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Abstract—
We propose an image hashing paradigm using visually sig-

nificant feature points. The feature points should be largely
invariant under perceptually insignificant distortions. To
satisfy this, we propose an iterative feature detector to ex-
tract significant geometry preserving feature points. We
apply probabilistic quantization on the derived features to
introduce randomness, which in turn reduces vulnerability
to adversarial attacks. The proposed hash algorithm with-
stands standard benchmark (e.g. Stirmark) attacks includ-
ing compression, geometric distortions of scaling and small
angle rotation, and common signal processing operations.
Content changing (malicious) manipulations of image data
are also accurately detected. Detailed statistical analysis in
the form of receiver operating characteristic (ROC) curves
is presented and reveals the success of the proposed scheme
in achieving perceptual robustness while avoiding misclassi-
fication.
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I. Introduction

In cryptography, hash functions are typically used for
digital signatures to authenticate the message being sent
so that the recipient can verify its source. A key feature
of conventional hashing algorithms such as MD5 and SHA-
1 is that they are extremely sensitive to the message [1],
i.e. a one-bit change in the input changes the output dra-
matically. Data such as digital images, however, undergo
various manipulations such as compression and enhance-
ment. An image hash function takes into account changes
in the visual domain. In particular, a perceptual image
hash function should have the property that two images
that look the same to the human eye map to the same
hash value, even if the images have different digital rep-
resentations, e.g. separated by a large distance in mean
squared error.

An immediately obvious application for a perceptual
image hash is identification/search of images in large
databases. Several other applications have been identified
recently in content authentication, watermarking [2], and
anti-piracy search. Unlike traditional search, these scenar-
ios are adversarial, and require the hash to be a randomized
digest.

The underlying techniques for constructing image hashes
can roughly be classified into methods based on image
statistics [3], [4] [5], relations [6], [7], preservation of coarse
image representation [8], [9], [10], and low-level image fea-
ture extraction [11], [12].

The approaches in [3], [4] compute statistics such as
mean, variance, and higher moments of intensity values
of image blocks. They conjecture that such statistics have
good robustness properties under small perturbations to
the image. A serious drawback with these methods is that
it is easy to modify an image without altering its intensity
histogram. This jeopardizes the security properties of any
scheme that relies on intensity statistics. Venkatesan et
al. [5] develop an image hash based on an image statistics
vector extracted from the various sub-bands in a wavelet
decomposition of the image. They observe that statistics
such as averages of coarse sub-bands and variances of other
(fine detail) sub-bands stay invariant under a large class of
content-preserving modifications to the image. Although
statistics of wavelet coefficients have been found to be far
more robust than intensity statistics, they do not necessar-
ily capture content changes1 well, particularly those that

1A content change here signifies a perceptually meaningful per-
turbation to the image, e.g. adding/removing an object, significant
change in texture, morphing a face etc. In general, a perceptual hash
should be sensitive to both incidental as well as malicious content
changes. A major challenge in secure image hashing is to develop al-
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are maliciously generated.
A typical relation-based technique for image authentica-

tion, which tolerates JPEG compression, has been reported
by Lin and Chang [6]. They extract a digital signature
by using the invariant relationship between any two dis-
crete cosine transform (DCT) coefficients, which are at the
same position of two different 8 × 8 blocks. They found
these invariance properties could be preserved before and
after JPEG compression as long as it is perceptually loss-
less. This scheme, although robust to JPEG compression,
remains vulnerable to several other perceptually insignifi-
cant modifications, e.g. where the statistical nature of dis-
tortion is different from the blur caused by compression.
Recently, Lu et al. [7] have proposed a “structural digi-
tal signature” for image authentication. They observe that
in a sub-band wavelet decomposition, a parent and child
node are uncorrelated, but they are statistically dependent.
In particular, they observe that the difference of the mag-
nitude of wavelet coefficients at consecutive scales (i.e. a
parent node and its 4 child nodes) remains largely pre-
served for several content-preserving manipulations. Iden-
tifying such parent-child pairs and subsequently encoding
the pairs form their robust digital signature. Their scheme,
however, is very sensitive to global (e.g. small rotation and
bending) as well as local (Stirmark) geometric distortions,
which do not cause perceptually significant changes to the
image.

Fridrich and Goljan [8] propose a robust hash based
on preserving selected (low-frequency) DCT coefficients.
Their method is based on the observation that large
changes to low frequency DCT coefficients of the image are
needed to change the appearance of the image significantly.
Mihcak and Venkatesan [9] develop another image hashing
algorithm by using an iterative approach to binarize the
DC subband (lowest resolution wavelet coefficients) in a
wavelet decomposition of the image. Very recently, Kozat
et al. [10] proposed an image hashing scheme by retain-
ing the strongest singular vectors and values in a Singular
Value Decomposition (SVD) of image blocks. Approaches
based on coarse image representations [8], [9], [10] have
been shown to possess excellent robustness under percep-
tually insignificant modifications to the image, but they
remain vulnerable to local tampering or content changes.

In this paper, we present a framework for perceptual
image hashing using feature points. Feature point detec-
tors are attractive for their inherent sensitivity to content
changing manipulations. Current approaches based on fea-
ture points [11], [12] have limited utility in perceptual hash-
ing applications because they are sensitive to several per-
ceptually insignificant modifications as well. We propose
to extract significant image features by using a wavelet
based feature detection algorithm based on the character-
istics of the visual system [13]. Further, an iterative proce-
dure based on observations in [9] is used to lock onto a set
of image feature-points with excellent invariance properties
to perceptually insignificant perturbations. Unlike the use

gorithms that can detect (with high probability) malicious tampering
of image data.

of public-key encryption schemes in [11], [12] probabilis-
tic quantization is used to binarize the extracted feature
vector.

We develop both deterministic as well as randomized
hash algorithms. Randomization has been identified [5],
[9], [10] to be significant for lending unpredictability to the
hash and hence reducing the vulnerability of the hash al-
gorithm to malicious inputs generated by an adversary.

Our hash exhibits excellent robustness under benchmark
attacks (e.g. Stirmark) including compression, geometric
distortions of scaling and small angle rotation, and common
signal processing operations while successfully discriminat-
ing between perceptually distinct images.

Section II-A formally defines the desired properties of
a perceptual image hash. Section II-B then presents a
novel two-stage framework for perceptual image hashing
that consists of feature extraction followed by feature vec-
tor compression. We call the output of the first stage an
intermediate hash. The rest of the paper then focuses
on building such intermediate hash vectors. Section III
presents a robust feature detector based on visually sig-
nificant end-stopped wavelets [14]. Section IV presents a
probabilistic quantization approach to binarize image fea-
ture vectors that enhances robustness, and at the same
time, introduces randomness. Iterative algorithms (both
deterministic and randomized) that construct intermedi-
ate hash vectors are described in Section V. Experimen-
tal results demonstrating perceptual robustness, sensitivity
to content changes, and ROC analysis across 1000 differ-
ent images are reported in Sections VI-A through VI-D.
Concluding remarks and suggestions for future work are
collected in Section VII.

II. A unifying framework for perceptual
hashing

A. Perceptual Image Hash: Desired Properties

Section I describes many possible applications for an im-
age hash. The hash algorithm developed in this paper how-
ever, is specifically targeted at two scenarios: 1.) content
authentication, and 2.) anti-piracy search.

The former requires that the hash should remain invari-
ant if the image undergoes a “content preserving” (even
though lossy) transformation. Then a robust hash can
serve as substitute for a robust watermark meant to be
retained as long as the image is not significantly changed.
The difference with watermarking is that hashing is pas-
sive and does not require any embedding into the image.
Anti-piracy search is aimed at thwarting a pirate or at-
tacker who may claim ownership of proprietary image con-
tent by suitably modifying it. As an example consider a pi-
rate/attacker who may steal images from an official website
and post them as his own by compressing them or send-
ing them through geometric distortions such as print-scan.
Since comparing with all images on the web is impractical,
the true/official content owner may employ a web-crawler
software that computes hashes of images on randomly ac-
cessed webpages. If the hashes match those of their own
image content, pirates can be caught.
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In view of the above, we develop formally, the desired
properties of a perceptual image hash. Let I denote a set
of images (e.g., all natural images of a particular size) with
finite cardinality. Also, let K denote the space of secret
keys2. Our hash function then takes two inputs, an image
I ∈ I and a secret key K ∈ K, to produce a q-bit binary
hash value h = H(I, K). Let Iident ∈ I denote an image
such that Iident looks the same as I. Likewise, an image
in I, perceptually distinct from I will be denoted by Idiff .
Let θ1, θ2 satisfy 0 < θ1, θ2 < 1: Then, three desirable
properties of a perceptual hash are identified as:

1. Perceptual robustness:
Probability(H(I, K) = H(Iident,K)) ≥ 1− θ1, for a given
θ1

2. Fragility to visually distinct images:
Probability(H(I, K) 6= H(Idiff ,K)) ≥ 1 − θ2, for a given
θ2

3. Unpredictability of the hash:
Probability(H(I, K) = v) ≈ 1

2q , ∀ v ∈ {0, 1}q

Let Q = {H(I, K) | I ∈ I, K ∈ K}; i.e., the set
of all possible realizations of the hash algorithm on the
product space I × K. Also, for a fixed I0 ∈ I define
O = {H(I0,K) | K ∈ K}; i.e., for a fixed image the set
of all possible realizations of the hash algorithm over the
key space K.

Note that the probability measure in the first two prop-
erties is defined over the set Q. For example, property 1
requires that for any pair of “perceptually identical” im-
ages in I and any K ∈ K the hash values must be identical
with high probability. The probability measure in the third
property however, is defined on O; i.e., the third property
requires that as the secret key is varied over K for a fixed
input image; the output hash value must be approximately
uniformly distributed among all possible q-bit outputs.

Further, the three desirable hash properties conflict with
one another. The first property amounts to robustness un-
der small perturbations whereas the second one requires
minimization of collision probabilities for perceptually dis-
tinct inputs. There is clearly a trade-off here; e.g., if
very crude features were used, then they would be hard to
change (i.e., robust), but it is likely that one is going to en-
counter collision of perceptually different images. Likewise
for perfect randomization, a uniform distribution on the
output hash values (over the key space) would be needed
which in general, would deter achieving the first property.
From a security viewpoint, the second and third proper-
ties are very important; i.e., it must be extremely difficult
for the adversary to manipulate the content of an image
and yet obtain the same hash value. It is desirable for the
hash algorithm to achieve these (conflicting) goals to some
extent and/or facilitate trade-offs.

Fig. 1. Block diagram of the Hash Function

B. Hashing Framework

We partition the problem of deriving an image hash into
two steps, as illustrated in Fig. 1. The first step extracts
a feature vector from the image, whereas the second stage
compresses this feature vector to a final hash value. In
the feature extraction step, the two-dimensional image is
mapped to a one-dimensional feature vector. This feature
vector must capture the perceptual qualities of the image.
That is, two images that appear identical to the human
visual system should have feature vectors that are close
in some distance metric. Likewise, two images that are
clearly distinct in appearance must have feature vectors
that differ by a large distance. For the rest of the paper,
we will refer to this visually robust feature vector (or its
quantized version) as the “intermediate hash”. The second
step then compresses this intermediate hash vector to a
final hash value.

This paper focuses on a feature-point based solution to
stage 1 of the hash algorithm. Solutions for stage 2 have
been proposed in [5], [15], [16], [17].

III. Feature Extraction

For the perceptual hashing problem, two major at-
tributes of the feature detector are identified: (1) general-
ity, and (2) robustness. The generality criterion addresses
the issue of whether or not the feature detector can be
used over a variety of images and applications. Robustness
is desirable for the features to be retained in perceptually
identical images.

Feature detection continues to be an important vision
problem and a plethora of algorithms have been reported.
For an extensive coverage of feature detection, the reader is
referred to [18]. In this Section, we review selected and best
known robust interest point detectors that are particularly
well-suited for the hashing problem. We also propose our
feature detection method and experimentally evaluate it
against existing approaches.

A. Harris Detector

Possibly the best known corner detector, the Harris de-
tector [19] uses differential features of the image. The con-
struction of the detector is based on a corner detection
created by Moravec [20]. The response function Ex,y is
calculated for a shift (x, y) from the central point (u, v):

2The key space in general can be constructed in several ways. A
necessary but not sufficient condition for secure hashing is that the
key space should be large enough to preclude exhaustive search. For
this paper, unless specified explicitly we will assume the key space to
be the hamming space of 32-bit binary strings.
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Ex,y =
∑
u,v

wu,v|Ix+u,y+v − Ix,y|2 (1)

where Iu,v represents the luminance of the image at the
co-ordinate (u, v), and the function wu,v represents a rect-
angular Gaussian response window centered at (u, v). In
essence, this corner detector functions by considering a
local window in the image (represented by the span of
w(x, y)), and determining the average changes of image
intensity by shifting the window by small amounts in var-
ious directions. A corner can thus be detected when the
change produced by any of the shifts (i.e. in all possible
directions) is large.

Harris reformulated the detection function using a ma-
tricial formulation. Let

x =
[

x
y

]
Ix = ∂I

∂x Iy = ∂I
∂y (2)

A = (Ix)2 ∗ w B = (Iy)2 ∗ w C = IxIy ∗ w (3)

The detection function Ex,y is then given by xT Mx and

M =
[

Ax,y Cx,y

Cx,y Bx,y

]
(4)

Ex,y may hence be interpreted as the auto-correlation of
the image with the shape function M. Harris and Stephens
gave a new definition of the detector function using the
eigenvalues α and β of the matrix M. These values are in-
variant by rotation and if their magnitudes are high, the lo-
cal auto-correlation function is represented by a local peak.
To avoid computing the eigenvalue of M, the new criterion
is based on the trace and determinant of M

M =
Tr(M) = α + β = A + B
det(M) = α.β = A.B − C2

RH = det(M) −k.(Tr(M))2
(5)

where k is an arbitrary constant. Feature points extraction
is achieved by applying a threshold on the response RH and
searching for local maxima.

B. Hessian Affine

A similar idea is explored in the detector based on the
Hessian matrix [21]. The difference is in the matrix M
which is now given by:

M =
[

Ix,x Ix,y

Ix,y Iy,y

]
∗ w (6)

where Ixx = ∂2I
∂x2 and Iyy = ∂2I

∂y2 .
The second derivatives, which are used in this matrix

give strong responses on blobs and ridges. The interest
points are similar to those detected by a Laplacian operator
but a function based on the determinant of the Hessian
matrix [21] penalizes very long structures for which the
second derivative in one particular orientation is very small.
A local maximum of the determinant indicates the presence
of a bob structure.

C. Maximally Stable Extremal Region (MSER) Detector

A Maximally Stable Extremal Region (MSER) [22] is a
connected component of an appropriately thresholded im-
age. The word extremal refers to the property that all pix-
els inside the MSER have either higher (bright extremal
regions) or lower (dark extremal regions) intensity than all
the pixels on its outer boundary. The maximally stable in
MSER describes the property optimized in the threshold
selection process.

The set of extremal regions E , i.e., the set of all con-
nected components obtained by thresholding, has a num-
ber of desirable properties. Firstly, a monotonic change of
image intensities leaves E unchanged, since it depends only
on the ordering of pixel intensities which is preserved un-
der monotonic transformation. This ensures that common
photometric changes modelled locally as linear or affine
leave E unaffected. Secondly, continuous geometric trans-
formations preserve topology pixels from a single con-
nected component are transformed to a single connected
component. Thus after a geometric change locally approx-
imated by an affine transform, homography or even contin-
uous non-linear warping, a matching extremal region will
be in the transformed set E ′ . Finally, there are no more
extremal regions than there are pixels in the image. So a
set of regions was defined that is preserved under a broad
class of geometric and photometric changes and yet has
the same cardinality as e.g. the set of fixed-sized square
windows commonly used in narrow-baseline matching.

For a detailed description of particular techniques to se-
lect extremal regions, the reader is referred to [22].

D. Feature Detection Based on End-stopping Behavior of
the Visual System

D.1 End-Stopped Wavelets

Psychovisual studies have identified the presence of cer-
tain cells, called hypercomplex or end-stopped cells, in the
primary visual cortex [13]. For real-world scenes, these
cells respond strongly to extremely robust image features
such as corner like stimuli and points of high curvature
[23], [14]. The term end-stopped comes from the strong
sensitivity of these cells to end-points of linear structures.
Bhattacherjee et al. [14] construct “end-stopped” wavelets
to capture this behavior. The construction of the wavelet
kernel (or basis function) combines two operations. First,
linear structures having a certain orientation are selected.
These linear structures are then processed to detect line-
ends (corners) and/or high curvature points.

Morlet wavelets can be used to detect linear structures
having a specific orientation. In the spatial domain, the
two dimensional (2-D) Morlet wavelet is given by [24]

ψM (x) = (ejk0.x − e−
1
2 |k0|2)(e−

1
2 |x|2) (7)

where x = (x, y) represents 2-D spatial coordinates, and
k0 = (k0, k1) is the wave-vector of the mother wavelet,
which determines scale-resolving power and angular-
resolving power of the wavelet [24]. The frequency domain



MONGA AND EVANS: ROBUST PERCEPTUAL IMAGE HASHING 5

representation, ψM (k), of a Morlet wavelet is

ψ̂M (k) = (e−
1
2 |k−k0|2 − e−

1
2 |k0|2)(e−

1
2 |k|2) (8)

Here, k represents the 2-D frequency variable (u, v). The
Morlet function is similar to the Gabor function, but with
an extra correction term e−

1
2 (|k0|2+|x|2) to make it an ad-

missible wavelet. The orientation of the wave-vector deter-
mines the orientation tuning of the filter. A Morlet wavelet
detects linear structures oriented perpendicular to the ori-
entation of the wavelet.

In two dimensions, the end points of linear structures can
be detected by applying the first-derivative of Gaussian
(FDoG) filter in the direction parallel to the orientation
of structures in question. The first filtering stage detects
lines having a specific orientation and the second filtering
stage detects end-points of such lines. These two stages can
be combined into a single filter to form an “end-stopped”
wavelet [14]. An example of an end-stopped wavelet and
its 2-D Fourier transform follow:

ψE(x, y) =
1
4
ye
−
(

x2+y2

4 +
k0
4 (k0−2jx)

)
(9)

ψ̂E(u, v) = 2π

(
e−

(u−k0)2+(v)2

2

)(
jve−

u2+v2

2

)
(10)

Eqn. (10) shows ψ̂E as a product of two factors. The
first factor is a Morlet wavelet oriented along the u−axis.
The second factor is a FDoG operator applied along the
frequency-axis v, i.e. in the direction perpendicular to the
Morlet wavelet. Hence, this wavelet detects line ends and
high curvature points in the vertical direction. Fig. 2 illus-
trates the behavior of the end-stopped wavelet as in (9)-
(10). Fig. 2 (a) shows a synthetic image with L-shaped re-
gion surrounded by a black background. Fig. 2 (b) shows
the raw response of the vertically oriented Morlet wavelet
at scale i = 2. Note that this wavelet responds only to
the vertical edges in the input. The response of the end-
stopped wavelet is shown in Fig. 2 (c) also at scale i = 2.
The responses are strongest at end-points of vertical struc-
tures and negligibly small elsewhere. The local maxima of
these responses in general correspond to corner-like stimuli
and high curvature points in images.

D.2 Proposed feature detection method

Our approach to feature detection computes a wavelet
transform based on an end-stopped wavelet obtained by ap-
plying the FDoG operator to the Morlet wavelet:

ψE(x, y, θ) = (FDoG) o(ψM (x, y, θ)) (11)

Orientation tuning is given by θ = tan−1(k1
k0

). Let the
orientation range [0, π] be discretized into M intervals and
the scale parameter α be sampled exponentially as αi, i ∈
Z. This results in the wavelet family

(
ψE(αi(x, y, θk)

)
, α ∈ R, i ∈ Z (12)

(a) Synthetic L-shaped image (b) Response of a Morlet wavelet, ori-
entation = 0o

(c) Response of the end-stopped
wavelet

Fig. 2. Behavior of the end-stopped wavelet on a synthetic image:
note the strong response to line-ends and corners

————————————–
1. Compute the wavelet transform in (13) at a suitably chosen scale
i for several different orientations. The coarsest scale (i = 1) is not
selected as it is too sensitive to global variations. The finer the scale,
the more sensitive it is to distortions such as quantization noise. We
choose i = 3.
2. Locations (x, y) in the image that are identified as candidate fea-
ture points satisfy

Wi(x, y, θ) = max
(x′,y′)∈N(x,y)

|Wi(x
′, y′, θ)| (14)

where N(x,y) represents the local neighborhood of (x, y) within which
the search is conducted.
3. From the candidate points selected in step 2, qualify a location as
a final feature point if

max
θ

Wi(x, y, θ) > T (15)

where T is a user-defined threshold.

————————————–

Fig. 3. Feature detection method that preserves significant image
geometry feature points of an image.

where θk = (kπ)/M , k = 0,..., M -1. The wavelet transform
is

Wi(x, y, θ) =
∫ ∫

f(x1, y1)ψE
∗ (

αi(x− x1, y − y1), θ
)
dx1dy1

(13)
The sampling parameter α is chosen to be 2.

Fig. 3 describes the proposed feature detection method.
Step 1 computes the wavelet transform in (13) for each im-
age location. Step 2 identifies significant features by look-
ing for local maxima of the magnitude of the wavelet coef-
ficients in a preselected neighborhood. We chose a circular
neighborhood to avoid increasing detector anisotropy. Step
3 applies thresholding to eliminates spurious local maxima
in featureless regions of the image.

The method in Fig. 3 has two free parameters: integer
scale i and real threshold T . The threshold T is adapted to
select a fixed number (user defined parameter P ) of feature
points from the image. An image feature vector is formed
by collecting the magnitudes of the wavelet coefficients at
the selected feature points.
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E. Detector Evaluation

To evaluate a detector for the robust hashing application,
we employ a robustness function R defined as

R =
Nret − (Nnew + Nrem)

Nret + Nrem
(16)

where Ntot = Nret + Nrem represents the total number of
feature points detected in the original image. Nret denotes
the number of feature points after the image goes a con-
tent preserving (but lossy) transformation. Similarly, Nrem

represents the number of feature points that are removed
as a result of the transformation, and Nnew is the number
of new feature points that may be introduced. Clearly, the
maximum value of this function is 1 which happens when
Nnew = Nrem = 0.

We obtained this function for the four feature point
detectors reviewed above under a large class of percep-
tually insignificant and typically allowable transforma-
tions including JPEG image compression, rotation, scal-
ing, additive white Gaussian noise addition, print-scan and
linear/non-linear image filtering operations. Then an aver-
aged evaluation measure Rave was obtained by averaging
the values of R from each transformation.

A plot of Rave for tests on four different images is plot-
ted for the four detectors in Fig. 4. Clearly, the best values
of Rave are obtained for the feature detector based on end-
stopped wavelets followed by MSER. In practice, we ob-
served that while most detectors fared comparably under
geometric attacks of rotation, scaling and translation, the
real gains of the end-stopped wavelet based detector were
under lossy transformations such as compression, noise ad-
dition and non-linear filtering.

IV. Probabilistic Quantization

Let f denote the length P feature vector. The next
step then is to obtain a binary string from the feature vec-
tor that would form the intermediate hash. Previous ap-
proaches have [3], [11] used public-key encryption methods
on image features to arrive at a digital (binary) signature.
Such a signature would be very sensitive to small perturba-
tions in the extracted features (here, the magnitude of the
wavelet coefficients). We observe that under perceptually
insignificant distortions to the image, although the actual
magnitudes of the wavelet coefficients associated with the
feature points may change, the “distribution” of the mag-
nitudes of the wavelet coefficients is still preserved.

In order to maintain robustness, we propose a quanti-
zation scheme based on the probability distribution of the
features extracted from the image. In particular, we use
the normalized histogram of the feature vector f as an esti-
mate of its distribution. The normalized histogram appears
to be largely insensitive to attacks that do not cause sig-
nificant perceptual changes. In addition, a randomization
rule [25] is also specified which adds unpredictability to the
quantizer output.

Let L be the number of quantization levels, fq denote the
quantized version of f , f(k) and fq(k) denote the kth ele-
ments of f and fq, respectively. The binary string obtained

Fig. 4. Detector benchmark Rave for the four detectors across four
different images. Note, the closer Rave is to 1, better the perfor-
mance.

from the quantized feature vector fq is hence of length
P dlog2(L)e bits. If quantization were deterministic, the
quantization rule would be given by

li−1 ≤ f(k) < li, fq(k) = i (17)

where [li−1, li) is the ith quantization bin. Note, the quan-
tized values are chosen to be i, 1 ≤ i ≤ L. This is because
unlike traditional quantization for compression, there is no
constraint on the quantization levels for the hashing prob-
lem. These may hence be designed to convenience as long
as the notion of “closeness” is preserved. Here, we design
quantization bins [li−1, li) such that

∫ li

li−1

pf (x)dx =
1
L

, 1 ≤ i ≤ L (18)

where pf (x) is the estimated distribution of f . This ensures
that the quantization levels are selected according to the
distribution of image features. In each interval [li−1, li),
we obtain center points Ci with respect to the distribution,
given by

∫ li

Ci

pf (x)dx =
∫ Ci

li−1

pf (x)dx =
1

2L
(19)

Then, we find deviations Pi, Qi about Ci where li−1 ≤
Pi ≤ Ci and Ci ≤ Qi ≤ li, such that

∫ Qi

Ci
pf (x)dx

∫ li
Ci

pf (x)dx
=

∫ Ci

Pi
pf (x)dx

∫ Ci

li−1
pf (x)dx

, 1 ≤ i ≤ L (20)
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Pi, Qi are hence symmetric around Ci with respect to the
distribution pf (x). By virtue of the design of Ci’s in (19),
the denominators in (20) are both equal to 1

2L and hence
only the numerators need to be computed. The probabilis-
tic quantization rule is then completely given by

Pi < f(k) < Qi, fq(k) =





i with probability

∫ f(k)

Pi
pf (x)dx∫ Qi

Pi
pf (x)dx

i− 1 with probability

∫ Qi

f(k)
pf (x)dx∫ Qi

Pi
pf (x)dx

li−1 ≤ f(k) ≤ Pi, fq(k) = i− 1 with probability 1
(21)

Qi ≤ f(k) ≤ li, fq(k) = i with probability 1 (22)

The output of the quantizer is deterministic except in the
interval (Pi, Qi) Note, if f(k) = Ci for some i, k then the
assignment to levels i or i− 1 takes place with equal prob-
ability, i.e. 0.5, the quantizer output in other words is com-
pletely randomized. On the other hand, as f(k) approaches
Pi or Qi the quantization decision becomes almost deter-
ministic.

In the next section, we present iterative algorithms that
employ the feature detector in Section III-D.2, and the
quantization scheme described in this section to construct
binary intermediate hash vectors.

V. Intermediate Hash Algorithms

A. Algorithm 1 - Deterministic

The intermediate hash function for image I is repre-
sented as h(I) and let DH(·, ·) denote the normalized Ham-
ming distance between its arguments (binary strings).

Mihcak et al. [9] observe that primary geometric features
of the image are largely invariant under small perturbations
to the image. They propose an iterative filtering scheme
that minimizes the presence of “geometrically weak com-
ponents” and enhances “geometrically strong components”
by means of region growing. We adapt the algorithm in
[9] to lock onto a set of feature-points that are largely pre-
served in perceptually similar versions of the image. The
stopping criterion for our proposed iterative algorithm is
achieving a fixed point for the binary string obtained on
quantizing the vector of feature points f .

Fig. 4 describes the proposed intermediate hash algo-
rithm. Step 4 eliminates isolated significant components.
Step 5 preserves the “geometrically strong” components by
low-pass filtering (which introduces blurred regions). The
success of the deterministic algorithm relies upon the self-
correcting nature of the iterative algorithm as well as the
robustness of the feature detector. The above iterative al-
gorithm is fairly general in that any feature detector that
extracts visually robust image features may be used.

B. Algorithm 2 - Randomized

Randomizing the hash output is desirable not only for
security against inputs designed by an adversary (malicious

————————————–
1. Get parameters MaxIter, ρ and P (number of features),
and set count = 1
2. Use the feature detector in Fig. 3 to extract the length
P feature vector f .
3. Quantize f according to the rule given by (17) and (18)
(i.e. deterministic quantization) to obtain a binary string
b1

f

4. (Perform order-statistics filtering) Let Ios =
OS(I; p, q, r) which is the 2-D order statistics filter-
ing of the input I. For a 2-D input X, Y = OS(X; p, q, r)
where ∀i, j, Y (i, j) is equal to the rth element of the sorted
set of X(i′, j′), where i′ ∈ {i − p, i − p + 1, ..., i + p} and
j′ ∈ {j−q, j−q+1, ..., j+q}. Note, for r = (2p+1)(2q+1)/2
this is same as median filtering.
5. Perform low-pass linear shift invariant filtering on Ios to
obtain Ilp.
6. Repeat steps (2) and (3) with Ilp to obtain b2

f

7. If (count = maxIter) go to step 8.
else if DH(b1

f ,b2
f ) < ρ go to step 8.

else set I = Ilp and go to step 2.
8. Set h(I) = b2

f

————————————–

Fig. 5. Deterministic intermediate hash algorithm

attacks), but also for scalability, i.e. the ability to work
with large data sets while keeping the collision probability
for distinct inputs in check. The algorithm as presented in
Fig. 4 does not make use of a secret key and hence there is
no randomness involved.

In this section, we will construct randomized hash al-
gorithms using a secret key K, which is used as the seed
to the pseudo-random number generator for the random-
ization steps in the algorithm. For this reason, we now
denote the intermediate hash vector as h(I, K), i.e. func-
tion of both the image, and the secret key. We present a
scheme that employs a random partitioning of the image
to introduce unpredictability in the hash values. A step-
wise description is given in Fig. 5.

Qualitatively, Algorithm 2 enhances the security of the
hash by employing Algorithm3 1 on randomly chosen re-
gions or sub-images. As long as these sub-images are suf-
ficiently unpredictable (i.e. they differ significantly as the
secret key is varied), then the resulting intermediate hashes
are also different with high probability4. Examples of ran-
dom partitioning of the lena image using Algorithm 2, are
shown in Fig. 7. In each case, i.e. Figs. 7 (a), (b), and (c),
a different secret key was used.

The approach of dividing the image into random rectan-
gles for constructing hashes was first proposed by Venkate-
san et al. in [5]. However, their algorithm is based on
image statistics. In our framework, by applying the fea-

3This would now use a probabilistic quantizer.
4Although we do not implement it, as suggested by an anony-

mous reviewer another avenue for randomization is to employ the
feature detector in Fig. 3 on randomly chosen wavelet scales. In that
case however, the choice of wavelet coefficients (from different scales)
should be done very carefully to retain necessary hash robustness.
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————————————–
1. (Random Partitioning) Divide the image into N (over-
lapping) random regions. In general, this can be done in
several ways. The main criterion is that a different par-
titioning should be obtained (with high probability) as
the secret key is varied. In our implementation, we di-
vide the image into overlapping circular/elliptical regions
with randomly selected radii. Label, these N regions as Ci,
i = 1, 2, ..., N .
2. (Rectangularization) Approximate each Ci by a rectan-
gle using a waterfilling like approach. Label the resulting
random rectangles (consistent with the labels in step 1.) as
Ri, i = 1, 2, ..., N .
3. (Feature Extraction) Apply Algorithm 1 on all Ri, de-
note the binary string extracted from each Ri as bi. Con-
catenate all bi’s into a single binary vector b of length B
bits.
4. (Randomized Subspace Projection) Let A < B be the
desired length of h(I, K). Randomly choose distinct in-
dices i1, i2, ..., iA such that each im ∈ [1, B],m = 1, 2, ..., A.
5. The intermediate hash h(I, K) =
{b(i1),b(i2), ...,b(iA)}

————————————–

Fig. 6. Randomized intermediate hash algorithm

(a) Secret key K1 (b) Secret key K2 (c) Secret key K3

Fig. 7. Examples of random partitioning of the lena image into N =
13 rectangles. Note that the random regions vary significantly
based on the secret key.

ture point detector to these semi-global rectangles, we gain
an additional advantage in capturing any local tampering
of image data (results presented later in Section VI-B).
These rectangles in Fig. 7 are deliberately chosen to be
overlapping to further reduce the vulnerability of the al-
gorithm to malicious tampering. Finally, the randomized
sub-space projection step adds even more unpredictability
to the intermediate hash. Trade-offs among randomiza-
tion, fragility and perceptual robustness are analyzed later
in Section VI-C.

VI. Results

We compare the binary intermediate hash vectors ob-
tained from two different images for closeness in (normal-
ized) Hamming distance. Recall from Section II-A, that

(I, Iident) ∈ I denote a pair of perceptually identical im-
ages, and likewise (I, Idiff ) ∈ I represent perceptually dis-
tinct images. Then, we require

DH(h(I),h(Iident)) < ε (23)

DH(h(I),h(Idiff )) > δ (24)

where the natural constraints 0 < ε < δ apply. For results
presented in Sections VI-A and VI-B, the following pa-
rameters were chosen for Algorithm 1: a circular (search)
neighborhood of 3 pixels was used in the feature detector,
P = 64 features were extracted, the order statistics filtering
was OS(3, 3, 4) and a zero-phase 2-D FIR low-pass filter of
size 5 × 5 designed using McClellan transformations [26]
was employed. For Algorithm 2, the same parameters were
used except that the image was partitioned into N = 32
random regions. For this choice of parameters, we experi-
mentally determine ε = 0.2 and δ = 0.3. A more elaborate
discussion of how to choose the best ε and δ will be given
in Section VI-D. All input images were resized to 512×512
using bicubic interpolation [27]. For color images, both Al-
gorithm 1 and 2 were applied to the luminance plane since
it contains most of the geometric information.

A. Robustness under perceptually insignificant modifica-
tions

Figs. 8 (a)-(d) show four perceptually identical images.
The extracted feature points at algorithm convergence are
overlayed on the images. The original bridge image is
shown in Fig. 8(a). Figs. 8(b), (c), and (d), respectively,
are the image in (a) attacked by JPEG compression with
quality factor (QF) of 20, rotation of 2o with scaling, and
the Stirmark local geometric attack [28]. It can be seen
that the features extracted from these images are largely
invariant.

Table I then tabulates the quantitative deviation as the
normalized Hamming distance between the intermediate
hash values of the original and manipulated images for var-
ious perceptually insignificant distortions. The distorted
images were generated using the Stirmark benchmark soft-
ware [28]. The results in Table I reveal that the devia-
tion is less than 0.2 except for large rotation (greater than
5o), and cropping (more than 20%). More severe geomet-
ric attacks like large rotation, affine transformations, and
cropping can be handled by a search based scheme. Details
may be found in [29].

B. Fragility to Content Changes

The essence of our feature point based hashing scheme
lies in projecting the image onto a visually meaningful
wavelet basis, and then retaining the strongest coefficients
to form the content descriptor (or hash). Our particular
choice of the basis functions, i.e. end-stopped type expo-
nential kernels, yield strong responses in parts of the image
where the significant image geometry lies. It is this very
characteristic that makes our scheme attractive for detect-
ing content changing image manipulations. In particular,
we observe that a visually meaningful content change is
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(a) Original Image (b) JPEG, QF = 10

(c) 2o rotation and scaling (d) Stirmark local geometric attack

Fig. 8. Original/attacked images with feature points at algorithm
convergence. Feature points overlaid on images.

effected by making a significant change to the image geom-
etry.

Fig. 8 shows two examples of malicious content changing
manipulation of image data and the response of our feature
extractor to those manipulations. Fig. 8 (a) shows the
original toys image. Fig. 8 (b) then shows a tampered
version of the image in Fig. 8(a), where the tampering is
being brought about by addition of a “toy bus”. In Fig.
8 (d), an example of malicious tampering is shown where
the face of the lady in Fig. 8 (c) has been replaced by a
different face from an altogether different image.

Comparing Figs. 8 (a) and (b), and Figs. 8 (c) and (d) it
may be seen that several extracted features do not match.
This observation is natural since our algorithm is based
on extracting the P strongest geometric features from the
image. In particular, in Fig. 8 (d), tampering of the lady’s
face is easily detected since most differences from Fig. 8 (c)
are seen in that region. Quantitatively, this translates into
a large distance between the intermediate hash vectors.

With complete knowledge of the iterative feature extrac-

Attack Lena Bridge Peppers
JPEG, QF = 10 0.04 0.04 0.06
AWGN, σ = 20 0.04 0.03 0.02
Contrast enhancement 0.00 0.06 0.04
Gaussian smoothing 0.01 0.03 0.05
Median filter (3 × 3) 0.02 0.03 0.07
Scaling by 60% 0.02 0.04 0.05
Shearing by 5% 0.08 0.14 0.10
Rotation by 3o 0.13 0.15 0.15
Rotation by 5o 0.18 0.20 0.19
Cropping by 10% 0.12 0.13 0.15
Cropping by 20% 0.21 0.22 0.24
Random bending 0.15 0.17 0.14
Local geometric attack 0.12 0.02 0.13

TABLE I

Normalized Hamming distance between intermediate hash

values of original and attacked (perceptually identical)

images.

Attack Lena Clinton Barbara
Object Addition 0.43 0.42 0.46
Object Removal 0.47 0.44 0.52
Excessive Noise Addition 0.53 0.45 0.38
Face Morphing 0.50 0.44 0.34

TABLE II

Normalized Hamming Distance between intermediate hash

values of original and attacked images via content changing

manipulations

tion algorithm, it may still be possible for a malicious ad-
versary to generate inputs (pairs of images) that defeat our
hash algorithm, e.g. tamper content in a manner such that
the resulting features/intermediate hashes are still close.
This, however, is much harder to achieve, when the ran-
domized hash algorithm (Algorithm 2) were used.

We also tested under several other content changing at-
tacks including object insertion and removal, addition of
excessive noise, alteration of the position of image elements,
tampering with facial features, and alteration of a signifi-
cant image characteristic such as texture and structure. In
all cases, the detection was accurate. That is, the normal-
ized Hamming distance between the image and its attacked
version was found to be greater than 0.3. Table II shows
the normalized Hamming distance between intermediate
hash values of original and maliciously tampered images
for many different content changing attacks. Algorithm 2
with N = 32 was used for these results.

C. Performance Trade-Offs

A large search neighborhood implies the maxima of
wavelet responses are taken over a larger set and hence the
feature points are more robust. Likewise, consider select-
ing the feature points so that T1 < maxθ Wi(x, y, θ) < T2.
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(a) Original toys image (b) Tampered toys image

(c) Original clinton image (d) Tampered clinton image

Fig. 9. Content changing attacks and feature extractor response.
Feature points overlayed on the images.

Note, the feature detection scheme as described in Fig. 3
implicitly assumes T2 to be infinity. If T1 and T2 are cho-
sen to be large enough, then the resulting feature points
are very robust, i.e. retained in several attacked versions of
the image. Similarly, if the two thresholds are chosen to be
very low, then the resulting features tend to be easily re-
moved by several perceptually insignificant modifications.
The thresholds and the size of the search neighborhood
facilitate a perceptual robustness vs. fragility trade-off.

When the number of random partitions N is one, and
a deterministic quantization rule is employed in Section
IV, Algorithms 1 and 2 are the same. If N is very large,
then the random regions shrink to an extent that they do
not contain significant chunks of geometrically strong com-
ponents and hence the resulting features are not robust.
The parameter N facilitates a randomness vs. perceptual
robustness trade-off.

Recall from Section IV that the output of the quantiza-
tion scheme for binarizing the feature vector is completely
deterministic except for the interval (Pi, Qi). In general,
more than one choice of the pair (Pi, Qi) may satisfy (20).
Trivial solutions to (20) are (a) Pi = Qi = Ci and (b)
Pi = li−1, Qi = li. While (a) corresponds to the case
when there is no randomness involved, the choice in (b)

entails that the output of the quantizer is always decided
by a randomization rule. In general, the greater the value

of

∫ Qi

Ci
pf (x)dx∫ li

Ci
pf (x)dx

, the more the amount of unpredictability in

the output. This is a desired property to minimize colli-
sion probability. However, this also increases the chance
that slight modifications to the image result in different
hashes. A trade-off is hence facilitated between perceptual
robustness and randomization.

D. Statistical Analysis Via ROC Curves

In this section, we present a detailed statistical com-
parison of our proposed feature-point scheme for hashing
against methods based on preserving coarse image repre-
sentations. In particular, we compare the performance of
our intermediate hash based on the end-stopped wavelet
transform against the discrete wavelet transform (DWT)
and the discrete cosine transform (DCT).

Let U denote the family of perceptually insignificant at-
tacks on an image I ∈ I, and let U ∈ U be a specific attack.
Likewise, let V represent the family of content changing at-
tacks on I, and let V ∈ V be a specific content changing
attack. Then, we define the following terms:
Probability of False Positive:

PfP (ε) = Probability(DH(h(I),h(V (I))) < ε (25)

Probability of False Negative:

PfN (δ) = Probability(DH(h(I),h(U(I))) > δ (26)

To simplify the presentation, we construct two representa-
tive attacks:
• A strong perceptually insignificant attack in U : A
composite attack was constructed for this purpose. The
complete attack (in order) is described as: (1) JPEG com-
pression with QF = 20, (2) 3o rotation and rescaling to the
original size, (3) 10% cropping from the edges, and (4) Ad-
ditive White Gaussian Noise (AWGN) with σ = 10 (image
pixel values range in 0-255). Fig. 9 (a) through (e) show
the original and modified house images at each stage of this
attack.
• A content changing attack in V: The content chang-
ing attack consisted of maliciously replacing (a randomly
selected) region of the image by an alternate unrelated im-
age. An example of this attack for the lena image is shown
in Fig. 10.
For fixed ε and δ, the probabilities in (25) and (26) are com-
puted by applying the aforementioned attacks to a natural
image database of 1000 images and recording the failure
cases. As ε and δ are varied, PfP (ε) and PfN (δ) describe
an ROC (receiver operating characteristic) curve.

All images were resized to 512×512 prior to applying the
hash algorithms. For the results to follow, our intermediate
hash was formed as described in Section V-A by retaining
the P strongest features. The intermediate hash/feature
vector in the DWT based scheme was formed by retain-
ing the lowest resolution sub-band in an M -level DWT
decomposition. In the DCT scheme, correspondingly, a
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(a) Original house image

(b) JPEG, QF = 20 (c) Image in (b) after 3o rotation and scaling

(d) Image in (c) cropped 10% on the sides and
rescaled to original size

(e) Final attacked image: AWGN attack on the
image in (d)

Fig. 10. Representative perceptually insignificant attack on the house image: images after each stage of the attack.
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(a) Original Lena Image (b) Tampered lena image

Fig. 11. Example of the representative content changing attack on the lena image: 15% of the image area is being corrupted.

certain percentage of the total DCT coefficients were re-
tained. These coefficients would in general belong to a low
frequency band (but not including DC, since it is too sen-
sitive to scaling and/or contrast changes).

Fig. 12 shows ROC curves for the three schemes for ex-
tracting intermediate features of images: 1.) preserving
low-frequency DCT coefficients, 2.) low resolution wavelet
coefficients, and 3.) the proposed scheme based on end-
stopped kernels. Each point on these curves represents a
(PfP , PfN ) pair computed as in (25) and (26) for a fixed ε
and δ. We used δ = 3

2ε in all cases. For the ROC curves in
Fig. 12, we varied ε in the range [0.1, 0.3]. A typical appli-
cation, e.g. image authentication or indexing, will choose
to operate at a point on this curve.

To ensure a fair comparison among the three schemes,
we consider two cases for each hashing method. For the
DWT, we show ROC curves when a 6-level DWT and 5-
level DWT transform was applied. A 6-level DWT on a
512× 512 image implies that 64 transform coefficients are
retained. In a 5-level DWT similarly, 256 coefficients are
retained. Similarly, for the DCT based scheme we show
two different curves in Fig. 12, respectively, corresponding
to 64 and 256 low-frequency DCT coefficients. For our
intermediate hash, we show curves corresponding to P =
64 and P = 100.

In Fig. 12, both the false positive as well as the false
negative probabilities are much lower for our proposed hash
algorithm. Predictably, as the number of coefficients in the
intermediate hash are increased for either scheme, a lower
false positive probability (i.e. less collisions of perceptually
distinct images) is obtained at the expense of increasing the
false negative probability. Recall however, from Section VI-
C that this trade-off can be facilitated in our intermediate
hash even with a fixed number of coefficients - an option
that the DWT/DCT does not have.

In Fig. 12, with P = 64 features, our hash algorithm
based on end-stopped kernels vastly outperforms the DCT

as well as DWT based hashes5 in achieving lower false pos-
itive probabilities, even as a much larger number of coeffi-
cients is used for them. We also tested our hash algorithms
on all possible pairings (499500) of the 1000 distinct images
in our experiments. Only 2 collision cases (same/close in-
termediate hash vectors for visually distinct images) were
observed with P = 100, and 5 with P = 64.

Fig. 12. ROC curves for hash algorithms based on three approaches:
DCT transform, DWT transform, proposed intermediate hash
based on end-stopped kernels. Note that error probabilities are
significantly lower for the proposed scheme.

5All the wavelet transforms in the MATLAB wavelet toolbox ver-
sion 7.0 were tested. The results shown here are for the discrete
Meyer wavelet “dmey” which gave the best results amongst all DWT
families.
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VII. Discussions & Conclusion

This paper proposes a two-stage framework for
perceptually-based image hashing consisting of visually ro-
bust feature extraction (intermediate hash) followed by fea-
ture vector compression (final hash). A general framework
for constructing intermediate hash vectors from images via
visually significant feature points is presented.

An iterative feature extraction algorithm based on pre-
serving significant image geometry is proposed. Several
robust feature detectors may be used within the iterative
algorithm. Parameters in our feature detector enable trade-
offs between robustness and fragility of the hash, which
are otherwise hard to achieve with traditional DCT/DWT
based approaches.

We develop both deterministic and randomized algo-
rithms. Randomization is particularly desirable is adver-
sarial scenarios to lend unpredictability to the hash and re-
duce its vulnerability to attacks by a malicious adversary.
ROC analysis is performed to demonstrate the statistical
advantages of our hash algorithm over existing schemes
based on preserving coarse image representations.

It is useful to think of features extracted via our ran-
domized hash algorithm as a pseudo-random signal rep-
resentation scheme for images, i.e. a different representa-
tion, each sufficient to characterize the image content, is
obtained (with high probability) as the secret key is varied.
Future work could explore alternate pseudo-random signal
representations for image identification and hashing. In
particular, the goal of secure hashing can be understood as
developing the pseudo-random image representation that
leaks the minimum amount of information about the im-
age.
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