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Abstract

We extend the classical 0-1 knapsack problem by introducing disjunc-
tive constraints for pairs of items which are not allowed to be packed
together into the knapsack. These constraints are represented by edges
of a conflict graph whose vertices correspond to the items of the knap-
sack problem. Similar conditions were treated in the literature for bin
packing and scheduling problems. For the knapsack problem with conflict
graph exact and heuristic algorithms were proposed in the past. While
the problem is strongly NP-hard in general, we present pseudopolyno-
mial algorithms for three special graph classes, namely trees, graphs with
bounded treewidth and chordal graphs. From these algorithms we can
easily derive fully polynomial time approximation schemes (FPTAS).

Keywords: knapsack problem, conflict graph.

1 Introduction

In this paper we consider an extension of the standard 0-1 knapsack problem. In
addition to the usual weight constraint there exist incompatibilities for certain
pairs of items. This means that from each such conflicting pair at most one item
can be packed into the knapsack. It is natural to represent these symmetric
conflict relations by means of an undirected conflict graph G = (V, E), where
every vertex corresponds uniquely to one item and an edge (i, j) ∈ E indicates
that items i and j can not be packed together.

For a formal definition of this knapsack problem with conflict graph (KCG),
which is sometimes also referred to as disjunctively constrained knapsack prob-
lem, let n be the number of items, each of them with profit pj and weight wj ,
j = 1, . . . , n, and c the capacity of the knapsack. The conflict graph G = (V, E)
with |V | = n is not necessarily connected and may contain isolated vertices
(i.e. items which can be combined with every other item). Then we state the
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following ILP formulation:

(KCG) max
n∑

j=1

pjxj (1)

s.t.
n∑

j=1

wjxj ≤ c (2)

xi + xj ≤ 1 ∀ (i, j) ∈ E (3)
xj ∈ {0, 1} j = 1, . . . , n. (4)

W.l.o.g. we can restrict KCG to connected conflict graphs. Indeed, we can
introduce a dummy item n + 1 with weight wn+1 = c and profit pn+1 = 0
and insert edges from vertex n + 1 to every other vertex thereby making every
given conflict graph connected without changing the set of feasible solutions
with positive profit.

As KCG is a generalization of the 0-1 knapsack problem it is easy to see that
this problem is NP-hard (for a given instance of the knapsack problem introduce
a star graph as a conflict graph centered at the above mentioned dummy vertex
n + 1).

From a graph theoretical perspective, KCG can also be seen as a generalization
of the independent set (or stable set) problem which asks for a maximal set of
vertices which are not adjacent to each other. For every given instance of the
independent set problem we can superimpose an instance of KCG by introducing
trivial items for every vertex with profit and weight equal to 1 and capacity
c = n. It follows immediately, that KCG for general graphs is strongly NP-hard
(cf. [13]) and does not permit pseudo-polynomial algorithms (under P �= NP ).

Motivated by this complexity status and following a line of research extensively
pursued for the independent set problem, it is our main task in this paper
to identify graph classes for which we can prove the existence of a pseudo-
polynomial time and space algorithm for KCG. Furthermore, we will use these
algorithms to attain fully polynomial time approximation schemes (FPTAS).
In the following sections we will show that trees, graphs of bounded treewidth
and chordal graphs (including interval graphs as a subclass [13]) used as conflict
graphs in KCG do admit pseudo-polynomial algorithms as well as FPTASs.

Note that for unconnected graphs the special properties of some of these graph
classes would be no longer valid after the extension of the graph by a dummy ver-
tex as described above. However, all our algorithms are based on dynamic pro-
gramming and compute optimal solutions for every capacity value ≤ c. Hence
we can in a first step process the components of the graph independently and
then merge the solutions of all components. Obviously, the corresponding items
from different components are all compatible with each other. To avoid tech-
nicalities we will restrict our considerations to KCG with connected conflict
graphs.
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For simplicity of presentation all our algorithms will be designed to compute only
the optimal solution value of KCG. To derive also the corresponding solution
set of items one has to store for every entry of a dynamic programming array
also the corresponding partial solution set. Using a binary encoding this would
increase all running time and space complexities for our algorithms by a factor
of log n (see also Section 6).

1.1 Related Literature

The first paper dealing with KCG that we are aware of is Yamada et al. [23] from
2002. The authors apply the classical greedy algorithm to KCG by considering
the items in decreasing order of their profit to weight ratio and packing an
item into the knapsack if it is not in conflict with any previously packed item
and if it does not violate the capacity constraint. As an extension a local search
procedure based on a 2-opt exchange operation is introduced. Beside these lower
bounds on the objective value, upper bounds are given first by the LP-relaxation
and then by further relaxing the conflict conditions (3) in a Lagrangean way and
iteratively computing better Lagrangean multipliers. Based on these bounds a
branch-and-bound algorithm is constructed which uses the conflict relations and
standard dominance criteria to reduce the search space.

Since the lower bound derived by the heuristic may be quite weak, it is suggested
in [23] to run the branch-and-bound algorithm with an estimated lower bound
computed as a convex combination of the originally computed upper and lower
bounds. If the algorithm finds a feasible solution it will finally deliver an optimal
solution much faster than with the weaker original lower bound. If the algorithm
fails to find a feasible solution, the estimated value is a new and stronger upper
bound and the procedure is iterated.

Further studies on KCG were recently pursued in two papers by Hifi and
Michrafy. In [15] they present a metaheuristic, namely a sophisticated reac-
tive local search algorithm combined with a tabu list. While the neighborhood
structure is based on a pairwise exchange operation and the removal resp. in-
sertion of single items, more involved degrading steps are used to escape local
optima and for diversification. Computational experiments illustrate the suc-
cessful behavior of this approach.

An interesting exact algorithm is presented by Hifi and Michrafy in [16] who
also give pointers to applications of KCG. In fact, their paper contains three
different exact algorithms which are subject of a computational study and all
compare very favorably to CPLEX. The LP-relaxation is applied as a straight-
forward upper bound. Lower bounds are derived from an adaptation of the
heuristic in [15]. After a reduction procedure to eliminate some items from
further consideration a branch-and-bound approach is performed.

To tackle also instances with a large number of disjunctive constraints an equiv-
alent model is introduced where for each item all conflicting items are combined
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into a single constraint. Thereby the number of constraints can be reduced to n.
Furthermore, dominating constraints and covering constraints are introduced to
accelerate the branch-and-bound algorithm (see [16] for further details).

Conflict graphs were also considered for other combinatorial optimization prob-
lems related to the knapsack problem. In particular, several papers deal with
the bin packing problem with conflicts (BPCG). In this case, the edges of the
conflict graph define pairs of items which are not allowed to be packed into the
same bin, i.e. the packing of every bin must be an independent (stable) set with
respect to the given graph.

The first paper dealing with BPCG seems to be due to Jansen and Öhring [18],
although they introduce the problem in a scheduling context. They state seven
different approximation algorithms and analyze worst-case approximation ratios
for special graph classes, e.g. a 2.7 ratio for perfect graphs. Some of their results
were further improved by Epstein and Levin [8] who give a 2.5 approximation
ratio for perfect graphs and also consider the on-line case of the problem. In [17]
Jansen gives an asymptotic fully polynomial approximation scheme for BPCG
if the underlying conflict graph is a d−inductive graph. Gendreau et al. [12]
introduce six heuristics for BPCG and perform extensive computational exper-
iments. For reasons of comparison, also two lower bounds are developed. An
extension of BPCG to the two-dimensional case of packing squares was recently
treated by Epstein et al. [9]. Again approximation algorithms for special graph
classes were stated and analyzed.

To the best of our knowledge the only exact algorithm for BPCG is given in
the recent paper by Muritiba et al. [21]. Their paper introduces non-trivial
lower bounds based on the clique structure, on a matching and on a surrogate
relaxation over all constraints (3). Upper bounds are computed by a population
based heuristic framework with a tabu list. With these ingredients a branch-
and-price algorithm is developed based on a set covering model for bin packing.
The associated pricing problem is an instance of KCG which is solved by a
parametric greedy-type heuristic in [21]. Detailed computational experiments
illustrate the effectiveness of this approach.

Scheduling problem are closely related to bin packing problems although conflict
structures can be imposed in various ways. Bodlaender and Jansen [4] introduce
a scheduling problem where edges of a conflict graph represent jobs which have
to be assigned to different machines. The goal is to minimize the makespan.
For unit-length jobs they give complexity results for different graph classes.
Bodlaender et al. [5] consider the same problem with arbitrary processing times
and give approximation algorithms for various special graph classes.

A different setup is considered by Baker and Coffman [1]. Their mutual exclu-
sion scheduling considers unit-length jobs where the edges of the conflict graph
indicate pairs of jobs which are not allowed to be executed in the same time
interval (but possibly on the same machine). They show that the problem can
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be solved in polynomial time if the conflict graph is a forest and give a number
of heuristics and approximation results.

1.2 Preliminaries

Given an undirected graph G = (V, E) the degree d(v) of a vertex v ∈ V is
defined as the number of vertices i (i �= v) in G that are adjacent to v. The
distance of two vertices i and j in G is defined by the number of edges of the
shortest path in G starting in i and ending in j (dist(i, j) = dist(j, i)). A subset
S ⊂ V is called vertex separator of G if there are two vertices a and b in one
component C of G, such that the removal of the vertices in S from G separates
a and b, i.e. a and b are in different components of G − S. S is then called
ab-separator. By V (G) we denote all the vertices of G (V (G) = V ).

A tree T is a connected graph with n vertices and n− 1 edges. For our purpose
it is necessary to consider some vertex r as root vertex of T (T = T (r)). A leaf
vertex v of T is a vertex with degree 1 (d(v) = 1). The vertex i is parent vertex
of vertex j (child vertex) if the following properties are fulfilled: dist(r, i) =
dist(r, j) − 1 and (i, j) ∈ E. The set children(i) denotes all vertices j ∈ G
with the property, that i is parent vertex of j. The height of T (r) is defined
as maxi{d(r, i) : i ∈ T (r)}. For a tree T with root r, T (i) defines the induced
subtree of T with root i in which all vertices j ∈ T (i) fulfill d(j, r) ≥ d(i, r) in T .
|T (i)| furthermore denotes the number of vertices in T (i). Since we create the
FPTAS with a dynamic programming formulation based on profits we define a
trivial upper bound P on the total profit of the knapsack as P =

∑n
i=1 pi.

2 Trees as Conflict Graphs

In this section we introduce a dynamic programming algorithm that solves KCG
with a tree T as conflict graph in O(nP 2) time using O(log(n)P + n) space. If
we consider any vertex i ∈ T , by the property of trees as conflict graphs, when
including i into the knapsack solution, it is not allowed to include the parent
vertex p of i as well as any of the k child vertices c1 . . . ck of i. Indeed these
vertices are the only vertices in T that are in conflict with i. The main idea of
our algorithm AlgTr presented in this section is to process T in depth-first order
starting at some vertex r, which we consider as root vertex of T . Reaching a
leaf vertex l with parent p, we distinguish two cases:

• Including l into the knapsack solution and as a consequence excluding p.

• Excluding l from the knapsack and as a consequence keeping the decision
concerning p open.
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We call this procedure merging of l with p. After all children of the vertex p
are merged with p, p itself can be seen as new leaf vertex and the above idea
can be applied recursively. We need some more notation to state Algorithm 1.
zi(d) describes the solution with minimal weight found in the subtree T (i) of
T = T (r) that leads to a profit of d with item i necessarily included into the
knapsack solution. yi(d) describes the solution with minimal weight found in
the subtree T (i) of T = T (r) that leads to a profit of d with item i excluded
from the knapsack solution.

Algorithm 1 AlgTr

AlgTr(T (r)): (a)

zr(d) =

{
w(r) d = p(r)
c + 1 d �= p(r)

∀ d ≤ P

yr(d) =

{
c + 1 1 ≤ d ≤ P

0 d = 0

for j ∈ children(r): (b)
AlgTr(T (j)) (a)
for d ∈ [0, P ]:

yr(d) = mink{yr(d − k) + min{zj(k), yj(k)} | k ∈ [0, d]} (c)
for d ∈ [p(r), P ]:

zr(d) = mink{zr(d − k) + yj(k) | k ∈ [0, d − p(r)]} (d)

Theorem 1 The Algorithm AlgTr solves KCG with a tree T as conflict graph
to optimality.

Proof.
We will show the correctness of AlgTr by induction on the height h of T with
root vertex r.

Assume that h = 0. Then T has just one vertex r, which is itself a leaf. Including
r into the knapsack solution is the only possibility, the correctness follows.

Assume that the algorithm calculates the optimal solution for trees with height
h − 1. Then we will show that this is also true for trees with height h.

Case 1. The root r of T with height h has only one child vertex c1. So the
induced subtree T (c1) has height h − 1 and is processed optimally by AlgTr
(by assumption). yr(d) ((c) in AlgTr) is determined by an optimal combination
with a solution computed in T (c1) which is optimal by assumption.

For calculating zr(d) AlgTr compares all possible combinations of profits leading
to a total profit of d ((d) in AlgTr), where yj(k) is by assumption optimal and
zr(p(r)) was properly initialized to a weight of w(r). So Case 1 follows.
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Case 2. The root of T with height h has j child vertices c1 . . . cj . By Case 1
the merging of r with c1 was done optimally. So in a second induction let us
assume that for some l ∈ [1, j − 1] the merging procedure of c1 . . . cl was done
optimally too (*). Then also the merging of cl+1 with r is done optimally:
yr(d) is calculated as the minimum over all weights k as yr(d) = mink{yr(d −
k) + min{zcl+1(k), ycl+1(k)} | k ∈ [0, d]} leading to a total profit of d. The part
described by yr(d − k) is optimal by (*), where r itself is not included into in
the knapsack solution. The part described by zcl+1(k) and ycl+1(k) is optimal
by the height of T (cl+1), so the overall optimality of yr(d) follows by taking the
minimum over all feasible solutions of the two components leading to a total
profit of d. Clearly by the properties of trees the items described by the two
parts are not in conflict with each other.

zr(d) is calculated as the minimum over all weights k in zr(d) = mink{zr(d −
k) + yj(k) | k ∈ [0, d− p(r)]} leading again to a total profit of d. Here the same
argument as for yr(d) works, with the difference, that now r is included, so all
children of r have to be excluded. As in this case r adds a profit of p(r) and
a weight of w(r) to the knapsack in calculating the minimum over all feasible
solutions this has to be taken into account (in the range of k and d). So the
merging of all children of r is done optimally and finally one can find the optimal
solution as min{zr(d′), yr(d′)} where d′ has the property to be the largest profit
that is reachable by a weight that is smaller than c + 1. �

Theorem 2 Algorithm AlgTr can be implemented to run in O(nP 2) time and
O(nP ) space.

Proof.

Time Complexity. The recursive call of AlgTr described by (a) in Algorithm 1
is executed n times, once for each vertex v ∈ T . In the for loop described by (b)
each vertex v is exactly once in the role of being child vertex over all recursive
calls of AlgTr (with the exception of r), so (b) is executed exactly n − 1 times
during the algorithm. Combining these parts leads to a time complexity of
O(n). But in the part described by (c), P 2 combinations of feasible weights are
considered. Since these P 2 array evaluations dominate all other calls involving
weights an overall time complexity of O(nP 2) follows.

Space Complexity. zj(d) and yj(d) have to be stored for all the n vertices j of
T and for each possible profit d ≤ P leading to an overall space complexity of
O(nP ). �

In the remainder of this section we show a general space reduction technique
applicable to algorithms characterized by certain properties. This technique is
useful for the algorithm AlgTr, as well as for the other algorithms we present in
the following sections, since they can easily be adopted to fulfill the following
three properties.
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Property 1. A tree T is processed in depth-first order combined
with the following rule: at deciding which of the k child vertices
j1 . . . jk of parent i is used next in depth-first order, the algorithm
takes the child vertex jl, which fulfills

|T (jl)| = max
i

{|T (ji)| : i ∈ 1 . . . k}.

This information can be gained by using depth-first search as a preprocessing
step in order to calculate |T (i)| for each vertex i ∈ T , which can be done in
O(n) time.

Property 2. O(k) storage space is used for the processing of
each vertex i of T .

Property 3. When a child vertex j of parent vertex i was pro-
cessed, the information gained is merged to i, which is characterized
by the fact that for vertex i again O(k) space is used and all the
storage space used for processing vertex j can be deallocated after
the merging, leading to a total space of 2 ∗ O(k) for the merging
procedure.

Lemma 1 An algorithm A fulfilling Property 1, Property 2 and Property 3 uses
at most (ld(n) + 1) ∗ O(k) space.

Proof.
For n = 2 the tree T contains two vertices, namely the root r with one child
i. Then A needs O(k) space for the processing of i and O(k) space for r, by
Property 3 a total space requirement of 2 ∗ O(k) follows.

Assume that the statement is true for all trees with less than n vertices. We
will show that the statement also holds for n vertices by considering the largest
subtree of the root r of arbitrary size. Obviously, all other subtrees must contain
less than n/2 vertices.

More formally, r has k children i1 . . . ik, k ≥ 1, and w.l.o.g. |T (ij)| ≤ n
2 for all

j ∈ {2 . . . k} whereas |T (i1)| ≤ n − 1. Then by assumption the processing of
T (i1) is done by using at most (ld(n−1)+1)∗O(k) space. After merging T (i1)
to r this space can be deallocated, but O(k) space is used at vertex r, which
has to be kept until A has finished. Then the processing of T (ij), j ≥ 2, is done
using by assumption at most (ld(n

2 ) + 1) ∗ O(k) = ld(n) ∗ O(k) space. After
merging each of these subtrees to r this space can be deallocated, but the O(k)
space used at vertex r has to be kept until A has finished. This yields a total
space requirement of (ld(n) + 1) ∗ O(k). �

AlgTr already fulfills Property 2 with O(P ) space for processing each vertex
and Property 3, so by adapting (b) in Algorithm 1 according to Property 1, the
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overall space complexity of AlgTr can be reduced to O(log(n)∗P ). For the sake
of clarity this selection rule was not incorporated in Algorithm 1. Clearly, an
additional O(n) space is needed for processing a tree T with n vertices (even
for storing these vertices), as well as for performing the depth-first search for
Property 1 and for AlgTr itself (the longest path in T has to be stored for
deciding if a vertex v ∈ T has already been visited), leading to an overall space
complexity for AlgTr of O(log(n) ∗ P + n).

3 Graphs of Bounded Treewidth

In this section we treat graphs of bounded treewidth, for example series-parallel
graphs, outerplanar graphs or Halin graphs ([3]). We show that given a tree-
decomposition with constant treewidth k, there exists a dynamic programming
algorithm solving KCG with a conflict graph of bounded treewidth k in O(nP 2)
time using O(log(n)P + n) space.

3.1 Definitions

In [7] a tree-decomposition is defined in the following way: Let G = (V, E) be
a graph, T a tree, and let V = (VI)I∈V (T ) be a family of vertex sets VI ⊆ V (G)
indexed by the vertices I of T . By capital letters we refer to vertices from T ,
whereas by lower case letters we refer to vertices from G. The pair (T,V) is
called a tree-decomposition if it satisfies the following three properties:

1. V (G) =
⋃

I∈T VI ;

2. for every edge e ∈ G there exists a I ∈ T such that both ends of e lie in
VI ;

3. VI1 ∩ VI3 ⊆ VI2 whenever I2 lies on the path from I1 to I3 in T .

The width of (T,V) is defined as max{|VI | − 1 : I ∈ T } and the treewidth of G
is the smallest width of any tree-decomposition of G ([7]).

By [6] deciding whether a tree-decomposition of treewidth at most k exists, and
if so, finding a tree-decomposition of width at most k can be done in linear time
(if k is seen as a constant and not as part of the input).

For algorithmic purposes it is useful to consider a specially structure tree-
decomposition, namely a nice tree-decomposition. In this case one vertex is
considered to be the root vertex of T and each vertex I ∈ T is of one of the
following four types ([6]):
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• Leaf: vertex I is a leaf of T and |VI | = 1

• Join: vertex I has exactly two children, say J1 and J2, and TI = TJ1 = TJ2

• Introduce: vertex I has exactly one child, say J , and there is a vertex
v ∈ V with VI = VJ ∪ {v}

• Forget: vertex I has exactly one child, say J , and there is a vertex v ∈ V
with VJ = VI ∪ {v}

Furthermore by [6] a nice tree-decomposition with O(n) tree vertices (n = |V |)
with width at most k can be found in linear time, given a (not nice) tree-
decomposition. For some vertex I ∈ T we denote the tree-decomposition limited
to the subtree T (I) of T by (T (I),V). Clearly (T (I),V) is not any longer a tree-
decomposition of G. Let furthermore GI be the subgraph of G that is induced
by (T (I),V), more precisely by

⋃
J∈T (I) VJ .

3.2 Algorithm AlgTDC

Let G = (V, E) be a graph of bounded treewidth k, (T,V) a nice tree-decom-
position of G of width k, and R the root of T . Let UJ be the set of subsets S of
vertices from VJ with the property in G that S is an independent set (IS) in G
and

∑
i∈S w(i) ≤ c (UJ includes the empty set ∅). We define fS

d (J) as the mini-
mum weight of the knapsack including the items S ⊆ VJ with total profit equal
to d, while considering only the limited tree-decomposition (T (J),V). Then
KCG is solved by algorithm AlgTDC which processes the tree-decomposition
in depth-first order. A set of vertices in G that is not an independent set is
abbreviated by DS. AlgTDC follows an idea presented in [6].

Theorem 3 Algorithm AlgTDC solves KCG with a conflict graph G of bounded
treewidth k to optimality.

Proof.
Let (T,V) be the nice tree-decomposition of G with root vertex R ∈ T given.
We will show that for each vertex I ∈ T the algorithm computes an optimal
solution for the subgraph GI of G. This will be done by an induction like
procedure: First the optimality is proved for leaf vertices of T . Then for each
inner vertex J ∈ T , given that for the at most two children I1 and I2 of J the
induced subgraphs GI1 and GI2 are calculated optimally, the optimality of GJ

will be proved. Since G = GR the result follows.

Leaf vertices. Some leaf vertex I of T is the first vertex processed by
AlgTDC. By definition of a nice tree-decomposition, VI consists of exactly one
vertex v ∈ G, so GI equals a subgraph containing only v. By (a) in Algorithm
2 when including v into the knapsack solution (constrained to GI) the only
possible profit d = p(v) has minimal weight w(v).
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Algorithm 2 AlgTDC

AlgTDC((T (r),V)): (e)
if R is Leaf with vertex v ∈ VR: (a)

fv
d (R) =

{
w(v) d = p(v)
c + 1 d �= p(v)

∀ d ≤ P

f∅
d (R) =

{
c + 1 1 ≤ d ≤ P

0 d = 0
∀ d ≤ P

else:
for J ∈ children(R):

AlgTDC((T (J),V)) (e)
if R is Introduce (VR = VJ ∪ {v}) : (b)

for d ∈ [0, P ] :
fS

d (R) = fS
d (J) ∀S ∈ UJ

f
S∪{v}
d (R) = w(v) + fS

d−p(v)(J)
∀S ∈ UJ : (S ∪ {v} IS in G) ∧ (w(v) +

∑
i∈S w(i) ≤ c)

else if R is Forget (VJ = VR ∪ {v}) : (c)
for d ∈ [0, P ] :

fS
d (R) = min{fS

d (J), fS∪{v}
d (J)}

∀S ∈ UJ : (S ∪{v} IS in G)∧ (w(v)+
∑

i∈S w(i) ≤ c)

fS
d (R) = fS

d (J)
∀S ∈ UJ : (S∪{v} DS in G)∨(w(v)+

∑
i∈S w(i) > c)

else if R is Join : (d)
for d ∈ [0, P ] :

if J is the first child of R being processed:
fS

d (R) = fS
d (J) ∀S ∈ UJ

else:
fS

d (R) = mink{fS
d−k(R) + fS

k (J) | k ∈ [0, d]} ∀ S ∈ UJ (f)
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Inner vertices.

Introduce with respect to vertex v. Let I be an Introduce (part (b) in AlgTDC)
with child vertex J and let us assume that AlgTDC computed the optimal
solution for GJ . We first consider all feasible subsets S from GJ . These subsets
are also in GI so the algorithm takes the optimal solution calculated so far from
the limited tree-decomposition (T (J),V) which is optimal by assumption. The
only difference between GI and GJ lies in vertex v and edges adjacent to v, but
so far only solutions excluding v were considered.

In a next step all subsets S ∪ {v} of GI that are independent sets in G and
therefore in GI are considered if they fulfill the capacity constraint. But S is
subset of GJ and by the property of tree-decompositions v was not in (T (J),V).
As v is included in the knapsack solution, a profit of d − p(v) is taken with
minimal weight from GJ (fS∪{v}

d (I) = w(v) + fS
d−p(v)(J)). Furthermore v is

compatible with all vertices that lead to fS
d−p(v)(J): for the set S this is true

by explicit testing. So let us assume that there is a vertex i ∈ GJ packed that
is not in S but adjacent to v. By combining the properties 1 and 2 of tree-
decompositions a contradiction follows. The optimum for f∅

d (I) follows by the
same arguments.

Forget with respect to vertex v. Let I be a Forget with child vertex J and let us
assume that AlgTDC computed the optimal solution for GJ . Then GI = GJ

and in part (c) of AlgTDC we compute the optimal solution for all feasible sub-
sets S of VI by using solutions from (T (J),V) that are by assumption optimal.

Join. Let I be a Join with children J1 and J2. This corresponds to part (d) in
AlgTDC. For each feasible set S ∈ VI AlgTDC calculates the minimum weight
of a knapsack solution leading to a profit of d by taking the minimum over all
possible combinations of weights from the subgraphs GJ1 and GJ2 (fS

d (I) =
mink{fS

d−k(I) + fS
k (Ji) | k ∈ [0, d]}). Clearly by assumption both of these parts

are optimal.

It remains to show that this combination of vertices coming from two differ-
ent subgraphs of G is feasible. Clearly when restricting the knapsack solution
leading to the optimal solution of fS

d (I) to GJ1 , all these items are feasible by
assumption (they are calculated in the limited tree-decomposition (T (J1),V).
The same is true for GJ2 . So let us assume that there is a vertex v1 ∈ GJ1

and a vertex v2 ∈ GJ2 which both belong to the knapsack solution leading to a
minimal weight of fS

d (I) for profit d and vi /∈ VI : i ∈ {1, 2} so that v1 and v2

are not allowed to be packed together. Then they are adjacent, so there has to
be some vertex L ∈ T with the property that {v1, v2} ⊆ VL: w.l.o.g if L ∈ T (J1)
then property 3 of the definition of tree-decompositions implies that v2 ∈ I, a
contradiction. If L /∈ T (I) then a contradiction follows with the same argument.
�

Theorem 4 Algorithm AlgTDC can be implemented to run in O(nP 2) time and
O(log(n)P +n) space given a nice tree-decomposition (T,V) with O(n) vertices.

12



Proof.

Time Complexity.

Since the nice tree-decomposition has O(n) vertices, AlgTDC consists of O(n)
recursive calls (e) in Algorithm 2. Since for each vertex VI , I ∈ T , at most
2k+1 subsets of vertices in G have to be considered, all the checks in AlgTDC
that evaluate if a subset S ⊆ VI describes a feasible knapsack solution can
be performed in constant time (k is a constant). The other relevant part for
the time complexity is described by (f). In this statement P 2 combinations of
weights are used for calculating the minimum weight of a solution leading to a
profit of d. Combining these parts, the time complexity follows.

Space Complexity.

For each vertex I ∈ T , each feasible subset S ⊆ VI and each profit d the min-
imum weight is stored, leading to a space complexity of O(n ∗ P ). By the
bounded treewidth the number of independent sets at each vertex I is con-
stant. By adapting the algorithm according to Lemma 1 this can be reduced to
O(log(n)P + n). �

4 Chordal Graphs as Conflict Graphs

4.1 Definitions

A graph G = (V, E) is called chordal graph, if it does not contain induced cycles
other than triangles ([7]). A clique of a graph G is a complete subgraph of G,
a maximal clique is a clique, that is not properly contained in any other clique.
A clique tree T = (K, E) of a chordal graph G is a tree that has all the maximal
cliques K of G as vertices and for each vertex v ∈ G all the cliques K containing
v induce a subtree in T ([2]). When using a capital letter we will always denote
a vertex in the clique tree T corresponding to a maximal clique in G, when
using a lowercase letter we refer to a vertex in G. It has to be mentioned that
the clique tree of a chordal graph can be computed using O(n + m) time and
space ([11]) where m describes the number of edges in G.

Having a clique tree T and choosing two adjacent vertices K and K ′, then
T

(KK′)
K denotes the subtree that results from T when removing the edge between

K and K ′ and including K. S(KK′) ⊂ V is defined as the intersection between
the cliques K and K ′ (S(KK′) = K ∩ K ′ = S(K′K)). Furthermore, by summing
up over all cliques C in T

(KK′)
K we define the vertex set V

(KK′)
K ⊂ V by

V
(KK′)
K =

⎛
⎜⎝ ⋃

C∈T
(KK′)
K

{v ∈ C}

⎞
⎟⎠ − S(KK′).

13



V
(KK′)
K therefore denotes the vertices in G that are in the cliques represented by

vertices of the subtree T
(KK′)
K , but excluding all the vertices that are in S(KK′).

These definitions refine [2].

4.2 Algorithm AlgCh

The basic idea for treating chordal graphs as conflict graphs in KCG lies in
utilizing the special separation properties of the clique-tree of a chordal graph.
The algorithm presented in this section uses these properties by means of the
following two lemmas, that can be found with detailed proofs in [2].

Lemma 2 The sets V
(KK′)
K , V

(KK′)
K′ and S(KK′) form a partition of the vertices

V in G.

Lemma 3 S(KK′) is a minimal vw-separator for every pair of vertices v ∈
V

(KK′)
K and w ∈ V

(KK′)
K′ .

Let G = (V, E) be a chordal graph, T (R) a clique-tree of G with vertex R as
root vertex (by definition R is a maximal clique of G). Furthermore let T (I)
be the induced subtree of T (R) with root I for some clique I (as defined in
Section 1.2). fv

d (I) is defined as the minimum weight of the knapsack including
item v ∈ I with total profit equal to d, while considering only the subtree of
the clique tree of G that has I as its root. Then a recursive algorithm that
solves KCG for chordal graphs as conflict graphs is given by Algorithm 3. If the
algorithm is executed with some vertex R′ seen as root vertex of some clique tree
T of G (AlgCh(T (R′)), the optimal solution of KCP with the chordal conflict
graph G is computed and stored in one of the fv

d (R′) with v ∈ R′ or in f∅
d (R′).

Theorem 5 Algorithm AlgCh solves KCG with a chordal conflict graph to op-
timality.

Proof.
By Lemma 3, for two maximal cliques I and J which are adjacent in a clique
tree representation T of G, S(IJ) is a separator for all vertices a ∈ (I \ S(IJ))
and b ∈ (J \ S(IJ)) in G. If we consider a leaf vertex L1 of T and its parent
vertex P1, by Lemma 2 the graph G can be decomposed into three parts (not
necessarily components), namely V

(L1P1)
L1

, S(L1P1) and V
(L1P1)
P1

(seen as induced
subgraphs). Obviously when including a vertex v ∈ V

(L1P1)
L1

in the knapsack,
this vertex cannot be in conflict with any vertex v ∈ (G\L1). When considering
any parent vertex J of T with k child vertices (I1 . . . Ik), then the graph G can
be decomposed into k+2 parts, namely V

(I1J)
I1

, . . . ,V
(IkJ)
Ik

, (S(I1J)∪ . . .∪S(IkJ))

and (G\(T (I1J)
I1

∪ . . .∪T
(IkJ)
Ik

)) (here the subtrees are seen as induced subgraphs
of G). By recursively applying this decomposition idea in the processing order

14



Algorithm 3 AlgCh

AlgCh(T (R)):
if R is leaf: (a)

fv
d (R) =

{
w(v) d = p(v)
c + 1 d �= p(v)

∀ v ∈ R ∧ ∀ d ≤ P

f∅
d (R) =

{
c + 1 1 ≤ d ≤ P

0 d = 0
∀ d ≤ P

else:
for J ∈ children(R):

AlgCh(T (J))
if J is the first child of R being processed: (b)

for v ∈ R

if v ∈ S(RJ):
for d ∈ [0, P ] :

fv
d (R) = fv

d (J)
else:

for d ∈ [0, p(v) − 1] :
fv

d (R) = c + 1
for d ∈ [p(v), P ] :

fv
d (R) = w(v) + mini{f i

d−p(v)(J) | i ∈ (J \ S(RJ) ∪ ∅)}
f∅

d (R) = mini{f i
d(J) | i ∈ (J \ S(RJ) ∪ ∅)} ∀ d ≤ P (d)

else: (c)
for v ∈ R:

if v ∈ S(RJ) :
for d ∈ [p(v), P ] :

fv
d (R) = mink{fv

k (R) + fv
d−k+p(v)(J) | k ∈ [p(v), d]}

fv
d (R) = fv

d (R) − w(v)
else:

for d ∈ [p(v), P ] :
fv

d (R) = mini,k{fv
k (R) + f i

d−k(J) | k ∈ [p(v), d], (d)
i ∈ (J \ S(RJ) ∪ ∅)}

for d ∈ [0, P ] :
f∅

d (R) = mini,k{f∅
k (R) + f i

d−k(J) | k ∈ [p(v), d],
i ∈ (J \ S(RJ) ∪ ∅)}
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of AlgCh on the maximal cliques of T (depth-first), we can consider G as being
iteratively constructed by the resulting parts.

In the remainder of the proof, we show that the algorithm computes the opti-
mum for each subgraph of G that is induced by T (I), for some clique I. This is
done by an induction like procedure, i.e. we first show the optimality of the leaf
vertices. Afterwards we show the optimality of the subgraph induced by T (I)
under the assumption of optimality of all trees T (Ji) with Ji being child vertex
of I. Since this procedure finishes at the subgraph induced by T = T (R), which
obviously equals G, the theorem follows.

Leaf vertices. The first vertices completed by the algorithm are leaf vertices
of T , namely (L1 . . . Lm) for some m with parent vertex P . The induced sub-
graphs (T (L1P )

L1
. . . T

(LmP )
Lm

) are exactly (L1 . . . Lm). So by (a) in Algorithm 3
fv

d (I) represents the optimal solution for all profits d and all v ∈ I given that
I ∈{L1 . . . Lm}.
Inner vertices. Assume that AlgCh computes the optima for all subtrees
(T h−1

1 . . . T h−1
l ) with height up to h − 1. We will show that also the subtrees

T h
1 . . . T h

k with height h, being supergraphs of some of the (T h−1
1 . . . T h−1

l ), will
be solved to optimality.

Case 1. Assume that the tree T h(I) with root vertex I is a supergraph of
exactly one tree with height up to h − 1 and root J (T h−1(J) = T IJ

J ). Clearly
this means that I has J as its only child vertex (Figure 1).

h

h-1

I

J

S(IJ)

Figure 1: Case 1 in the proof of Theorem 5

In the algorithm in this case we are in the “if part” corresponding to (b). There
we calculate fv

d (I) for each profit d and vertex v ∈ I. If v ∈ S(IJ) by the
optimality of fv

d (J) also fv
d (I) has to be optimal (v was already considered in

the clique J and is in conflict with all other vertices in I). If v /∈ S(IJ), fv
d (I)

is calculated by fv
d (I) = w(v) + mini{f i

d−p(v)(J) | i ∈ (J \ S(IJ) ∪ ∅)}. By
Lemma 2, v cannot be in T h−1(J). By definition of fv

d (I) we include item v
into the knapsack, so we have to add the weight w(v) to fv

d (I). As v adds a value
equal to p(v) to the profit d, we take the best solution so far (by assumption)
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represented by i of (J \S(IJ) ∪ ∅) with minimum weight f i
d−p(v)(J) leading to a

profit of d − p(v). The same argument works with f∅
d (I), which means that we

do not pack any item included in the maximal clique I. So Case 1 is proved.

Case 2. Assume that the tree T h(I) with root vertex I is supergraph of k
trees with height at most h− 1 (T h−1(J1). . .T h−1(Jk)). This means that I has
(J1. . . Jk) as its child vertices. The algorithm merges T h(I) with its subtrees
(T h−1(J1). . .T h−1(Jk)). The merging of T h−1(J1) to T h(I) is optimal by Case 1,
so in AlgCh we are in the part denoted by (c). Now we assume that the merging
procedure is done optimally for the trees (T h−1(J1). . .T h−1(Jl−1)) for some l ≥ 2
(P1 in Figure 2).

I

J1 Jl−1 Jl Jk

h

h − 1

P1

P2

S(IJl)

Figure 2: Case 2 in the proof of Theorem 5

By Lemma 3, V
(JlI)
Jl

= (T h−1(Jl) \ (S(JlI)) (seen as induced subgraph of G)
is separated by S(JlI) from all vertices that were considered in the merging
procedure so far. Furthermore all fv

d (Jl) were calculated optimally by as-
sumption (P2 in Figure 2). If v ∈ SIJl

, fv
d (I) is calculated as the minimum

over the set {fv
k (I) + fv

d−k+p(v)(Jl)} with all combinations of profits that lead
to a total profit of d. By assumption both expressions in this set are opti-
mal. If v /∈ SIJl

, fv
d (I) is calculated as the minimum over all combinations

of profits and feasible vertex combinations leading to a total profit of d, i.e.
mini,k{fv

k (R)+ f i
d−k(J) | k ∈ [p(v), d], i ∈ (J \S(IJ)∪∅)}. Again by assumption

both expressions in this calculation are optimal. The same argument works with
f∅

d (I). So Case 2 is proved. �

Theorem 6 Algorithm AlgCh can be implemented to run in O((n+m)P 2) time
and O(min {m, n logn} ∗ P + m) space.
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Proof.

Time Complexity. By [11] the following holds:∑
K∈T

|K| ≤ n + m (∗∗)

K denotes the maximal cliques of G represented as vertices of T and |K| the
number of vertices in clique K.

As the algorithm traverses each vertex K ∈ T and each vertex v ∈ K once, by
(**) no more than n + m steps are executed in AlgCh. Furthermore at each of
these steps P ∗P combinations of profits are considered and in part (d) of AlgCh
the minimum over O(n) vertices of the corresponding child clique is computed,
resulting in a time complexity of O((n + m) ∗ n ∗ P 2).

But this time complexity can be reduced to O((n + m) ∗ P 2) by the following
observation: Referring to (d) we argued that each vertex of a clique K in T is
combined with O(n) vertices in its child clique K ′. But each vertex v ∈ G has
the property in T to be in some clique J with parent clique I, so that v /∈ S(IJ)

and this happens exactly once for each vertex (with the exception of vertices in
the root clique). Therefore during the whole algorithm in the part described by
(d), each v is used at most once for updating the parent clique with its child
clique, where v is seen as part of the child clique.

Space Complexity. For every induced subtree T (K) of T with root K and
each vertex v ∈ K the algorithm stores the optimal solution calculated so far,
given that v ∈ K is included in the knapsack, namely fv

d (K). Thereby exactly
P + 1 different profits are considered. By (∗∗) an overall space complexity of
O((n + m) ∗ P ) follows.

On the other hand, to apply the space reduction technique of Lemma 1, one has
to consider that the tree T has at most n vertices K, each of them corresponding
to a clique consisting of at most n vertices of G. By the same arguments as
before a space complexity of O(n2∗P ) follows. By Lemma 1 this can be reduced
to O(n log(n)∗P ). It has to be pointed out that now the m edges of G, resulting
simply from storing a clique tree, are missing.

Taking the minimum of these two expressions and considering that m ≥ n for
a connected graph, the result follows.

�

Remark 1 AlgCh also solves the maximum weight independent set problem
for chordal graphs by setting the profits and weights of each item to 1 and the
capacity of the knapsack to n in KCG. But it has to be mentioned that the
time and space complexity of AlgCh is outperformed by the classical approach
described in [10].
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5 Fully Polynomial Time Approximation Schemes

The three algorithms described in this paper all do admit FPTASs. To see this
we first briefly review the crucial parts of the standard FPTAS for the classi-
cal 0-1 knapsack problem, i.e. an approximation algorithm with a performance
guarantee of (1− ε) and a running time polynomial in n and 1/ε, which can be
found in [19].

Following this approach, the dynamic programming algorithms are executed on
an instance characterized by scaled profits, i.e. pj is replaced by p̃j := �pj

K �, for
some K. Let X̃ be the solution set representing an optimal solution on this
scaled instance. Generally, this set will be different from the solution set X∗

which optimizes the original instance with a solution value of z∗. Furthermore,
let zA be the solution value of the set X̃ on the original instance. Clearly
zA ≤ z∗. Then completely analogous to [19] one gets the following inequality:

zA =
∑
j∈X̃

pj ≥
∑
j∈X̃

K�pj

K
� ≥

∑
j∈X∗

K�pj

K
� ≥

∑
j∈X∗

K(
pj

K
− 1) =

=
∑

j∈X∗
(pj − K) = z∗ − |X∗|K

As a consequence one gets the following bound on the relative error represented
by ε:

z∗ − zA

z∗
≤ |X∗|K

z∗
≤ ε.

If now K is chosen to be less or equal to ε z∗
|X∗| the desired performance guarantee

of 1 − ε follows. Setting K := ε pmax
n this obviously can be achieved.

Going back to the three algorithms of the current paper it can be seen easily
that the only ingredients required for the above construction are: (i) an exact
dynamic programming algorithm, (ii) an upper bound on the cardinality of the
optimal solution set, (iii) a lower bound on the optimal solution value. All
three aspects are trivially fulfilled by Algorithm 1, 2 and 3 since |X∗| ≤ n and
z∗ ≥ pmax always hold.

Furthermore, every occurrence of the trivial upper bound P in the running
time and space complexities of the presented algorithms can be replaced for the
scaled instance in the following way: the optimal solution value z̃ of the scaled
problem instance is bounded by

z̃ ≤ np̃max ≤ n
pmax

K
=

n2

ε
.

Therefore, in the running time bound for each of the three algorithms one can
replace the factor P by n2

ε for the scaled instances and thus the required com-
plexity of an FPTAS is attained.
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6 Conclusion

After considering chordal graphs the natural next step would be the more general
class of perfect graphs, since the maximum weighted independent set problem
is efficiently solvable on perfects graphs (cf. [14]) as well as on all the classes
we considered. However, this question can be settled by a result due to Milanič
and Monnot [20].

Theorem 7 KCG is strongly NP-hard on perfect graphs.

Proof. It was shown in [20] that the exact weighted independent set problem
(EWIS) for perfect graphs is strongly NP-complete. In fact it was shown, that
EWIS is already strongly NP-complete for cubic bipartite graphs. Having an
instance of EWIS one asks if a given independent set with weight exactly w
exists where each vertex j has weight wj . Now consider an instance of KCG
that results by setting the profits pj equal to wj and the capacity c to w. Then
by solving this KCG-instance one can immediately answer the corresponding
EWIS-instance. �

Clearly the result of Milanič and Monnot also implies, that KCG is strongly
NP-hard on general bipartite graphs.

It was pointed out in the Introduction that our algorithms report only the
optimal solution values and keeping track of the corresponding solution sets
would require an additional factor of log n for all complexity results. However,
this factor can be avoided by applying an adaption of the general recursive
storage reduction scheme given by Pferschy [22] (see also [19, ch. 3.3]).

Going into the technical details of this modification is beyond the scope of
this paper where we concentrate on identifying polynomially solvable special
cases. The crucial point is that a given problem instance can be partitioned
into two instances of roughly equal size which are then solved recursively and
their solutions combined to an overall optimal solution. Such a bipartitioning
can be achieved for all three graph classes by splitting the respective tree into
two parts after computing the median vertex of the tree.
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