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Abstract—We investigate the design of space-frequency codes
and efficient feedback-aided precoding schemes for multiple-
input multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) systems. Inspired by the statistical structure
of the MIMO-OFDM channel matrix, the proposed transceiver
structure consists of two components: i) a fixed space-frequency
code, and ii) a set of spatial precoding matrices that are adapted
based on limited feedback from the receiver. For the fixed com-
ponent, we propose a structured space-frequency coding scheme
that spreads the source symbols across space and frequency. The
space-frequency coded symbols are then processed with a spatial
precoding matrix for each OFDM tone before transmission. The
spatial precoding matrices use the limited feedback from the
receiver to adapt the spatial directions and corresponding power
allocation for different spatial symbols, in order to improve both
the mutual information and error rate. Since the spatial channel
statistics are invariant across frequency, one codebook of spatial
precoding matrices suffices for all OFDM tones. This codebook
is designed using a systematic algorithm that we had previously
developed for narrowband spatially correlated MIMO channels.
Finally, to reduce the computational complexity at the receiver
and the amount of feedback to the transmitter, we propose a
new interpolation algorithm in which the codebook indices are
fed back to the transmitter for a subset of tones – precoding
matrices for the other tones are computed at the transmitter
using the precoding matrices for tones in the subset.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
widely adopted method for high rate communications and
is incorporated in many standards including wireless local
area network (IEEE 802.11a/g) and wireless metropolitan area
network (IEEE 802.16e) standards. In order to provide higher
data rate and better error performance, the transmitter and
the receiver can be equipped with multiple antennas, forming
multiple-input multiple-output (MIMO) systems. We highlight
some of the work on MIMO-OFDM below.

Maximum diversity gain attainable with MIMO-OFDM
systems was derived in [1], [2]. The full or significant portion
of the diversity gain can be achieved by space-frequency codes
[3], [4] or space-time-frequency codes [5]1. The authors of
[6] investigated capacity-optimal input covariance matrices
for MIMO-OFDM systems when only channel statistics are
available at the transmitter, while the case where perfect
channel state information is available at the transmitter was
considered in [7].

1This work also proposed the frequency grouping technique, which we
adopted as a part of the proposed space-frequency codes.
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Fig. 1. MIMO-OFDM transmitter with fixed space-frequency coding (G and
Π) and feedback-aided precoding (Û(n) and D̂(n))

In practice, we can convey only limited amount of infor-
mation through a feedback channel. In order to use feedback
information efficiently and to reduce the feedback amount,
two directions have been pursued. One is to design efficient
precoder codebooks matched to channel statistics [8], [9]. The
other is to employ interpolation – the transmitter gets feedback
information for a subset of tones and uses interpolation for the
tones not in the subset [10], [11].

The contribution of this paper is two-fold. We propose

1) space-frequency codes that are based on threaded alge-
braic space-time codes [12] but with a modification that
becomes necessary when power allocation is employed
(Section III), and

2) new interpolation algorithm designed for a system in-
corporating power allocation – previous algorithms are
for equal-power transmission schemes (Section IV).

II. SYSTEM AND CHANNEL MODEL

We consider a MIMO-OFDM system with N subcarriers
(tones) equipped with uniform linear arrays (ULAs) consisting
of NT transmit and NR receive antennas. We assume that
the maximum channel delay is ND < N (in taps) and cyclic
prefix of length NCP ≥ ND is used. Then the channel matrix
corresponding to the n-th tone is the discrete Fourier transform
(DFT) of the channel impulse response matrices H̃(d), d =
0, 1, . . . , ND,

H(n) =
1√
N

ND∑

d=0

H̃(d)e−j2π nd
N . (NR ×NT)



The input-output relationship for the n-th tone can be written
as

y(n) =
√

SNRH(n)x(n) + n(n), n = 1, . . . , N

where x(n) is the NT × 1 transmitted signal vector with
tr(E[x(n)x(n)H ]) = 1, y(n) is the NR × 1 received signal
vector, and n(n) ∼ CN (0, INR) is the NR × 1 noise vector,
i.e. complex Gaussian vector with zero mean and the identity
covariance matrix. The channel matrix H(n) is assumed zero
mean and the covariance matrix is discussed in detail later in
this section.

It is often convenient to stack these vectors and matrices
corresponding to each tone in order to represent the entire
system as

ȳ =
√

SNR H̄x̄ + n̄ (1)

where

ȳ =
[
y(1)T y(2)T . . . y(N)T

]T
(NNR × 1)

x̄ =
[
x(1)T x(2)T . . . x(N)T

]T
(NNT × 1)

n̄ =
[
n(1)T n(2)T . . . n(N)T

]T
(NNR × 1)

H̄ =diag (H(1),H(2), . . . ,H(N)) . (NNR ×NNT)

The statistical characteristics of the channel matrix H(n)
for the n-th tone are dictated by those of the time-domain
impulse response matrices H̃(d). We assume that there
are NP paths, and use β` ∈ C, τ`, θT,` ∈ [0, 1] and
θR,` ∈ [0, 1] to represent the complex path gain, path
delay (in seconds), normalized2 angle of departure (AoD)
and normalized angle of arrival (AoA) of the `-th path,
respectively. The array steering and response vectors are
denoted by aT(θT) =

[
1 ej2πθT ej4πθT . . . ej2π(NT−1)θT

]T

and aR(θR) =
[
1 ej2πθR ej4πθR . . . ej2π(NR−1)θR

]T
. Then,

uniform sampling in delay and AoD/AoA yields the following
representation of H(n), called virtual channel model [13]

H(n) =
1√
N

NP∑

`=1

β`aR(θR,`)aT(θT,`)He−j2πτ`
n
T

≈ 1√
N

ND∑

d=0

NR∑
r=1

NT∑
t=1

HV(r, t, d)aR

(
r

NR

)
aT

(
t

NT

)H

·

e−j2π dn
N (2)

where

HV(r, t, d) =
∑

`∈SD,d∩SR,r∩ST,t

β`

2Angle θ̃ ∈ [−90, 90] and normalized angle θ ∈ [0, 1] are related by
θ = θ̃/180 for 0 ≤ θ̃ ≤ 90 and θ = θ̃/180 + 1 for −90 ≤ θ̃ < 0. Note
that aT(θT) and aR(θR) are periodic in angles with unit period.

in which

SD,d =
{

` : − 1
2W

≤ τ` − d

W
<

1
2W

}

SR,r =
{

` :
r

NR
− 1

2NR
≤ θR,` <

r

NR
+

1
2NR

}

ST,t =
{

` :
t

NT
− 1

2NT
≤ θT,` <

t

NT
+

1
2NT

}
.

Since different entries of {HV(r, t, d)} correspond to disjoint
set of paths, they can be assumed approximately independent,
but not identically distributed in general – we denote the
variance of each entry by Ψ(r, t, d) = E[|HV(r, t, d)|2]. This
model induces the following spatial and spectral correlation

E [Hr,t(n)Hr′,t′(n′)∗] =
ND∑

d=0

e
j2π(n′−n)d

N ·

NR∑

r̃=1

NT∑

t̃=1

Ψ(r̃, t̃, d)e
j2π(r−r′)r̃

NR e
j2π(t−t′)t̃

NT .

Setting n = n′, one can easily observe that every tone has
the same covariance matrix R = E[vec(H(n))vec(H(n))H ]
as well as the same transmit covariance matrix RT =
E[H(n)HH(n)]. (vec(·) denotes the column stacking oper-
ator.)

III. CLOSED-LOOP SPACE-FREQUENCY-CODED
MIMO-OFDM

Feedback-aided precoding can greatly improve the capacity
and error performance of MIMO-OFDM systems. With linear
precoding, the system equation in (1) changes to

ȳ =
√

SNRH̄W̄s̄ + n̄,

where W̄ is the NNT × NNT matrix with tr(W̄W̄H) =
NNT and s̄ is the NNT × 1 source symbol vector3 with
tr(E[s̄(n)s̄(n)H ]) = N . We investigate the extreme cases –
where the channel states are perfectly known at the transmitter
and where only channel statistics are known at the transmitter
– and then consider the finite-rate feedback cases.

A. Perfect Feedback and Statistical Feedback Cases

When the channel states are perfectly known at the trans-
mitter, it is well known that SVD of the channel matrix,
H(n) = UH(n)DH(n)VH(n)H , n = 1, . . . , N , and water-
filling yields the capacity-optimal precoding matrix:

W̄ =diag(VH(1)VH(2) . . . VH(N))

diag(DW(1)DW(2) . . . DW(N))ΥH (3)

where Υ is an arbitrary unitary matrix and

DW(n) =

diag

((
µ− 1

[DH(n)]1,1

) 1
2

+

, . . . ,

(
µ− 1

[DH(n)]NT,NT

) 1
2

+

)

3If less than NT symbols per tone are transmitted for each channel use,
then the width of W̄ and the height of s̄ should be reduced accordingly.



in which subscript (·)+ denotes the max(·, 0) operator.
Another extreme case is when the transmitter knows only

channel statistics, i.e. mean and variance. In this case, the
capacity-optimal precoding matrix has the eigenvectors of the
transmit covariance matrix as its left singular vectors if we use
Kronecker channel model or virtual channel model [14]. When
we place no structure on the channel matrix, a near-optimal
precoding matrix can be easily obtained by finding the one that
maximizes the Jensen-upperbound of capacity and is given as
[15]

W̄ = (IN ⊗Vst)·[
IN ⊗ diag

((
µ− 1

λst,1

) 1
2

+

, . . . ,

(
µ− 1

λst,NT

) 1
2

+

)]
ΥH

where Vst is the eigenmatrix of RT = VstΛstVH
st and λst,t is

the t-th eigenvalue. Note that in both cases, the right singular
vectors (Υ) does not affect mutual information, but does affect
error performance.

B. Finite-rate Feedback Case

When btotal bits of feedback information is available for
each channel use, the receiver can choose a precoding matrix
W̄ from a precoder codebook of size 2btotal , which can be
very large. However, the block diagonal structures present in
(3) suggest a simpler approach: a per-tone precoding scheme
(see Fig. 1). That is, we allocate b = btotal/N bits to each
tone, out of which bU bits are used to approximate the right
singular matrix VH(n) of the channel matrix with a codeword
Û(n) in the unitary codebook U , |U| = 2bU . The remaining
bD = b−bU bits are used to approximate the power allocation
matrix DW(n) with a codeword D̂(n) in the power allocation
codebook D, |D| = 2bD . As noted at the end of Section
II, statistical characteristics are identical for every tone, i.e.
H(n) ∼ CN (0,R), ∀n, implying we need to design only one
set of a unitary codebook U for Û(n) and a diagonal codebook
D for D̂(n) and use it for all tones – we do not have to design
N sets of codebooks each optimized to each tone. Now we
can adopt the precoder codebook design algorithm developed
for narrowband correlated MIMO channels that we proposed
in [9]. The algorithm constructs U systematically based on R
since using numerical optimization to compute 2bU (N2

T−NT)
variables is hard; however D involving 2bD (NT−1) variables
can be built numerically. We provide a brief summary of the
algorithm [9] below.

C. Precoder Codebook Design Algorithm

The unitary codebook U is constructed by designing a set
of length-NT vectors, {u(1), . . . ,u(2b1 )}, whose role is to
approximate the first column of VH(n). We design the set
by skewing a reference vector codebook {c(1)

NT×1, . . . , c
(2b1 )
NT×1}

(which is designed for beamforming in i.i.d. channels) through
a channel statistics-dependent transform so that the skewed
vectors are denser along the statistically dominant eigenvec-
tors than along other directions. Then for each vector u(n1)

in the set, we find the second set of length-NT vectors,
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Fig. 3. Permutation by Π

{u(n1,1), . . . ,u(n1,2b2 )}, to be used in the second column. It
is also obtained by skewing a reference codebook of length
NT−1 vectors {c(1)

NT−1×1, . . . , c
(2b2 )
NT−1×1} and placing them in

the null space of the subspace spanned by u(n1). We proceed
in this way until the second-to-last column is taken care of –
the last column is determined automatically (bNT = 0) due to
unitariness. Since bU bits are the budget for specifying beam-
directions, we should have b1 + b2 + · · · + bNT = bU . This
algorithm leads to the tree-structured codebook U shown in
Fig. 2.

The diagonal codebook D can be designed numerically
using vector quatization algorithms (e.g. generalized Llyod
algorithm). First we generate a training set {DW(n)} which is
computed from a number (e.g. 100 · 2bD ) of randomly gener-
ated channel realizations {H(n)} (according to CN (0,R)).
A vector quantization algorithm is applied to the vectors
consisting of the diagonal entries of the training set {DW(n)}.
Representative vectors returned by the quantization algorithm
constitute the diagonal entries of the codeword matrices in D.



D. Space-Frequency Coding
In this section we design a fixed space-frequency codes pro-

viding high diversity gain and manageable decoding complex-
ity. Choosing any unitary matrix as Υ yields the same mutual
information, but it has significant impact on error performance.
It can be seen from the fact that without spreading source
symbols across space and frequency (i.e. Υ = I), the diversity
gain is only NR which is significantly less than the maximum
diversity gain min(NNR, NPNTNR) [1], [2].

In order to maintain a manageable level of complexity for
maximum-likelihood decoding, we divide the NNT source
symbols into G = N/Q groups of NTQ symbols each.
Then we code source symbols in each group across space
and frequency applying threaded algebraic space-time (TAST)
block codes since they possess the best or close to best
error performance among space-time block codes [12]. As an
example, a modified TAST code for the NT = Q = 4 case is
shown below [9]

[s̃(1) s̃(2) s̃(3) s̃(4)] =

Γ




z1(1) θ
3
4 z2(4) θ

2
4 z3(3) θ

1
4 z4(2)

θ
1
4 z1(2) z2(1) θ

3
4 z3(4) θ

2
4 z4(3)

θ
2
4 z1(3) θ

1
4 z2(2) z3(1) θ

3
4 z4(4)

θ
3
4 z1(4) θ

2
4 z2(3) θ

1
4 z3(2) z4(1)


 (4)

where [z1(n) z2(n) z3(n) z4(n)]T = Φs(n), n = 1, 2, 3, 4,
is the rotated symbol vector, and θ is a unit-norm scaling
parameter for ensuring full-diversity of the TAST code. The
unitary matrix Γ ensures that each source symbol interacts
with every channel coefficient even when the power allocation
matrix DW(n) or D̂(n) mutes some spatial streams or rows
(see [9] for details on Γ). It is convenient to write (4) in a vec-

tor form as
[
s̃ (1)T

. . . s̃ (4)T
]T

= G
[
s (1)T

. . . s (4)T
]T

,

where G =(IQ⊗Γ)G̃, and G̃ is the NTQ×NTQ generator
matrix for TAST codes incorporating the rotation matrix Φ
and scaling parameter θ. Finally, the coded symbols are fed
to the permutation matrix Π, whose role is to place symbol
vectors belonging to the same group far apart in the subcarrier
domain as shown in Fig. 3, so that each symbol experiences
independent subchannels instead of highly correlated ones. See
Fig. 1 for an overall structure.

IV. REDUCING FEEDBACK BY INTERPOLATION

One can reduce feedback burden by adopting interpolation
techniques. That is, instead of specifying precoding matrices
Û(n) and D̂(n) for every tone, n = 1, . . . , N , the receiver in-
forms the transmitter of the precoding matrices corresponding
to only a subset of tones, n = K, 2K, . . . , N , assuming N/K
is an integer for convenience. Precoding matrices for tones not
in the subset are computed by interpolating those of the two
adjacent tones in the subset – for example, precoding matrices
for tones n = K +1,K +2, . . . , 2K−1 are interpolated using
those for n = K and n = 2K. Since H(n) is periodic in n
with period N , precoding matrices for the first K−1 tones can
be obtained from the tones n = N and n = K. We discuss
two existing methods and then propose a new algorithm.

The linear interpolation technique proposed in [10] for
beamforming (single stream) and spatial multiplexing (NS

streams) schemes forms NT × NS interpolated spatial mul-
tiplexing matrices Ulin(`K +m) as follows. First, it computes

Ũlin(`K + m) = αmÛ(`K) + βmÛ((` + 1)K)Q(`),
` = 0, 1, . . . , N/K − 1,m = 1, 2, . . . , K − 1

where αm = 1 − m/K, βm = m/K, and the unitary
matrix Q(`) is determined by the receiver according to a
certain criterion and fed back to the transmitter. Then it
is converted to a semi-unitary matrix as Ulin(`K + m) =

Ũlin(`K + m)
(
Ũlin(`K + m)HŨlin(`K + m)

)−1/2

.
More recently, a geodesic-based interpolation algorithm was

proposed for spatial multiplexing schemes [11]. It eliminates
the need to calculate and feedback the Q(`) matrix. It forms
the NT ×NS interpolated matrix Ugeo(`K + m) as

Ugeo(`K + m) =A(`) cos(mΣ)−B(`) sin(mΣ) (5)

where A(`) = Û(`K)U, and B(`) = [Û(`K)U
cos(KΣ)−Û((` + 1)K)V] sin−1(KΣ), in which U and V
come from the SVD of Û(`K)HÛ((`+1)K) = UDVH , and
Σ = (1/N) cos−1(D).

Unfortunately, we cannot use the existing algorithms for
the proposed system incorporating power allocation because
those algorithms are designed for beamforming and spatial
multiplexing schemes which allocate same power for every
beam-direction. Specifically, those algorithms produce only
interpolated semi-unitary matrices, but not interpolated power
allocation matrices. Moreover, the geodesic interpolation al-
gorithm does not observe the ordering of columns – if U
happens to be the anti-identity matrix, then Ugeo(`K +1) will
be close to Û(`K) but with reverse column ordering. It is very
problematic since the beam-direction that should get the most
transmit power will receive the least transmit power (diagonal
entries of power allocation matrices are in decreasing order).

Hence we propose a new interpolation algorithm that ad-
dresses the above problems. The proposed algorithm preserves
the ordering of columns, and produces both beam-direction
matrix and power allocation matrix, without requiring addi-
tional information such as Q(`). The key idea is to perform
interpolation in the covariance matrix domain, taking into
account both beam-directions and power allocation. First, we
form

Rcov(`K + m) = αmRcov(`K) + βmRcov((` + 1)K)

where αm = 1 − m/K, βm = m/K, and Rcov(`K) =
Û(`K)D̂(`K)2Û(`K)H . We can think of Rcov(`K) as a
rough estimate of the short-term transmit covariance ma-
trix for the `K-th tone, based on the current channel state
H(`K). Then the interpolated matrices Ucov(`K + m) and
Dcov(`K + m) are obtained by applying eigen-decomposition
to the interpolated matrix Rcov(`K + m) as

Rcov(`K + m) =

Ucov(`K + m)Dcov(`K + m)2Ucov(`K + m)H .
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One can easily check that when m is close to zero, Ucov(`K+
m) and Dcov(`K + m) are close to those of the `K-th tone,
and when m is close to K, to those of the (` + 1)K-th tone.

V. NUMERICAL RESULTS

We present numerical results to illustrate the benefit of inter-
polation and the feedback-aided precoding. We use the follow-
ing configurations: NT = NR = Q = 4, N = 64 tones. Sym-
bols are taken from a BPSK constellation and maximum like-
lihood decoding is used. For the modified TAST codes in (4),
we use θ = ejπ/12 and Γ is the Vandermonde matrix whose
columns are powers of [ejβ ej(β+π/2) ej(β+π) ej(β+3π/2)]T

with β = 0.97.
In Fig. 4, for spatially i.i.d. channels (R = INTNR ), we com-

pare the capacity when the transmitter knows perfect channel
states of every tone (refer to (3)) with the mutual information
obtained by interpolation with K = 8. In generating spectral
correlation, we assume ND = 8, and for all iR and iT we
set Ψ(iR, iT, d) = 8, if 1 ≤ d ≤ 8, and Ψ(iR, iT, d) = 0, if
9 ≤ d ≤ 64. The lower two curves correspond to the spatial
multiplexing scheme, which transmits two independent source
streams with equal transmit power along the beam-directions
specified by the first two right singular vectors of H(n).

Fig. 5 shows the bit error rate of various schemes in spatially
correlated channels. We assumed ND = 4 and bU = 8 (b1 = 5,
b2 = 3, b3 = b4 = 0) and bD = 0. Spatial correlation is
as follows: for all iR = 1, 2, . . . , NR and d = 1, 2, 3, 4, we
have Ψ(iR, 1, d) = 38.4, Ψ(iR, 2, d) = 16, Ψ(iR, 3, d) = 6.4,
Ψ(iR, 4, d) = 3.2; and Ψ(iR, iT, d) = 0 if d = 5, 6, . . . , 64. No
interpolation is performed (K=1). The figure clearly shows the
benefit of feedback in general, and that of (spatially) skewing
the reference codebook based on the spatial channel statistics.
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