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Abstract

A sensible design of wireless networks involves strikingpbadybalance between an aggressive reuse
of the spectral resource throughout the network and magaiie resulting co-channel interference.
Traditionally this problem has been tackled using a “divéghel conquer” approach. The latter consists
in deploying the network with a static or semi-dynamic paitef resource reutilization. The chosen
reuse factor, while sacrificing a substantial amount of iefficy, brings the interference to a tolerable
level. The resource can then be managed in each cell so agiteizgpthe per cell capacity using an
advanced air interface design.

In this paper we focus our attention on the overall networgacly as a measure of system
performance. We consider the problem of resource allatadiod adaptive transmission in multicell
scenarios. As a key instance, the problem of joint schegudind power control simultaneously in
multiple transmit-receive links, which employ capacitshaeving adaptive codes, is studied. In principle,
the solution of such an optimization hinges on tough issueb ss the computational complexity and
the requirement for heavy receiver-to-transmitter feeltzand, for cellular networks, cell-to-cell channel
state information (CSI) signaling. We give asymptotic s pertaining to rate-maximizing power
control and scheduling in multicell networks. We then préssome promising leads for substantial
complexity and signaling reduction via the use of newly digwed distributed and game theoretic

techniques.
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Index Terms

Interference Mitigation, Multicell Scheduling, Distrited Resource Allocation, Power Control, Link
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. INTRODUCTION

The announced convergence between mobile and data actas®eirbased services, initiated
in systems such as WiMax [1] and 3G-LTE [2], poses extra@mirthallenges to the designers
of future generation wireless networks who must cope withdtarcity of the spectral resource
in areas with heavy user demand. It is widely admitted thatha heart of this challenge,
lies the ability to exploit the resource as efficiently asgilole in all dimensions allowed by
the multiple access scheme (e.g. time, frequencies, cquwger, beams, etc.). So far, the
conventional approach for dealing with this problem, whepldying a network over a given
geographical area necessitating many infrastructure sitewireless nodes, has beerdiaide
and conquerone, as outlined in the following:

Divide: First, network frequency (or, more generally, resourcanping is used to allow the
fragmentation of the network area into smaller zones isdldtom each other from a radio
point of view. Within a cluster of neighboring links, the sp@l resource is not reused at all
(such as e.g. in GSM), or reused only partially (e.g. CDMA ks, where each cell limits
the number of assigned codes to a fraction of the theoréliitatl defined by the spreading
factor). In ad-hoc networks, isolation of transmit-reeepairs from each other is also sought,
via interference-avoidance multiple access control (MA@jcally by means of carrier sensing
based protocols. The need for high efficiency figures howleaals the system designer towards
a planning featuring even more aggressive spectral reasédtance in the cellular case from
a cluster size of 5 to 7 in early GSM deployments, down to chasd in today’s available
networks such as WiMax. Power control techniques and pedgaamic resource allocation
(e.g. frequency hopping) methods help alleviate the probdé out-of-cell interference, but in
practice aggressive resource reuse will still inevitalelgd to an increased level of interference
in the network, which undermines the link-level performanc

Conquer:In turn this loss (due to interference) of link efficiency fogiven cell or for a local
transmit-receive pair may be compensated, via a carefugdes the radio air interface. The

latter may exploit advanced processing such as efficiemaia error correction (FEC) coding,
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fast link adaptation protocols, multiple-antenna trangs [3], and more recently channel aware
scheduling techniques [4]. In the multiuser diversity agah, the scheduling protocol is designed
towards a better utilization of the spectrum inside eachlmelencouraging channel access for
data-access users temporarily experiencing better patpagconditions, giving rise to the so-
called multi-user diversity gain [5]. It is worth noting thilis gain can be realized only if link
adaptation techniques are available to take advantagesafrprovement in channel conditions.
Clearly multi-user diversity is gained at the expense of ugigput fairness, which may be at
least partially restored by modifying the scheduling cr#ten one of several possible manners
[6]. Interestingly, this idea of multi-user diversity, tiéionally a single cell concept, is going to

resurface in this article in a different form in the multicebntext.

A. Voice-centric vs. data-centric models

To a large extent the divide-and-conquer approach outladsale is initially motivated by
voice-centric considerations. Traditionally, multiceisource planning and power control are
aimed at allowing the network users to operate under a commimum carrier to interference
level (C/I), that is compatible with the receiver's sensitivity or cgténg point at the access
points and the user terminals. Consequently, most powera@igorithms are designed to reach
an SINR target simultaneously for all interfering user teras. ThisSINR balancingapproach
ensures a worst-case outage probability necessary forectian oriented voice calls, as was
done in famous contributions such as [7]-[9].

The concept of a modem’s operating point is becoming lessvaat in modern networks
designed for data-dominated traffic, as these typicallyufeaadaptive coding and modulation
protocols capable of adjusting the transmission rate tade wange of channel conditions. Even if
the number of coding rates remains limited in practice duaémory and complexity constraints,
the strategy consisting of optimizing the spectral resedor a desired worst case interference
level and then relying on advanced modem design alone foimizirg performance, is losing
some relevance. This in turn shows the limitation of thedbvand conquer approach when it
comes to network wide optimization of performance. For {edftrt data access (e.g. email, web

browsing, multimedia messaging) team network capacifydefined as the sum of simultaneous
1The operating point is the level of SINR needed to operate on the link, behiah the call may be dropped.
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transmit-receive link capacities, appears as a more mgfuhimetric. However, additional
constraints may be needed to include specific scenariosQuot-driven traffic data (e.g. VolP)

into the resource optimization problem.

B. Coordinated multicell resource allocation: Challengesideads

Instead of the traditional approach based on decouplingnthiécell resource allocation from
the optimization of the single cell capacity, one may ndlyrénink that ajoint optimization
of resources in all cellsimultaneouslywill give better system performance. When doing so,
the per cell of optimization proposed previously involviegy. code assignment, power control,
multiple antenna beam design, and time/frequency chaawate scheduling, is now expanded
to take into account the dimension offered by the multiplésaef the network.

Evidently, such a joint multicell resource allocation offean enormous number of degrees
of freedom (governed by the number of cells, times the nundbeusers, times the number
of possible scheduling slots, codes, power levels etcl ¢ha be exploited to optimize the
network performance at all times. As a key instance of suclb@mization problem, we will
be considering in later sections the problem of joint mu#ter scheduling and power allocation
in multiple cells for the purpose of maximizing the sum netivoapacity under an ideal link
adaptation protocol.

The potential in coordinated resource allocation acrofis abso comes with several practical
challenges. This includes among others the need for slet $sinchronization for large network
areas. However, this problem may be partly alleviatecclgteringthe optimization. Another
severe problem is the need for the joint processing of traffid channel quality parameters fed
back by all network nodes to a central control unit (see E&))1which necessitates significant
computational power and huge signaling overhead. This smglkabal network coordination hard
to realize in practice, especially in mobile settings whéeecontrol unit ought to cope with fast
time-varying channels. Despite this important challersgane recently published and promising
methods have hinted at how some of the multicell coordinagains may be realized with

limited complexity and/or limited centralized control, discussed next.
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C. Putting multicell coordination to practice

Following the recent literature, three leading and indeleen strategies may be identified in
the effort toward making multicell coordination of resoginmore practical, though overall many
interesting questions and challenges remain open. Sontesé ideas are now briefly reviewed,
while others are described in greater detail in the rest isf ghper.

1) Structuring: One of the major difficulties associated with interfereneei@ance in packet
access communications is the lack of predictability of nieence coming from other transmit-
receive links, due to burstiness of the traffic combined wifite temporal channel variability.
As an approach to counteract this effect, structure may ber@sd on the resource planning
grid to make interference more predictable. For instancéhe joint user scheduling and power
allocation problem, a particulgrower shapingf the time frame can be exploited by allowing
the AP to transmit with different powers in different porn® of the frame, while users are
allotted slots according to the amount of interference ey tolerate given their local channel
conditions. This type of approach was pursued in e.g. [1d]].[In an analogous strategy, power
shaping over the cell sectors can be implemented by turnfhgeator beams according to a
determined sequence, which permits users to measure éréeneince received and then tell their
respective AP their preferred sub-frame for receptiors itiea is referred to aBme-Slot Reuse
Partitioning in [12]. In another approach, structure may be enforced bgditheorder in which
time/frequency slots are being filled up with user packetthé case of under-loaded systems, a
predictable average portion of the slots remain unuseddépénge) and the location of such slots
on the multicell resource grid can be optimized to reducerfatence for selected users [13].
The spatial position of users in the cell can also be used dodatate intercell transmissions to
avoid excessive interference [14]. Limited exchange afrimfation between dominant interfering
(neighboring) APs is yet another way of gaining knowledgeutlihe worst-case interference,
enabling the orthogonalization of these transmission$ [15

Such clever resource planning schemes are interestingegsoffer additional flexibility in
mitigating interference with very low complexity and létheed for signaling. On the other hand,
they are not fully exploiting the degrees of freedom prodid®/ the joint multicell resource
allocation problem, as the imposed structure tends to eedhe dimensions offered in the

optimization.
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2) Discretization: As certain quantities entering the resource allocatiotlera may be con-
tinuous, e.g. the transmit power levels, or the beamfornsmefficients if multiple antennas are
used, a potentially interesting tool in modifying the opgtation problem consists of discretizing
the optimization space so as to further reduce the numbeotehpal solutions to search over,
and also to reduce the feedback rate needed to communicatbeawd data between network
nodes. Discretization (via vector quantizing) of the optiroeamforming weights through the
use of vector precoding has been proposed, but interegtimgistly for the single cell scenario,
and only for the purpose of feedback reduction (see e.g.).[16]the case of beamforming
weights, discretization can be applied posterior to beamiftg weight computation. In the case
of power control, discretization can be carried out priorof@timization, as a way to greatly
simplify the power level search procedure. Remarkably, tkeretization of power control, even
to its extreme of binary on/off control, can be shown to yigidasi-optimal results in a number
of cases [17], and as such constitutes a promising tool tangakulticell coordination a reality.
This is a central idea which is also developed in greaterildatar in this article.

3) Greedy and iterative optimizationDue to the non-convexity of many of the multicell
resource optimization problems, finding globally optimalusions from standard techniques
proves difficult, and an analytical formulation of the sadatis often out of reach. In this case,
heuristic approaches based on alternating optimizatiogreedy search may provide a good
performance/complexity compromise. While greedy searchrigues have been popularized
over the last few years in the area of resource allocation ultinser spatial division multiple
access [18] and OFDMA scheduling [19], [20], their applicatto multicell resource allocation
seems to have drawn attention only recently. Greedy millopgimization operates by optimiz-
ing on a cell by cell basis, sequentially, just as individuaérs are optimized sequentially in
the single cell scenario. At each cell visited, the resousceptimized based on local channel
conditions and newly updated interference conditionsiaitng from the other cells [21], [22].
Such techniques may also be applied in an iterative mannee\giting a sequence of cells

several times until capacity convergence is reached.

D. Distributed vs. centralized control

In most of the approaches above, including greedy optimoizathe need may exist for

centralized knowledge of all channel and interferenceestatnditions for all nodes in the
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network. In the case of the greedy approaches, the algotitiem only visits the celirtually,
and the actual computation takes place within the centratrabunit shown in Fig.1(a). Central-
ized channel state information for a many-cell many-uséwokk involves immense signaling
overhead and will not allow the extraction of diversity gain fast-fading channel components.
To circumvent this problem, the design of so-caltbstributedresource allocation techniques is
crucial. Distributed optimization refers to the abilityrfeach cell to manage its local resources
(say e.g. rate and power control, user scheduling) based anllocally observable channel
conditions such as the channel gain between the accessgmna chosen user, and possibly
locally measured noise and interference.

At first sight, joint multicell resource allocation does nend itself easily to distributed
optimization because of the strong coupling between thalllp@llocated resources and the
interference created elsewhere in the network. Hence thanmmation of the cell capacities
taken individually will not in general result in the best oak network capacity, although we
suggest later cases for which the outcomes for the per cdlihauiticell capacity optimization
will differ little.

An interesting and recently explored path toward enfor@andistributed control of resource
has been through the usegdme theoreticoncepts. Game theory, in its non-cooperative setting,
pitches individual players in a battle, each seeking to mae a utility function by selecting
one of several available strategic actions. In the resoaloeation framework, users can be
terminals competing for access in a single cell, or intémfetransmit-receive pairs of a multiple
cell network or an adhoc network. The actions may be resoalloeation strategies, and the
utility may be capacity related. Non-cooperative game rgd#iow transmit-receive pairs to
maximize their capacity under reasonable guesses of winagpe&ting pairs might be doing [23].
In that respect, it naturally and beautifully lends itsalf distributed optimization. The game
theoretic framework is very well suited to network scensnehere infrastructure is sparse or
completely absent, as in peer-to-peer and adhoc netwarkafrastructure-based networks like
cellular, broadband access and to some extent WLAN netwavkere a centralized operator
retains control over the common resource, it remains to e #dethe purely non-cooperative
model is overly pessimistic, as it may not be able to fullytoag the gain that could be obtained
from coordination. However, pricing-based game theorapiproaches have been proposed to

alleviate this problem (see for instance [24]). These aspare further detailed later in the
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paper.

Finally, as an alternative to game theory techniques, thgep also investigates distributed
forms of iterative multicell resource allocation. In sugbpeoaches, APs individually make a
decision on their transmit power so as to optimize their Gbuation to the sum rate. At the core
lies the idea that the interference behavior can be made predictable by making the network
larger or denser, and consequently the resource allocptaiem in a given cell is made more

dependent on the local channel conditions in that cell, faasitating distributed optimization.

E. Scope and organization

This paper reviews various interesting strategies for thet jmulticell resource allocation
problem. We consider transmitters with backlogged traifec, which always have data to send.
We are taking a sum-rate point of view on the network perfercea as opposed to considering
packet delivery delays and other QoS issues. Issues relatggieue-stabilizing routing and
resource allocation protocols are therefore not addressexibut should rather come as possible
extending direction for this study.

We formulate our ideas for a certain cellular network mobet,we emphasize the strong links
to the corresponding problem in adhoc networks. In Sectiomel review typical optimization
models and first formulate the optimal, centralized sohgjdocusing on the key problems of
power control and user scheduling. We then give useful tesul discretization of power control,
including the case where power levels only admit two val{@sPn.x}, and show the central
role that this type of solutions seems to be playing in oubjam (Section VI). We refer to this
strategy asinary power contral

Optimal (even binary) power control solutions necessitgt@ssence a centralized treatment.
In Section VII we next turn to strategies allowing distriedt optimization. We show that
distributed strategies, which are optimal from a capaaigling point of view, can be derived
for multicell systems with an asymptotic number of users @&t For a small to moderate
number of users, we consider more practical alternativeuding game theoretic and iterative
optimization techniques. We present some approaches isnagive optimization in the binary
power control setting. We show how simple distributed athoms can be derived from such
techniques, particularly in the case of dense random n&tvdhe performance of these and other

existing schemes are compared. As in the single cell casemtiiticell resource optimization
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problem inevitably leads to a capacity vs. fairness debtese issues are addressed briefly in

Section VIIl. We then conclude and discuss future areasumfysin Section IX.

[I. NETWORK MODEL AND ASSUMPTIONS

We consider a wireless network featuring a number of trattemiand receivers. Among these,
there areN active transmit-receive pairs, which are simultaneouslgaed for transmission by
the scheduling protocol at any considered instant of timieilemothers remain silent. In this
network thei-th transmitter, denoted;, (7}, 73,... are shown in Fig.2), sends a message which
is intended to the-th receiverR; only. HoweverR; is being interfered by all’;, vVj # i due to
reuse of the spectral resource. This setup can be seen astamci of the interference channel,
the analysis of which is a famously difficult problem in infe&tion theory [25]. In practical
terms, the situation depicted above can be that of a celhdarwork with reuse factor one (say
e.g. the downlink withl’; being access points (AP) or base stations). It can also tegitapshot

of an adhoc network (see Fig.2(b)).

A. Signal Model

To facilitate exposition, we shall adopt a cellular termiogy from here on. We thus consider
N time-synchronized cells, and, users randomly distributed over each eek [1..N]. In each
cell, we consider an orthogonal multiple access schemeatooth any giverspectral resource
slot (where resource slots can be time or frequency slots in TORDMA, or code in orthogonal
CDMA) a single user is supportédTherefore, focus is on intercell interference rather than
intra-cell interference and the latter would come as a &urtixtension of the study. On any
given spectral resource slot, shared by all cellsulet [1...U,,] be the index of the user that is
granted access to the channel in cell

We denote the downlink channel pathloss gain and random learfgading coefficient between
AP i and useru, in cell n by ~,, ; andh,, ;, respectively. We hereby focus on the downlink,
but all ideas presented here carry over to the uplink as weless otherwise stated. We shall

assume that the coherence time of the channel is long enautitasthe receiver can estimate

2If the access point is equipped with multiple antennas we can generalizedHis to multiple users per slot or code, giving

rise to so-called spatial division multiple access (SDMA).
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the gain (in each resource slot) and send this informatianlteal or global resource allocation
unit via a feedback channel if necessary. The received lsignaat the user in a given resource

slot is then given by

N
Yun = ’yun,nhu",nXun + Z /yun,ihun,iXui + Zun>
i#n
where X, is the message-carrying signal from the serving E\;” Vil i Xu; 1S the sum
of interfering signals from other cells, arid, is additive noise or additional interferencsg,,

2

is modeled for convenience as complex AWGN, with pol&r,, |> = o2.

[11. THE MULTICELL RESOURCE ALLOCATION PROBLEM

We now turn to the core problem of resource allocation. Givenorthogonal multiple access
protocol described above, the resource allocation proloensists inpower allocationanduser
schedulingsubproblems. Importantly, we focus here @apacity maximizingesource allocation
policies, rather thafairness-orientednes. Fairness issues are very briefly touched upon later in
the paper. In this setting, the optimization of resourceth@various resource slots decouples,
and we may consider the power allocation and user scheduwlimgh maximize capacity in a
particular slot, independently of others.

A peak transmit power constraiit,. is imposed at each AP and to simplify exposition, we
shall assume that it is identical for all transmitters. Iderto facilitate the problem formulation
of the joint power allocation and scheduling problem, weesthe following definitions:

Definition 1: A scheduling vector U for a given resource slot contains the set of users

simultaneously scheduled across all cells:
U: {uluz o .. un .. uN]

where [U],, = u,. Noting thatl < u, < U,, the feasible set of scheduling vectors is given by
T={U|1<u, <U,Vn=1,...,N}.
Definition 2: A transmit power vector P for a given resource slot contains the transmit power

values used by each AP to communicate with its respective use
P = [Pulpu2 Pun PUN]

where[P], = P,, = E|X,,|?. Due to the peak power constrait< P, < P,.x, the feasible

set of transmit power vectors is given by={P |0 < P,, < Ppax Vn=1,...,N}.
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A. Utility-optimal resource allocation

The merit associated with a particular choice of a schedwécttor and power allocation vector
is measured via the help of reetwork utility function denoted byF(U,P) : T x Q@ — R,.
BecauseN pairs are served in parallel, the total utility typically cdenposes into the sum
FU,P)=>" f.(U,P), wheref,(-) is the utility enjoyed by the network in cell. A logical
choice for the utility in the above interference limited &y is to pick a function of the signal
to noise and interference ratio (SINR),(U, P) = f(I'([U],, P)), wherel'([U],, P) refers to
the SINR experienced by the receiver in cell n as a result of power allocation in all cells.
This SINR is given by
(;unnthn

N
02 + Z Gun,ipui

i#£n
whereG,,, ; = yﬁmi\hum? is the channel power gain from cellto receiveru,,.

L([Uln, P) =

: (1)

1) Capacity optimal resource allocationtn connection-oriented communication, a typical
utility function is a step function of the SINR with the SINRréshold dictated by the receiver’s
sensitivity. In data-centric applications however, wheate adaptation is implemented, a more
reasonable choice of utility is a monotonically piece-wisereasing function of the SINR,
reflecting the various coding rates implemented in the systAssuming an idealized link
adaptation protocol, i.e assuming Shannon capacity cactiewved at any SINR in any resource
slot, the utility eventually converges to a smooth functieflecting the user’s instantaneous rate

in bits/sec/Hz. For the overall network utility we thus defithesum capacityf25] as

N
Al
c(U,P) 2 N;log (1 +F([U]n,P)>. @)
The capacity optimal resource allocation problem can noviobmalized simply as:

(U", P") = argmaxC(U., P), (3)
PeQ)
The optimization problem above can be seen as generaliziog/k approaches in two ways:

First, the capacity-maximizing scheduling problem is vatlidied for a single cell scenario, but
traditionally not jointly over multiple cells. Second, thoblem above extends the classical

multicell power control problem (which usually rather aiatachieving SINR balancing) to
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include joint optimization with the scheduler. Despitegtemise, solving (3) presents the system
designer with several serious challenges.

The problem above is non-convex, and standard optimizégicdmiques do not apply directly.
On the other hand, an exhaustive search for(llié, P*) pair over the feasible set is prohibitive.
Finally, even if computational issues were to be resolvid, dptimal solution still requires a
central controller updated with instantaneous inter-cefinnel gains which would create acute
signaling overhead issues in practice. The central quesifathis paper thus arises: Can we
extract all or some of the gain related to multicell resouatlecation using the solution of
(3), within reasonable complexity and signaling constsfninspection of the recent literature
reveals that this is a hot research issue with many posgibkd of investigation. We do not
pretend to exhaust all of them here by any means. Insteadn@ysdraw the reader’s attention
to a few promising ideas. As a first approach we examine deetataling laws of the network
capacity under the optimal resource allocation solutidns Btudy reveals in fact a much simpler
structure for the problem (3) in the asymptotic regime (ie tumber of users per cell). For
a fixed (moderate) number of users, however, we must congdblniques allowing for a sub-
optimal solution to (3), using different approaches in ®ectV. These techniques however,
remain mostly non-distributed. Next we turn to some distiel techniques, and offer some

comparisons, in Section VII.

IV. NETWORK CAPACITY FOR ASYMPTOTIC NUMBER OF USERS

Let us consider a system with a large number of users in edchoe the sake of exposition
we shall assume in this particular sectibpn = U for all n, whereU is asymptotically large,
while N remains fixed. We expect a growth of the sum capatity*, P*) thanks to thenulticell
multiuser diversity gaih Thus we are interested in how tle&pectedsum capacityscaleswith

U. To this end a series of bounding arguments can be used [26].

A. Bounds on network capacity

First we present some simple bounds which hold in both thenpsytic and non-asymptotic

regimes.

3The multicell multiuser diversity gain is a straightforward generalization @ttmventional multiuser diversity [5] to multicell

scenarios with joint scheduling.

DRAFT



13

Upper bound: An upper bound (ub) on the capacity for a given (not necdgsaptimal)

resource allocation vector is obtained by simply ignoringgicell interference effects:

cU, P) <—Zlo (14 Grunlon), @

In the absence of interference, the maximum capacity isrlgleaached by transmitting at a
level equal to the power constraint, i.Py.c = [Puax, - Pumax] and selecting the user with
largest channel gain in each cell (maximum rate scheduleus giving the following upper

bound on capacity:

CU*, P <C= Zlog (1 + r;gb). (5)
where the upper bound on SNR is given by the so-called MAX-SdReduler:
sz = IEE}XU{Gun,n}PmaX/U2 (6)

Lower bound: A lower bound on the optimal capacity (in the presence ofrfatence)
C(U*, P*) can be derived by restricting the domain of optimizationniédy, by restricting the

power allocation vector to full poweP,,., in all transmitters, we have
C(U*,P*) >C"=C(U%p, Pmax) (7)
whereU 7, denotes the optimal scheduling vector assuming full poweryavhere, defined by
UFP = alrg rélg%(C(U, Pmax)7 (8)
Note that then-th cell’s user inU’. is found easily via:

[Ukpln = argmax Ty 9)

whereT'? is a lower bound on the best SINR given by:

b Gun nl max
I',) = max

(10)
upn=1.U g2 Zl;ﬁn GUn i Prax
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B. Scaling laws with number of users

We now investigate the rate of scaling withfor both upper and lower bounds on capacity.
The scaling must depend on the statistics of the channel pgai@s and interference level,
and in turn, on the assumed geometry of the network. In [26asymptotic analysis is carried
out for two network geometries. In the first one, users areirasd to be located at a similar
distance from their AP and at least at a distafcEom interfering APs, wherd? plays the role
of the cell radius. In this case, the following result is ahea for the scaling laws of“ and
C' respectively:

Theorem 1:Let G, » = 72 ,|hu,il*s un = 1...U,n = 1...N, where~,, ,, = v under constant
path loss. Assume that,, ,|* is Chi-square distributed with 2 degrees of freedori(%)) (i.e.
h., » 1S @ unit-variance complex normal random variable). Asstinegh,, ,|* are i.i.d across
users. Then for fixedV and U asymptotically large, the upper bound on the SINR in egll

and on the capacity scale respectively like

Pmax 2
[ 77 log U (11)

E(C") ~ loglog U (12)

where the expectation is taken over the complex fading gains
The capacity scaling for the full-interference case (lolweund) is obtained as follows:
Theorem 2:Let Gy, ; = 77

P il?s n = 1.U;n = 1..N, wherey,, ., = v, v, i = 0d,¢
for i # n, whered,, ; is the distance between usey and APi, (5 is a positive constant
and e is the path loss exponent. Assurfie,, ;|* is Chi-square distributed with 2 degrees of
freedom §?(2)). Assume that thenh,, ;|* are i.i.d across users and cells. Then for fix&¥d
and U asymptotically large, the lower bound on the SINR in eeland on the capacity scale

respectively like

Prax?
b max
Iy~ =5 logU (13)
E(C") ~ loglog U (14)

Note that the results above exploit tools from extreme véha®ry [27], which have been used

before in the context of single cell opportunistic scheaylj28], [29].
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Due to the upper and lower bounds showing similar scaling Jdle average of the network

capacity with optimum power control and scheduling scalles |
EC(U*, P")) =~ loglogU (15)

The results above suggest that, in a symmetric multicelvoild, the capacity obtained with
optimal multicell scheduling in both an interference-flm&/ironment and an environment with
full interference power have identical scaling lawslég log U. This result bears analogy to the
results in [29] which indicate that in a single cell broadoasannel with random beamforming
and opportunistic scheduling, the degradation causedtby-lieam interference becomes negligi-
ble when the number of users becomes large. Here the muiticatference becomes negligible
because the optimum scheduler tends to select users whobb#lvdarge instantaneous SNR
and small interference power.

Of course, it is better to take interference into accountrwteing the resource allocation.
However, a system where the full power is allocated at aftigmaitters will be asymptotically
optimal. As a result, a simple procedure based on (9) mustldze asymptotically optimal.
Interestingly, this algorithm is completely distributesl @anly local CSl is exploited by each user
and fed back to its serving AP only. The SINRs can be computethgla preamble phase
where all APs are asked to transmit pilot or data symbols lapawer.

We may wonder what the scaling law becomes in a non-symmegtiwork where users are
located at a random distance to their serving AP. This proldan also be investigated using
extreme value theory and a surprising result is reachedigncase, the capacity is dominated
by the selection of users located close to their serving AR.a~uniform distribution of users
in a disc around the the AP, the growth rate obtained withnoytn user scheduling and power
control is shown to be [26]:

C(U*, P*) ~ glogU (16)

Hence a much faster growth rate than in the case of symmigtriceated users. In this case too,
the power allocation based on transmitting at full powerrgwhere is asymptotically optimal
and gives rise to a distributed user selection algorithne¢asr maximum SINR.

For a small to moderate number of users per cell, the anadymise may not be valid, and
other approaches must be investigated. In particular thetion is thatsome(maybe a small

number of) selected transmitters then ought to back off ffathpower, for the good of the
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network, and even possibly shut down completely for the id@med resource slot. To pursue this
idea in more depth we now consider the specific problem of@gpaptimal power allocation.
First we consider below centralized schemes in Section V&extion VI, then finally turn to

distributed solutions in Section VII.

V. APPROXIMATING THE SOLUTION FOR A FINITE NUMBER OF USERS

In this and the next section we imagine that a candidate stingdvectorU has been selected,
and focus on optimal power allocation. Even given a set oéduled users, the simultaneous
optimization of transmission rates and power with the gdamaximizing the sum network
capacity is still a difficult problem, which perhaps expkwvhy the problem has received only
modest attention in the past. However, by restricting otendibn to the high or low SINR

regime, the power control problem can be efficiently solved.

A. Low SINR regime

In this regime we can apply an approximation of the achievablke of each user, thus
simplifying the problem. Specifically, when the SINR is IdWwe following approximation holds:
log(1 4 [([U],,, P)) ~ "U~P) Thys, we have

In2

N
C(U, P Zlog (1+T(U %Z ng”P i (17)
n=1 0_2 + Z Gun,zPul

Inspecting (17), we see that there is a linear relationskeigvéen each user’'s achievable rate
and power, equivalent to the setup in [30]. Then, it is cléat the sum rate in (17) is convex in
each variableP, “ [30], and hence each base station, when on, should transthifull power

for optimality, i.e., on/off power control is optimal.

B. High SINR regime

On the other hand, if a high SINR assumption can be made wegaie able to simplify

the problem. In particular, when the SINR is much larger thamve can apply the following

“Note that this does not necessarily imply that the function itself is convex.
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approximation [313, [32]:
log(1 + I'([U]n, P)) = log(L'([U],, P)). (18)

By virtue of this approximation, it can be shown that the sube raaximization problem now
is convex, and can be efficiently solved using geometric raiogning techniques [32].

The approximation is valid when the signal level is much kigthan the interference level, or
in CDMA systems where the spreading gain is large. Howevisragbproximation by construction
prohibits completely turning off any base stations at amyetislot. This extra constraint may
in fact cause the resulting power vector to steer away froenaptimum solution. Indeed, as
we will see in the next section, the ability to turn off basatisins in certain time slots can be

instrumental in approaching the maximum network capacity.

VI. BINARY VS. OPTIMAL POWER CONTROL

Designing wireless networks where the resource is to beniggd over many dimensions
is a very complex task, and the complexity grows as fast asntimber of variables in the
design space increases. As discussed in the introductioedtice the complexity one idea is to
limit the network parameter design space, for example Wingethe transmit power take only
guantized values. When reducing the design space, obviauebs in system capacity can occur,
and there will be a tradeoff between capacity and compleiltyhough this trade-off is still by
far an open problem, there has been some recent undergjaaslito how by a very coarsely
guantized transmit power allocation, namely a binary or am-6ff” one, we can actually come
very close to optimal power allocation. Besides complexé@giuction, an important additional
benefit of quantizing the power space is to allow distributetimization. However this aspect

is addressed later in the paper.

A. Binary vs. optimal power control faV = 2

We now consider the case of a cellular network with a small tawl@enate number of users,
so the asymptotic results of Section IV do not apply. We dtare by consideringv = 2 cells.

Note that the network may have more than two cells, in whidedhe cells are simply clustered

®In [31] instead of using this approximation, the authors present an afiegrobjective function that has certain properties,

not commenting on the fact that the new objective function is identical to thts BINR approximation.
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into adjacent groups of two cells, over which the power atmn is carried out. The two-cell
case is treated separately here as it allows for an andlgl&@vation of a surprising result for
the optimal power allocation. In particular the followingsult holds [17]:

Theorem 3:For the two-cell case, the capacity maximizing power alioceis binary. Math-
ematically, for anyU € 7T,

M (b Pryean? (U, (A, 1)) e LR U, (7, ) (19)

where AQ? = {(Prax 0), (0, Prnax), (Pmax, Pmax) } is the set of corner points in the feasible power
domain. Interestingly, a similar result was independerglyorted also in [33].

In fact, this result remains true even when the noise vaeidscdifferent in each cell, thus
possibly accounting for out-of-cluster interference. Efeffor the two-cell cluster case, the sum
rate optimal power allocation has a remarkably simple matDepending on the noise variances
and channel gaingither both APs should transmit at full powesr one of them should be shut
down completely. From a practical point of view it means tthat transmit power range per cell
can be quantized to two values, either on or wfithoutloss in capacity! The optimal decision

however requires simultaneous CSI from both cells.

B. Binary vs. optimal power control fav > 2

Without resorting to the high or low SINR approximationsatissed in Section V, in the
general SINR regime the power control problem proves to g géficult due to the lack of
convexity and the fact that the analysis for the two-cellecdses not generalize t§ cells. One
of the first paper to treat the problem in detail was [31], mgvan iterative procedure to solve the
sum throughput maximization. However, due to the inherem-convexity of the problem, no
guarantees about the quality of the solution can be giventhar approach is to take advantage
of recent developments in the mathematical framework ofrgdnc programming. It can be
shown that the sum of rates maximization subject to peak powestraints can be very well
approximated by a geometric progra@eometric programare a class of non-linear optimization
problems characterized by objective and constraint fonstthat have a special form [34]. Then
by solving a series of such geometric programs, at each stppving the approximation, the

power control problem becomes manageable [32], [35].
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Motivated both by the optimality of binary power allocatitor the two-cell case and its sim-
plicity, we also investigate the properties of binary powentrol also in theV-cell case. Binary

power control forN cells is done by evaluating(U, P) at the corners of2. Mathematically,

Ppin = arg max C(U,P), (20)

PeAQN
where AQY is the set o2 — 1 corner points of2 (minus the all-zero point).

Unfortunately, a pessimistic theoretical result is obddirthere: It can be shown that binary
power allocation is no longer optimal fa¥ > 2. However, it appears to be very well approxi-
mating the capacity obtained by the optimal solution ré&sglfrom continuous power control,
as illustrated below.

Example 1:We simulated aV = 3 cell network with the following parameters. Common
peak and minimum power constraints Bf., = 1073, and P.;, = 0, respectively, assuming
identical noise figures for the different receivers, the AW@bWer is found ask7,B, where
k is Boltzmann’s constant]; = 290 Kelvin is the ambient temperature, ai$l = 1 MHz is
the equivalent noise bandwidth, i.e; = o7, =07, =4.0039 x 10~"°. As an example of the
randomly generated channel gain matrix, based on path $bsslowing and multipath effects

we have
0.0432 0.0106 0.0012

G=10""x 00004 0.2770 0.0043
0.0045 0.0137 0.1050

Then, by the best binary power allocatigh, P,, P3) = (1, 1, 1) Pmax @ Sum throughput of.4555
bits/s/Hz is obtained, while by assigning the optimal pamg?;, P, Ps) = (1,0.8595, 1) Pnax
we get a throughput o9.4590 bits/s/Hz. As we will see later, this example is quite typica
the sense that binary power control, though suboptimal; géen yields a throughput close to
that obtained by optimally allocating the powers. While aging only marginally higher sum
throughput under the given power constraints, optimal inaous control can however offer
some savings in terms of sum transmit power.

For a numerical comparison, we consider a hexagonal celkyatem with an operating
frequency of 1.8 GHz. Gains faall inter-cell and intra-cell AP-UT links are based on the
COST-231 [36] path loss model including lognormal shadowanth standard deviation of 10
dB, as well as fast fading which is assumed i.i.d. with distitm CA/(0,1). The peak power
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constraint is given byP,.. = 1 watt. Fig. 3 depicts the network capacity, in bits/s/H2/cel
versus the number of cells. It is clear that introducing poe@ntrol improves the throughput
performance, and that binary power control is optimal foe @nd two cells. However, note
that only marginal improvement is obtained in going fromasinpower control to optimal GP
power control based on geometric programming/foe> 3. As an example of how instrumental
it is to be able to operate some cells at minimum power, we Is&ethe total network capacity
in bits/s/Hz/cell is less for two cells than for one cell whasing full power. However, using
binary and GP power control, we observe an increase in tla¢ network capacity when going
from one to two cells, due to better management of interfazen

Although close to optimal, the binary power allocation lwhe® (20) remains nonetheless
exponentially complex iV, as well as centralized. In addition, it must be coupled &itbroper
scheduling algorithm. However the discrete nature of thegvaptimization opens a door onto
simpler, iterative and/or even distributed approaches (@teresting way of cutting the search
complexity for large values aN is clustering For small cluster sizes, (20) can easily be solved
by checking all corner points, based on the knowledge of sumagtions about interference
created by the remaining clusters. For a given cluster & Biz<< N, the interference from
the remainingV — K cells then contributes as noise, i.e. the sum throughputafisterQ is

given as,
PIIGQ#J

2 2 )
0z, T 01, + Z}é&’g PGy,

Celuster, = Z 10g2<1 + (21)

q€Q
where o} = > jeq PiGqy; is the interference from out-of-cluster. Assuming thiseifierence
term can be estimated or averaged, from the knowledge of dinepactivity in other clusters,

then the following problem is solved for each clustgr

Pg =arg Prenggz(K Celuster, - (22)

VIl. DISTRIBUTED RESOURCE ALLOCATION TECHNIQUES

Except in the asymptotic number of users regime, and to saneeexceptions (such as [32]),
the methods presented so far require CSI of all cells to beralgntollected and processed
(Fig.1(a)). As the network size grows, this turns into a@esiimpairment, especially in high
mobility scenarios where the coherence time of the chanaial gpay not exceed a few tens of

milliseconds. In aistributedscenario (Fig.1(b)), a resource allocation unit is insteadted in
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each cell, handling scheduling and resource managemetiidocell users based on local CSI
and possiblyimited remote CSI. Note that local CSI includes any information teaibservable

by a local user, such as the gain from its preferred AP as vgetha power from the various
interference sources. Though such information is enougbvi&duate the capacity within the
observed cell, it is not sufficient to evaluate the impacthed interference on the rest of the
network, and in turn, on global capacity. Therefore, a fram& allowing each cell to maximize

its capacity without concern for interference createdvetfege must be suited to a distributed
implementation. This is precisely the idea followedgame theoreti@pproaches, especially in

so-callednon-cooperativesettings. This interesting line of work is examined below.

A. Game theoretic resource allocation

In recent years, game theory which has its roots in econofses [37] for an overview),
has been applied to several problems in communications [2&8me theory involves a set of
competing players looking to maximize their own utility,Se@ upon certain actions they can
take. When the users have no knowledggriori about what others are simultaneously doing,
e.g. in a distributed system, the gamen@n-cooperativeas users have no information on the
basis of which they could cooperate. Non-cooperative gamery was first proposed as an
efficient framework to formulate the power control probleon Wwireless data networks without
centralized control, e.g. iad-hocnetworks [24].

Consider a set/” of transmit-receive pairs communicating over a shared omediEach
transmit-receive pair represents a player, where eacheplaycan adjust its transmit power
0 < p, < P to maximize its individual utility functionf,,. Different utility functions can
be considered, but for mutually interfering links, these mvariably dependent upon the user
SINR. The user rate is an obvious candidate for utility. TH&FSIn turn depends on the transmit
powers of all users in the network. Using the standard rmtaitn the game theory literature,
we denote the transmit power vector of usetkBer than usem by p_,. The non-cooperative

power control game can then be written as

max  fu(Pp, P-n) V 1.

0<p, <Ppax
In this setting, the resulting optimal outcomes of the ganmeecategorized in two different ways,

as seen below.
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Nash EquilibriumandPareto Optimality A set of strategies (in this case transmit powers) are
said to be at Nash equilibrium if no user can gain individp@y unilaterally altering its own
strategy. Mathematically, a transmit power allocationteecp,,, p_,) is at Nash equilibrium if

for everyn,

fn(ﬁna ﬁ—n> > fn(pna ﬁ—n) V pn < PranaX'

Unfortunately, it is well known that the Nash equilibriumnst efficient in terms of sum utility
i.e. > fn. In particular, if the utility is the rate, it has been showratt players tend to act
selfishly by increasing their transmit pow&}*** beyond what is reasonable [24]. By altering
the strategy of some players, one may achieve a maclly favorableoutcome. We thus define
a Pareto optimal power allocation vectpf, i.e. a vectorp* for which there is no other power
vector p such that for alln € .4/, f,.(p) > f.(p*) and for somen € .47, f.(p) > f.(p*). In
other words, some players benefit while some players remraffacted by this altered strategy.
In order to find a Nash equilibrium that is more Pareto effigigmicing mechanisms have
been investigated. Pricing aims at forcing users to act iy tlvat is more socially beneficial, in
other words, to improve the sum of the utilities of the playd?®ricing is typically incorporated
as a penalty paid by a player in the utility function that ido®optimized. In our application, it
is natural to suppose that the penalty a player pays shouldndieon its transmit power, since
this determines the interference it is creating to the résh® network. There are various ways
of integrating a power-related cost in the utility. In [3&]rfinstance, the utility is the ratio of
the goodput by the power level itself. Additive costs arealsssible, in which case, denoting
the cost paid by each user by(p,), we can rewrite the non-cooperative game with pricing as

a maximization of the net utility:

max {fn<pn> p,n) - Cn(pn)} vV on.

0<py <Ppax
There is a large body of literature considering various obsiof utility and pricing mech-
anisms. In voice-oriented systems, utility functions atepsfunction or sigmoid-like, geared
toward trying to achieve a target SINR at each user as in [Bthat case pricing may be used
to stabilize power consumption when the SINR targets argecto the non-feasible region [39].
In data-oriented settings, the utility is usually a smoptimcreasing function of the SINR.
For instance the authors in [24], [40], [41] consider a fiortigiving the amount of information

successfully transferred per unit energy by each playeitewiine incurred cost is a linear function
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of the transmit power. An iterative algorithm is proposedickhmaximizes the net utility by
updating individual transmit powers assuming other plgypower vectors to be constant. The
downlink of a two-cell CDMA data network is studied in [42], twithe goal of finding the
optimal transmit powers for utility and revenue maximimati The AP announces a price to the
users, which then demand certain powers based on maxionzatithe net utility.

Power control for transmit-receive pairs in an ad-hoc nétws considered in [43]. Here, the
cost is not a constant function, but is based on prices amaouhy the players to each other.
Interestingly, the players charge each other for the iaterfce created. The iterative algorithm
updates the power and prices at every step, but this is nopletely distributed as it requires
channel gain information, as well as price updates, fronog@lér users in the network. A truly
distributed setting is obtained by making the pricing a devimear function of the consumed
power, as considered in some of the approaches discussee. &iearly, an issue with pricing
is that it should eventually be a function of the macroscqmcameters, like the number of
cells, users, cell size etc. Finally, it is worth noting thathough significant work on resource
allocation using game theoretic frameworks can be foundpgears that the problem of user
scheduling in cellular networks has been little or not adsked in this framework, a fact probably
due to the historic ties between game theory approachesdirat anetworks. In Section VII-D
we investigate the performance of game theoretic powecailon using a pricing mechanism

paired with a reasonable distributed user scheduling iihgor

B. Distributed techniques using “on-off” power allocation

In this section, we exploit lessons learned from Section n/tarms of the near optimality
of an “on-off” power allocation strategy in order to come ujgthwva distributed optimization
strategy. Hence we take on the discretized problem defined by

(U*, P*) = arg Prélgi(NC(U,P) (23)
In order for a solution to be practically feasible, compiataally simple and distributed (although

possibly sub-optimal) algorithms are desirable. In thdofwing sections, we discuss various
distributed approaches. A central idea behind all of thggeraaches is that ohterference-

averaging which helps make the total interference more predictabtbe case where the number
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of interference sources is large. It also makes the SINRdepgndent on CSI information not

locally available at each cell.

C. Modeling interference in dense networks

Dense networks lend themselves to modeling of the totalference experienced by any user,
thanks to the large number of interference sources beingged at the receiver. Based on the
observation that interference to any user in a large denseorieis only weaklydependent on
the user’s position in the cell, we can approximate the fatence term in (1) by an average
interference gain, denoted Y, which is independent of the user location multiplied by the

total transmit power of active interferers:

fj G, P ~ ij P; = G(N — 1) Prax (24)

i#n i#£n
whered is independent ofi,,, and is a certain function of pathloss, link budget paramsetc.,
and N is the number of active “on” cells. Though only an approxiimatthis model is supported
by simulations [44]. More importantly, it proves a remarkabseful tool for algorithm design
in large networks. The estimation 6¢f can be made from simulations for a given network. It
can be also used as a tuning parameter, expressing thelaverght we want to give to co-
channel interference in the resource allocation. To thd; @rorst case and best case values can
be obtained from statistical analysis [44]. However, a naed more practical result is reported
below.

1) Iterative power allocation in the interference limitedgmme: A general approach for
distributed power allocation under the framework of (23hgsets in letting each cell take a
activate/deactivate decision corresponding to a trarsamswith full or zero power. From the
point of view of sum capacity, each cell will exploit localéyailable CSI in order to determine
whether its activation creates a capacity gain that outge(Qr not) the capacity loss caused by
its interfering power to the rest of the network. From mafagans of (2), (1), and assuming

both high SINR in active cells and a high interference-ttsaatio, the best decision regarding
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activation of cellm is taken upon inspection of the following inequality :

Moy

N i
2 Gmil ]I G 30 R
eN n#m ieN

where the average interference model (24) was used, yetibhwsl&dge of the average interfer-
ence gain’ is not needed, suggesting robustness with respect to thelr(@t). If all “on” cells
transmit with same poweP,.x, and denotind./| = N where_# is the set of active cells, cell

m will activate itself if

G N1\
mm s | =—— ~ e, (25)
> Gmi AN -2
i#Em
ieN

where the right hand side approximation is valid for a largeugih network (more than, say, 10
cells). Note that the left hand side is the signal-to-irgexhce (SIR) level. Depending on whether
(25) is used with or without the approximation, semi- orydistributed power control can be
obtained. In the semi-distributed case, the number of@aclis from the previous iteration must
be communicated to the new cells. However this informatioala also be measured locally
from pilot signals.

The overall algorithm works as follows: Starting with an &h” power allocation vector,
each cell simultaneously measures the SINR of the best usebased on (25) remains active
or inactive during the next iteration. For a cell to have tlestbchance to be active and thus
contribute to the network capacity, at every iteration ibd schedule the user which has the
best chance of satisfying the inequality (25) i.e. the usih the maximum left-hand-side of
(25), based on the power allocation resulting from the eviiteration. Thus, along with power
allocation, the technique above suggests a correspondirgglgling policy. This is in contrast to
the game theoretic approach described previously in whidi power allocation is addressed.

As a result of this algorithm, a subset of the total number afsctransmit simultaneously
during a given scheduling period. Though some cells may stagt, they may be active during
the next scheduling period. This approach can also be cemesidas a distributed mechanism for

dynamic spectral reusén contrast with traditional cellular networks, the reymsdtern obtained
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with this method is random, possibly highly irregular asistrated in Fig. 4, and varies from

one scheduling period to the next as a function of the chastag information of the cell users.

D. Performance issues

In this paper, we have essentially discussed two differepra@aches for multicell resource
allocation in wireless networks equipped with link adaptatcapabilities:

1) The game theoretic formulatigrallowing users (cells) to behave selfishly by individually
maximizing their capacity and then inducing a sort of sodiahefit (for network capacity)
through pricing. This approach is by nature distributedih@smeasure of performance is based
on individual cell capacity which can be calculated localfowever, maximizing individual
capacity does not necessarily maximize the network capaeiicing does try to move the
behavior to benefit the network, but this entails finding tightr cost function, which sets up
another optimization problem to solve. Moreover, the ganestetic approaches in the literature
deal mostly with power allocation. To the best of our knowgedcoupling user scheduling with
power allocation for multiuser diversity gain has been tmaked so far in the game theoretic
framework.

2) Iterative Binary Power Allocatioron the other hand, tries to directly maximize the net-
work capacity by exploiting the interference-averaginfge&fin large (in the number of nodes)
networks. Thus, it can be truly said to address the joint gssbeduling and power allocation
problem. However, it relies on a restricted feasible powetr as well as on an approximate
model for interference in large wireless networks.

Due to the differing philosophies of tackling the multicedisource allocation problem, the
outcome of a quantitative comparison of the two methodelegs difficult to predict. To this
end, we compare the two through Monte Carlo simulations. Wewen order to have a fair
comparison, we need to adapt the game theoretic approacanttiehuser scheduling as well.
Thus, given a multicell system, the user with the best SINReilected in each cell and then
the power allocation game with pricing is played. As our geatapacity maximization, for this

game, f,, is the cell capacity given by,

nGh,

p n,n
" o’ + ZP@GW’
i#n

fn<pn7 p—n) = 10g2 1
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As in much of the current literature, pricing is consideredeé a linear function of the transmit
power,

Cn (pn> = QPnp,

wherea is thecost factor An iterative algorithm is adopted, where at each iterati@transmit
power which maximizes the net utility is found, considerihg interference to be constant. As
already stated, an issue that arises in the game theorgtioagh is tuning the value ef. Here,
as the number of users vary, the net utility is calculatedafeange of cost factors. The that
gives the best net utility is considered the optimal costdia@and the corresponding net utility
is used to calculate the network capacity.

We consider a 19-cell (hexagonal layout) system with theesparameters as described in
Section VI-B. We measure the average network capacity asuimder of users per cell is varied.
We also plot the network capacity for a network employing mmasm SINR scheduling with full
reuse (maximum power at all AP). The results show (Fig. 5) tha game theoretic approach
and the iterative binary power allocation in this case bahfgym better than full reuse, and
that they give quite similar average network capacity. €hierroughly a 50 percent capacity
gain, which decreases when the number of active users seseH is important to note that the
number of active users corresponds to users simultaneauasiye within a scheduling window
(of a few 10s of ms perhaps), therefore this number is likelype low in all cases.

As the number of users increases, both implicitly convecg@ull reuse (Fig. 6). This result
is expected and can be explained as follows. From (3), igea want to scheduléV users at
full power that have good communication links and are notdfiected by interference. Then,
with an increasing number of users, the probability of figdsuch users increases. This is also

the sense of the asymptotic results reported in Section IV.

VIIl. FAIRNESS ISSUES

In single cell scenarios with channel aware schedulings known that maximizing the cell
capacity is done at the expense of the fairness between tlmisaisers’ throughputs, as users
endowed with favorable channel conditions are allocatezlaively greater share of the spectral
resource. Analogous conclusions will be obtained in a roelltcontext. For instance, the iterative

binary power control algorithms tends to activate cells fdrich the best user enjoys good
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channel gain and little interference, while cells for whicers suffer from worse SIR will have
a greater chance of shutdown. Although sum-rate optima, tifpe of policy is not giving a
fully fair treatment to the various cells, and consequetdlyhe users in it. For instance, some
cells might experience long periods of silence due to prgdahdetrimental fading conditions
or a poor user distribution. However, over a longer timesdhke system is likely to be fair
across cells for a symmetric user distribution over thescdlb maintain some minimum QoS at
every cell, different strategies may be imagined, althougthe multicell context these remain
open research topics. One is to modify the utility measuseddzh cell to take into account the
accumulated throughput by each of the users, in a similartevélye proportional-fair type utility
used in certain single cell scheduling techniques [28]].[#Be buffer state at each AP could
also be considered to prevent overflow. Finally, an intergsway to restore some fairness is to
open the resource space to generate additional schediitsg @ver which the channel quality
is different and cells get an additional chance of activatibhis can be done using scheduling
in both time and frequency slots (multicell OFDMA).

IX. FURTHER DISCUSSIONS

We have given some leads towards optimizing the resource intarference limited multicell
network, via joint power allocation and channel-aware ws#reduling in view of maximizing
the sum of user rates. Although difficult to solve in generdtisgs, this problem promises
significant gains in network capacity. It also admits simpieperties in certain cases that can
substantially reduce the complexity and make it practjcadllevant. If the number of users
grows asymptotically, the transmitters should all opegtt¢he power constraint level and the
best user in each cell can be scheduled, in a fully distribtashion. The loss due to interference
then does not affect how the network capacity scales withntimaber of users. For small to
moderate number of users, power control simply based on asff@uolicy yields near-optimal
performance for more than 2 cells and exactly optimal for tetls. The on-off power control
policy can be exploited to derive simple and to a large exthsiributed resource allocation
algorithms. When the number of cells is large, a cell can deoidits own activation based on
a condition involving purely locally measurable data, tsg in a fully distributed algorithm
for power control at the base stations. Unlike the centdligolutions, the distributed solutions

involve users feeding back channel gain information torteerving AP only, without the need
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for sharing this information across many APs. Channel gaadlfack is the price to pay to
achieve coordination gains. Note however that this typecefiback is required in any case by
the link adaptation protocol to select the appropriate mgpdind modulation schemes, and thus
may be reused by the resource allocation protocol as wetheGheoretic approaches can also
yield distributed algorithms for resource allocation. ibgb utilities used there depart from the
network’s sum capacity. However, an optimization procedtan be used to modify the per-user
utility so as to improve the social optimality of the Nash #Quum, in terms of sum rate.
For other choices of utilities (such as energy efficiency])[4be difference between the Nash
equilibrium and the Pareto optimal solution has been shanpetsmall.

In the techniques above, joint power control and schedulih@y be interpreted as a form
of cooperation between cells, which amplify or attenuateirtipower in the best interest of
the network capacity. Alternatively, forms of multicell m@eration which involve some degree
of coding or coherent signal combining between the baséostahave been proposed [47],
[48]. One way to optimize the link between several APs and @nmore user is to imagine a
distributed multiuser MIMO system, over which standard tiruser MIMO techniques such as
Dirty Paper precoding, linear precoding or decoding, ma#r detection and space-time codes.
Although these are promising technigues, some of the imatedhallenges associated with this
form of cooperation are the need to route data traffic to sé&#ties in the network, the need for
accurate CSI at the APs, the fact that some of these algorilon®t lend themselves easily to a
distributed implementation (as opposed to MAC-layer ogdntooperation schemes), and finally
the lack of scalability when the number of AP gets large. A®sult, an interesting direction
of research may lie in the combined use of cooperation cdaacEpthe PHY layer (multibase

MIMO etc.) on a small scale basis and coordination at the Mag&2t on a larger scale basis.
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(a) A multicell system managed by centralized
resource controller. This controller processes
all network information jointly.

Fig. 1. Centralized vs. Distributed Network Control.

(b) A distributed multicell system requires no centralized

control. Each cell performs resource allocation based on
local channel knowledge (and possibly limited intercell

information).
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Fig. 2. Snapshot of network model, withi = 4 interfering pairs of transmitterg; and receivers?;. The cellular model (a)
and the single-hop peer-to-peer or adhoc model (b) give rise tovagnt mathematical models. Dashed circles refer to silent
users while solid circles refer to access points or users selected byhibaduser in a given resource slot.
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Fig. 4. Possible irregular reuse pattern at a given scheduling peridoddynamic spectral reuse.
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