similarity metric being within 1
percentage of the MoJoFM value (approximations are used
instead of the real difference). Any changes beyond 1
percentage range are regarded as rises or drops respectively.

As mentioned in Section II, a deviation trend of different
modularity views is a combination of three change trends (i.e.
rise, drop, hold) of three SiMo metrics (i.e. SPkg_St, SPkg_Se,
SSt_Se).There can be up to 33=27 patterns of deviation trends.
We expect to encounter some of these patterns in software
evolution history, indicating the issues of software quality
evolution, in our follow-up empirical study.

V. EMPIRICAL STUDY

A. Research questions and subject systems
In our empirical study, we aim at answering the

following research questions:
Q1. What deviation trends of different modularity views

does a software system show during its evolution?
Q2. How do we understand software quality evolution by

analyzing the deviation trends?
Q3. Can we get useful feedback for evolution decisions

by monitoring the deviation trends of modularity
views?

To answer these questions, we conducted an empirical
study on three open-source Java systems, JFreeChart [32],
JHotDraw [33], [34] and JEdit [35]. We picked these three
subject systems not only because they are well-known and
believed to be well maintained, but also because they have
rich sets of release notes and documents to confirm our
observations.

All three subject systems have been developed and
maintained for about ten years. The projects JEdit and
JHotDraw are still active, while JFreeChart is relatively
stable and does not change very often. We checked out major
versions of the subject systems from SourceForge.net
Subversion (SVN) repositories. There are 124 versions in
total for three subject systems. Table I summarizes basic
statistics about the three subject systems used in our study.

B. Deviation trends shown by subject systems (Q1)
To answer the first research question, we calculated SiMo

metrics for each pair of consecutive versions of a subject
system and render the change of SiMo metrics in a line chart.
As we have three types of SiMo metrics (SPkg_St, SPkg_Se,
SSt_Se), we obtained three curves for each subject system.
Figure 2, Figure 3 and Figure 4 present our analysis results

for JFreeChart, JHotDraw and JEdit, respectively. To
facilitate the understanding of the deviation trends, we also
overlaid lines of code (LOC) and lines of comment (LOCom)
metrics in the figures. In each of these figures, the X axis
represents software versions, the left Y axis represents the
SiMo metrics between different modularity views, and the
right Y axis represents the LOC and LOCom metrics of the
system.

The first interesting observation is that different subject
systems present different characteristics in their deviation
trends of SiMo metrics. For example, the SiMo metrics of
JFreeChart vary greatly in the beginning (about one fifth of
its lifespan, from v0.5.6 to v0.9.0), and then become smooth
during the rest of its lifespan, while JHotDraw shows quite
smooth curves over time. JEdit presents yet another different
characteristic; its modularity view similarities keep changing
over its lifespan, especially the similarities between Package
View and Structural Cluster View (SPkg_St) and between
Structural Cluster View and Semantic Cluster View (SSt_Se).

The different characteristics of the deviation trends of
SiMo metrics show different evolution stages. In JFreeChart
(Figure 2), for example, three main stages are identified. We
checked our speculation by a closer analysis of the release
notes, change logs and UMLDiff results.

At the very beginning (versions 0.5.6 till 0.9.0), the SiMo
metrics between different modularity views changed
dramatically. This indicates a chaotic stage: the software was
built from scratch and actively under development, and
developers focused on adding new features without much
consideration on maintaining a “good” modularity.
Consequently, the consecutive versions show quite different
SiMo metrics between different modularity views.
Furthermore, most likely because the system was built from
scratch, developers have more freedom to change the desired
modularity as they wish. Therefore, the modularity views
may undergo dramatic changes between versions.

Due to the changes introduced in the chaotic phase,
JFreeChart might get less and less extensible and
maintainable and then entered an adjustment phase (version
0.9.0 till 0.9.21) in which JFreeChart has been actively
restructured at the same time of feature addition and
extension. During this adjustment phase, the SiMo metrics
between different modularity views changed dramatically
from one version to another. After the version 0.9.21, the
changes of the three SiMo metrics become similar. This
indicates that a reasonable balance was achieved between the
structural perspective and semantic perspective of the
package organization of the system.

After the adjustment stage, JFreeChart entered a
relatively stable stage – the fine-tuning stage. This stage may
indicate that the system was mature and functional. As a
result, the focus shifted from adding new features and
restructuring existing ones to mainly small enhancements
and bug fixes. As shown in Figure 2, from version 1.0.0.pre1
on, JFreeChart became stable. In other words, it indicates
that the package structure of the system is now considered
well organized and new features are rarely introduced to the
system. This is evident in JFreeChart release notes:
JFreeChart underwent no major changes since version 1.0.13.

233

TABLE I. SUBJECT SYSTEMS

Projects Time #
Versions # Packages # Source Files KLOC KLOCom. Source file restrictions

JFreeChart 2000/11/27-
2009/4/20 50 5-63 86-805 8.0-107.4 5.9-107.6 Restricted to the source folder

JHotDraw 2000/10/13-
2011/1/6 14* 7-41 128-429 9.3-55.9 4.6-29.2 Restricted to the source folder; excluding

test cases and sample files

JEdit 2001/11/05-
2011/2/3 60 11-29 138-503 29.2-105.8 10.4-48.4 Restricted to JEdit core

* We ignored JHotDraw versions 7.0.1 to 7.0.6 since these versions are not available

Figure 2. Similarity of modularity views and system size of JFreeChart

Figure 3. Similarity of modularity views and system size changing of JHotDraw

Figure 4. Similarity of modularity views and system size changing of JEdit

The second interesting observation is that the SiMo
metrics are stable in general, with some periodical changes.
This indicates that, although the high similarity between
modularity views represents better design, the subtle
differences between the modularity views cannot be
overlooked. The similarity between modularity views cannot
be monotonously rising, simply because these modularity
views are from different perspectives and the designers have
to continuously balance these aspects to obtain good quality
of the system.

C. Understanding deviation trends (Q2)
Among the 27 patterns of deviation trends mentioned in

Section IV, we find that some are closely related to
maintenance actions and frequently found in the evolution
history. Table II shows some deviation trend patterns found

in the evolution history, together with our intuitive
understandings in terms of maintenance actions.

The deviation trend patterns with our intuitive
understandings have covered 65% evolutions (79 out of total
121), which is somehow representative in the whole
evolution history. In order to evaluate our intuitive
understandings with deviation trend patterns, we look for
maintenance evidences in the release notes provided by
software developers and the source code changes obtained in
two versions. These two types of evidences compensate each
other. Release notes express explanations of software
maintenance from developers’ perspective at a relatively
higher abstraction, while source code differences between
versions show detailed factual changes that developers have
made to the software.

234

TABLE II. TYPICAL DEVIATION TREND PATTERNS IN OUR SUBJECT SYSTEMS

Typical deviation trend
pattern JFC JHD JE Total Intuitive

understanding Explanation of the intuitive understanding
SPkg_St SPkg_Se SSt_Se

 5 2 2 9 Low quality
evolution

All SiMo metrics drop. Maintainers have made casual or irresponsible changes that
degrade the modularity of the project. This is probably due to lack of a thorough
consideration of the structure of the project.

 DNC 4 3 3 10 Structural biased
evolution

SPkg_St rises but SPkg_Se drops. Maintainers have made dramatic structural
changes, ignoring some semantic information when restructuring the software.

 DNC 9 2 5 16 Semantic biased
evolution

SPkg_Se rise but SPkg_St drop. Maintainers may have been focused on clarifying
semantics in packages or improving semantic consistency within packages.

| | | 14 3 27 44 Steady-going
evolution

The software system has been well maintained. Modularity remain unchanged or
improved. This is a good signal for high quality evolution.

Others 17 3 22 42
Total 49 13 59 121

To gather source code changes, a software difference tool,
UMLDiff [36], is used for source code analysis. We run
UMLDiff to find which kinds of changes occur in neighbor
versions and how many of them have taken place. There are
36 types of source code differences that can be identified by
UMLDiff (e.g. “add call in/out”, “remove call in/out”, “add
data type”, “remove data type”, “renaming identifiers”, etc.
[37]). Among them only 33 are considered relative to
affecting software structure or semantics (“visibility up”,
“visibility down”, and “parameter list order change” are not
considered). We categorize these types into three higher-
level maintenance actions: 1) a few changes to the system; 2)
dramatic changes to the system; and 3) renaming identifiers.
The first two actions may contribute to both structure and
semantics, while the third is a typical semantic maintenance
action.

Another information source is the release notes and
change logs. We specifically chose Java projects for which
these materials are available. Eleven typical higher-level
maintenance actions in the release notes/change logs are
considered relative to our evolution patterns. Such
information is usually not observable by direct source code
analysis.

A guideline for relating the collected evidences to
evolution patterns is listed in Table III. The evolution
patterns are the inferred conclusions with our analysis to the
deviation trends of the different modularity views. These
patterns should be supported by one or more higher-level
maintenance actions. In Table III, the meanings of symbols
are as the following: a ‘ ’ means that the evidence (row)
strongly supports the corresponding evolution pattern
(column), a ‘ ’ means some support; a ‘ ’ means that the
evidence (row) has a strongly negative influence on the
corresponding evolution pattern (column), a ‘ ’ means some
negative impact, and a ‘ ’ means neutral.

We invited five software professionals to be our valued
evaluators. All of the evaluators are students from the School
of Computer Science of Fudan University. Two of them are
PhD students and the others are master-level students. The
programming experience of this group ranges from 4 to 8
years, with a median of 6 years. And two evaluators have
software industry experience above 2 years.

Table III is used for our guest evaluators to evaluate how
well the evidences support the intuitive understandings. In

our experiment, the professionals were given the projects, the
curves of SiMo indicators and Table III, and asked to look
into the release notes, change logs and UMLDiff results to
collect evidences for each evolution individually.

TABLE III. MAPPING TABLE TO RELATE EVIDENCES AND EVOLUTION
PATTERNS

Evid.
Src.

Higher-level
maintenance actions

Intuitive understanding
Low

quality
Structural

Biased
Semantic

Biased
Steady-
going

R
el

ea
se

 N
ot

es
 &

 C
ha

ng
e

Lo
gs

Add numerous new
features at one time

SVN Commit without
comments

Relevant change logs
are not found

Relevant Release notes
are not found

Package-level
restructuring (e.g.
adding/deleting/merging
/splitting packages)

Program refactoring
(e.g. adopting design
patterns, extracting
methods, etc.)

Add or update
comments in source
files

API additions, removes,
or changes

Update Javadoc
Update release notes,
change logs

Only bug fixes and
enhancements

Main release number
updated, or final release
number is created

U
M

LD
iff

 Few changes to the
system

Dramatic changes to the
system

Renaming identifiers

First, the deviation trend of an evolution is identified to
decide the intuitive understanding (column in Table III).
Then, the software professionals search for evidences listed
in rows in Table III. If evidences are found, a score is added
according to the symbol in the corresponding cell. A

235

Weighted Score Method (WSM, also used in Galster’s
work[38]) is adopted, where ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’
stands for -2, -1, 0, 1, 2, correspondingly. After that, the
scores of all evidences for the intuitive understanding are
summed up for final evaluation where a Likert scale is used.
The conclusions are categorized in five levels: (1) Strongly
Disagree, if summed score<-2, (2) Disagree, if -2 summed
score <0, (3) Unsure, if summed score=0, (4) Agree, if 0<
summed score 2, and (5) Strongly Agree, if summed
score>2. The final summed score shows the trueness of our
modularity-view-based understanding of software evolution.
Note that the evaluators are not required to review the source
code files manually, as this work is tedious and time-
consuming, and very likely to affect the evaluators’ moods
and reduce the quality of their evaluations.

Table IV shows the number of the evaluators’ responses
along the Likert scale. The evaluators agreed or strongly
agreed with our hypotheses on 70 evolutions (out of a total
79, >88%), which confirmed partly the reasonability of our
hypotheses. All disagree cases are those versions with few
change logs or release notes but UMLDiff shows dramatic
changes. Also, three near-by evolutions (JFreeChart v0.9.16
to v0.9.17, v0.9.18 to v0.9.19, v0.9.20 to 0.9.21) involving
six neighbor versions show that, during a certain period of
time, developers may “forget” to write release notes. We
believe that these cases are allowable in real development.
Further discussions on periodical analysis on the deviation
trends are in the next subsection.

TABLE IV. EVALUATION RESULT OF THE INTUITIVE UNDERSTANDINGS

Intuitive
understanding

S.
Disagree Disagree Unsure Agree S.

Agree Total

Low quality 0 0 0 6 3 9
Structural Biased 0 0 1 6 3 10
Semantic Biased 0 0 0 5 11 16
Steady-going 0 8 0 18 18 44

Total 0 8 1 35 35 79

D. Feedbacks for evolution decisions (Q3)
1) Feedbacks on low quality evolutions

As the target systems in our experiments are publicly
accepted as well maintained systems, there should be few
casual maintenance actions. Our experiments confirmed this
conjecture as there are only 9 casual evolutions in 121
evolutions.

All of these casual actions were confirmed by the
evaluators. In JFreeChart (Figure 2), we find all casual
maintenances occurred between earlier versions, when the
project was not stable yet. In JHotDraw and JEdit (Figure 3
and 4), this situation spans all the history. We believe this is
reasonable, because JFreeChart is an inactive project that is
quite stable in recent years, while JHotDraw and JEdit are
still quite active and not stabilized yet. The recent existence
of “casual maintenance” in JHotDraw and JEdit reflects this
fact.

A typical example of casual maintenance is the evolution
from version 5.3 to version 5.4b1 in project JHotDraw, as
can be seen in Figure 3. The release note for version 5.4b1
says:

“...It has not been extensively tested but is aimed to give
developers access to a more recent version of JHotDraw than
5.3….
…The release includes numerous new features…
…Finally, developers who require a more stable release or are
not willing to bear with some bugs and exceptions should not
use this beta release…”
As we can see in these notes, the developers faithfully

recorded that the beta version 5.4b1 was not stable and not
thoroughly tested. In the next version (v6.0b1), the situation
did not take a favorable turn. We believe that such tentative,
unorganized modifications should not be encouraged.

Low quality evolution is a hint for quality declining. If
low quality evolution occurs, it is probably not suitable to
release a new version and developers are suggested to
double-check modified modules for any undesirable
purposes.

2) Feedbacks on structure biased evolutions
Structure biased evolution features a significant rising of

SPkg_St and a declining of SPkg_Se. A typical example is
between versions 4.0.pre2 and 4.0.pre3 of JEdit. In the
release note of 4.0.pre3, we found 9 primary new features
and a long list of enhancements and bug fixes. In the results
provided by UMLDiff, we also found that 4.0.pre3 added
numerous data types (389, median 75), objects (492, median
97.5) and method parameters (194, median 41.5) but
removed much less ones (94 data types, 110 objects, and 91
method parameters). This is a typical function-expanding
evolution. A similar situation can be found in the next
evolution, from 4.0.pre3 to 4.0.pre4, and several other
evolutions with the same deviation trend pattern.

Such a pattern usually infers dramatic structural changes
to the software, but we find it not necessarily true that
dramatic changes of structure will significantly influence the
similarity between Pkg and St (SPkg_St). A representative
example is the evolution from JHotDraw6 (v6.0b1) to
JHotDraw7 (v7.0.7). Getting insight into the logs, we found
most of the changes were mostly structural:

“…JHotDraw7 is a major departure of JHotDraw – Only the
cornerstones of the original architecture remain. The API and
almost every part of the implementation have been reworked to
take advantage of the Java 2 SE 5.0 platform…
…Added new package org.jhotdraw.application…
…Moved all packages from ch.randelshofer to org.jhotdraw…
…Reorganized package structure…”
However, the changes are not reflected in Figure 3. The

SPkg_St was almost stable (with a little increasing) between
v6.0b1 and 7.0.7. It is very likely the case that, when a deep
restructure of a project is to happen, the new version may
have a completely different structure. Meanwhile, our
approach does not track the structure between versions, but
measures only similarity between different views instead of
different versions. Therefore, even if the changes are
numerous, the metrics may not be so sensitive.

3) Feedbacks on semantic biased evolutions
One typical example of semantic bias evolution type is

the evolution of JFreeChart between version 0.9.4 and 0.9.5.
Some evidences were found in the release notes that support
our understanding, such as “lots of Javadoc updates”.
Meanwhile, there are also some logs for structural

236

adjustment, such as “created separate packages for the axes
(com.jrefinery.chart.axis), plots (com.jrefinery.chart.plot)
and renderers (com.jrefinery.chart.renderer)”. Obviously,
we cannot clearly separate the semantic and structure
adjustment from each other. Since these two kinds of actions
are often intertwined with each other during the evolution,
the boundary between them, if exist, is ambiguous. Another
example is hidden in the only unsure response of structural
biased evolution type (JFreeChart versions 0.7.3 to 0.7.4). In
this evolution, although the deviation trend showed a
structural biased evolution, some evidences that support
semantic biased evolution was found, such as “…Various
Javadoc comment updates…” in the v0.7.4 release note.
Therefore, whether the curve will present a semantic biased
evolution is largely related to both structural changes and
internal doc updates, due to the strong relationship between
semantic and structural adjustments.

4) Feedbacks on steady-going evolutions
There are two extreme cases of steady-going evolutions,

according to our intuitive understandings. One is that all
SiMo indicators rise. Typical examples of this case are the
evolutions of project JFreeChart from version 0.9.20 to
version 0.9.21 and the evolution of JEdit from version
4.3.pre11 to version 4.3.pre12. In these evolutions, few
changes were made to the systems, and the release notes and
change logs often have detailled descriptions about the
changes applied to the systems. This reflects the maintainers
did these changes very carefully.

The other extreme case is that all SiMo indicators hold.
The period between versions 0.9.21 and 1.0.1 of JFreeChart
is a typical example. UMLDiff showed few changes and
release notes recorded few new features but only some bug
fixes or minor enhancements. This reflects a comparatively
stable phase of software evolution. In our empirical study,
the evaluators agreed or strongly agreed 36 evolutions (about
81%) out of total 44 indicated steady-going evolutions. The
other 8 evolutions get disagree responses. The common
characteristic of these evolutions is that there are dramatic
changes to the system without accompanying carefully
maintained documentation. To check the reliability of these
disagree responses, we further manually checked the source
codes of the relevant versions of these evolutions, and finally
found that, as the source codes were changed, a lot of
maintenance changes were applied to the embedded
comments. But unfortunately, this information was neither
captured by UMLDiff nor recorded in the release notes or
change logs. Embedded comments in source code should be
important evidence but it is not feasible to find this evidence
manually in the source. How to gather required evidence
remains an open question for the evaluation.

VI. THREATS TO VALIDITY

A. Internal validity
In our empirical study, we largely depend on evaluators’

software development experiences to get the evaluation
results. Also, the scoring criterion (the -2 to +2 scale) is quite
simplified. To minimize the threats, we introduced concrete
and objective guidelines for the evaluators. Some evaluators

worked collaboratively on the same project to eliminate
random errors. After all, it would be definitely a good idea to
find someone familiar with the project’s evolution history
and intensions to be our evaluator. As to the scoring criterion,
although more complicated scoring rules can be invented, the
five-level Likert approach has been proved to be effective.
Inventing a complex scoring rule might reflect some truth of
evolution intensions, but may also confuse the evaluators and
bring more arbitrary issues.

B. External validity
Our study is based on only three open source Java

projects. Although the projects are representative as they are
typical in recent software development community, the
particular evolution history of the projects may not be
applicable to other projects. To minimize the threats, we
carefully chose the projects that have a comparatively long
evolution history with almost complete maintenance record.
We do not expect to fully conclude software quality by
observing the deviation trends but hope to provide a different
way to evaluate possible evolution trends and quality during
software maintenance. Also, commercial software systems
would be a future work for us to evaluate and generalize our
approach and experiences.

C. Construct validity
In our approach, the modularity views are extracted

based on existing techniques. The reliability of program
analysis tools and software clustering algorithms affects the
result of the extraction process. To minimize the threats, we
tried several approaches for software clustering before
conducting a systematic empirical study. We finally adopted
a widely used algorithm to reflect the state-of-art of
clustering technique. Typically, there are two criteria for
evaluating the quality of clustering results, namely
Authoritativeness (the produced partition should be very
similar to authoritative partition) and Non-extremity
distribution (clusters in the produced partition should be
neither black holes nor gas cloud [6]). However, an
authoritative partition is often hard to find. Furthermore, we
investigate the target systems from different modularity
views; this makes the task even more complex. We think
non-extremity clusters may reveal the reasonability of the
partition. This criterion was assessed by NED (non-extreme
distribution) measure [22]. In our presented experiments,
more than three-quarters of the NED values are above 0.72
for structural clustering and 0.85 for semantic clustering,
showing acceptable clustering results.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose an approach for monitoring

design quality evolution of software systems in long-term
evolution by analyzing the deviation trends of different
modularity views. Currently, we consider three modularity
views, namely the desired modularity view reflected by the
package structure, and two implied modularity views
extracted by structural and semantic clustering. Based on the
approach, we conduct an experience study to evaluate our
approach on the one hand, and identify typical deviation

237

trend patterns on the other hand. We find that the deviation
trends of different modularity views largely indicate the
status of design quality evolution, especially the trends of
quality degradation. And the continuous monitoring of
deviation trends provides useful feedback for the future
evolution decisions.

We have noticed that our hypothesis and approach are
still to be further confirmed with wider range of software
projects. In order to overcome the difficulty of the lack of
evolution intensions and comprehensive maintenance logs,
we are trying to extend our experience study to internal and
external projects to increase the generality of our conclusion.
In the future work, we will also involve more modularity
views and provide more comprehensive deviation trend
monitoring for evolution decisions.

ACKNOWLEDGMENT
The work presented in this paper is supported by Natural

Science Foundation of China under grants 90818009,
60903013.

REFERENCES
[1] F. Van Rysselberghe, S. Demeyer, “Studying software evolution

information by visualizing the change history,” in ICSM, 2004, 328-
337.

[2] Z. Xing, E. Stroulia, “Analyzing the evolutionary history of the
logical design of object-oriented software,” in TSE, 2005. 31(10):
850-868.

[3] S. Huynh, Y. Cai, Y. Song, K. Sullivan, “Automatic modularity
conformance checking,” in ICSE, 2008, 411-420.

[4] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” In Classics in Software Engineering, Edward Nash
Yourdon (Ed.). Yourdon Press, Upper Saddle River, NJ, USA, 1979,
139-150.

[5] S. Wong, Y. Cai, M. Kim, M. Dalton, “Detecting software modularity
violations,” in ICSE. 2011, 411-420.

[6] N. Anquetil, T. C. Lethbridge, “Experiments with clustering as a
software remodularization method,” in WCRE, 1999, 235-255.

[7] A. Kuhn, S. Ducasse, T. Girba, “Enriching reverse engineering with
semantic clustering,” in WCRE, pp. 10 p, 7-11 Nov. 2005.

[8] T. Mens, S. Demeyer, “Future trends in software evolution metrics,”
in IWPSE '01, 2001, 83-86.

[9] M. M. Lehman, L. A. Belady, “Program Evolution Process of
Software Change,” Academic Press London and New York, 12-26,
1985.

[10] M. Godfrey, Q. Tu. Qiang, "Growth, Evolution, and Structural
Change in Open Source Software," in IWPSE '01, 2001, 103-106.

[11] J. F. Ramil, M.M. Lehman, “Defining and applying metrics in the
context of continuing software evolution,” in METRICS, 2001, 199-
209.

[12] Z. Xing, E. Stroulia, “Understanding phases, styles of object-oriented
systems' evolution,” in ICSE, 2004, 242-251.

[13] A. Mockus, L. G. Votta, “Identifying reasons for software changes
using historic databases,” in ICSM, 2000, 120-130.

[14] W. P. Stevens, G. J. Myers, L. L. Constantine, "Structured design,"
IBM Systems Journal, vol. 13, 1974, 115–139.

[15] F. Brito E Abreu, M. Goulao, “Coupling and cohesion as
modularization drivers: are we being over-persuaded?,” in CSMR,
2001, 47-57.

[16] H. Abdeen, S. Ducasse, H. Sahraouiy, I. Alloui, “Automatic Package
Coupling and Cycle Minimization,” in WCRE, 2009, 103-122.

[17] A. Marcus, D. Poshyvanyk, “The conceptual cohesion of classes,” in
ICSM, 2005, 133-142.

[18] D. Poshyvanyk, A. Marcus, “The Conceptual Coupling Metrics for
Object-Oriented Systems,” in ICSM, 2006, 469-478.

[19] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard, “Blending
Conceptual and Evolutionary Couplings to Support Change Impact
Analysis in Source Code,” in WCRE, 2010, 119-128.

[20] J. I. Maletic, N. Valluri, “Automatic software clustering via Latent
Semantic Analysis,” in ASE, 1999, 251-254.

[21] A. Kuhn, S. Ducasse, T. Girba, “Semantic clustering: Identifying
topics in source code,” in IST Journal, 2007. 49(3): 230-243.

[22] G. Scanniello, M. Risi, G. Tortora, “Architecture Recovery Using
Latent Semantic Indexing, K-Means: An Empirical Evaluation,” in
SEFM '10, 2010, 103-112.

[23] G. Bavota, A. D. Lucia, A. Marcusy, R. Oliveto, “Software Re-
Modularization Based on Structural and Semantic Metrics,” in
WCRE, 2010, 195-204.

[24] T. A. Wiggerts, “Using clustering algorithms in legacy systems
remodularization,” in WCRE, 1997, 33-43.

[25] J. Wu, A. E. Hassan, R. C. Holt, “Comparison of clustering
algorithms in the context of software evolution,” in ICSM, 2005,
525-535.

[26] J. Kothari, T. Denton, A. Shokoufandeh, S. Mancoridis, A. E. Hassan,
“Studying the Evolution of Software Systems Using Change Clusters,”
in ICPC, 2006, 46-55.

[27] W. Zhihua, V. Tzerpos, “An effectiveness measure for software
clustering algorithms,” in IWPC, 2004, 194-203.

[28] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R.
Harshman, “Indexing by Latent Semantic Analysis”, Journal of the
American Society for Information Science, vol. 41, 1990, 391-407.

[29] Weka, http://www.cs.waikato.ac.nz/~ml/weka/index.html, 2011
[30] V. Tzerpos, R. C. Holt, “MoJo: a distance metric for software

clusterings,” in WCRE, 1999, 187-193.
[31] W. Zhihua, V. Tzerpos, “An optimal algorithm for MoJo distance,” in

IWPC, 2003, 227-235.
[32] JFreeChart, http://www.jfree.org/jfreechart/, 2011
[33] JHotDraw, http://www.jhotdraw.org/, 2011
[34] JHotDraw, http://www.randelshofer.ch/oop/jhotdraw/, 2011
[35] JEdit, http://www.jedit.org/, 2011
[36] Z. Xing, E. Stroulia, “UMLDiff: An Algorithm for Objectoriented

Design Differencing,” in ASE, 2005, 54-65.
[37] Z. Xing, E. Stroulia, “API-Evolution Support with Diff-CatchUp,” in

ICSE, 2007, 818-836.
[38] M. Galster, A. Eberlein, M. Moussavi, “Systematic selection of

software architecture styles,” IET Software, 2010, 4(5): 349-360.
[39] ISO9126, “Information Technology - Software Product Evaluation -

Software Quality Characteristics and Metrics,” Geneva, Switzerland:
International Organization for Standardization.

[40] D. V. Steward, “The Design Structure System: A Method for
Managing the Design of Complex Systems,” IEEE Transactions on
Engineering Management, 1981, 28: 71–74.

[41] M. W. Godfrey, T. Qiang, “Evolution in open source software: a case
study,” in ICSM, 2000, 131-142.

[42] S. Ali, O. Maqbool “Monitoring software evolution using multiple
types of changes,” in ICET, 2009, 410-415.

[43] S. Demeyer, S. Ducasse, and M. Lanza, “A hybrid reverse
engineering approach combining metrics and program visualization,”
in WCRE '99, 1999, 175-186.

[44] S. Husein, A. Oxley, “A Coupling and Cohesion Metrics Suite for
Object-Oriented Software,” in ICCTD '09, 2009, 421-425.

[45] H. P. Breivold, M. A. Chauhan, M. A. Babar, “A Systematic Review
of Studies of Open Source Software Evolution,” in APSEC, 2010,
356-365.

238

