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Abstract

A sensible design of wireless networks involves striking a good balance between an aggressive reuse

of the spectral resource throughout the network and managing the resulting co-channel interference.

Traditionally this problem has been tackled using a “divideand conquer” approach. The latter consists

in deploying the network with a static or semi-dynamic pattern of resource reutilization. The chosen

reuse factor, while sacrificing a substantial amount of efficiency, brings the interference to a tolerable

level. The resource can then be managed in each cell so as to optimize the per cell capacity using an

advanced air interface design.

In this paper we focus our attention on the overall network capacity as a measure of system

performance. We consider the problem of resource allocation and adaptive transmission in multicell

scenarios. As a key instance, the problem of joint scheduling and power control simultaneously in

multiple transmit-receive links, which employ capacity-achieving adaptive codes, is studied. In principle,

the solution of such an optimization hinges on tough issues such as the computational complexity and

the requirement for heavy receiver-to-transmitter feedback and, for cellular networks, cell-to-cell channel

state information (CSI) signaling. We give asymptotic properties pertaining to rate-maximizing power

control and scheduling in multicell networks. We then present some promising leads for substantial

complexity and signaling reduction via the use of newly developed distributed and game theoretic

techniques.
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Index Terms

Interference Mitigation, Multicell Scheduling, Distributed Resource Allocation, Power Control, Link

Adaptation, Fairness.

I. I NTRODUCTION

The announced convergence between mobile and data access internet-based services, initiated

in systems such as WiMax [1] and 3G-LTE [2], poses extraordinary challenges to the designers

of future generation wireless networks who must cope with the scarcity of the spectral resource

in areas with heavy user demand. It is widely admitted that, at the heart of this challenge,

lies the ability to exploit the resource as efficiently as possible in all dimensions allowed by

the multiple access scheme (e.g. time, frequencies, codes,power, beams, etc.). So far, the

conventional approach for dealing with this problem, when deploying a network over a given

geographical area necessitating many infrastructure sites or wireless nodes, has been adivide

and conquerone, as outlined in the following:

Divide: First, network frequency (or, more generally, resource) planning is used to allow the

fragmentation of the network area into smaller zones isolated from each other from a radio

point of view. Within a cluster of neighboring links, the spectral resource is not reused at all

(such as e.g. in GSM), or reused only partially (e.g. CDMA networks, where each cell limits

the number of assigned codes to a fraction of the theoreticallimit defined by the spreading

factor). In ad-hoc networks, isolation of transmit-receive pairs from each other is also sought,

via interference-avoidance multiple access control (MAC),typically by means of carrier sensing

based protocols. The need for high efficiency figures howeverleads the system designer towards

a planning featuring even more aggressive spectral reuse, for instance in the cellular case from

a cluster size of 5 to 7 in early GSM deployments, down to closeto 1 in today’s available

networks such as WiMax. Power control techniques and per-cell dynamic resource allocation

(e.g. frequency hopping) methods help alleviate the problem of out-of-cell interference, but in

practice aggressive resource reuse will still inevitably lead to an increased level of interference

in the network, which undermines the link-level performance.

Conquer:In turn this loss (due to interference) of link efficiency fora given cell or for a local

transmit-receive pair may be compensated, via a careful design of the radio air interface. The

latter may exploit advanced processing such as efficient forward error correction (FEC) coding,
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fast link adaptation protocols, multiple-antenna transceivers [3], and more recently channel aware

scheduling techniques [4]. In the multiuser diversity approach, the scheduling protocol is designed

towards a better utilization of the spectrum inside each cell by encouraging channel access for

data-access users temporarily experiencing better propagation conditions, giving rise to the so-

called multi-user diversity gain [5]. It is worth noting that this gain can be realized only if link

adaptation techniques are available to take advantage of the improvement in channel conditions.

Clearly multi-user diversity is gained at the expense of throughput fairness, which may be at

least partially restored by modifying the scheduling criteria in one of several possible manners

[6]. Interestingly, this idea of multi-user diversity, traditionally a single cell concept, is going to

resurface in this article in a different form in the multicell context.

A. Voice-centric vs. data-centric models

To a large extent the divide-and-conquer approach outlinedabove is initially motivated by

voice-centric considerations. Traditionally, multicellresource planning and power control are

aimed at allowing the network users to operate under a commonminimum carrier to interference

level (C/I), that is compatible with the receiver’s sensitivity or operating point1 at the access

points and the user terminals. Consequently, most power control algorithms are designed to reach

an SINR target simultaneously for all interfering user terminals. ThisSINR balancingapproach

ensures a worst-case outage probability necessary for connection oriented voice calls, as was

done in famous contributions such as [7]–[9].

The concept of a modem’s operating point is becoming less relevant in modern networks

designed for data-dominated traffic, as these typically feature adaptive coding and modulation

protocols capable of adjusting the transmission rate to a wide range of channel conditions. Even if

the number of coding rates remains limited in practice due tomemory and complexity constraints,

the strategy consisting of optimizing the spectral resource for a desired worst case interference

level and then relying on advanced modem design alone for maximizing performance, is losing

some relevance. This in turn shows the limitation of the divide and conquer approach when it

comes to network wide optimization of performance. For best-effort data access (e.g. email, web

browsing, multimedia messaging) thesum network capacity, defined as the sum of simultaneous

1The operating point is the level of SINR needed to operate on the link, belowwhich the call may be dropped.
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transmit-receive link capacities, appears as a more meaningful metric. However, additional

constraints may be needed to include specific scenarios withQoS-driven traffic data (e.g. VoIP)

into the resource optimization problem.

B. Coordinated multicell resource allocation: Challenges and leads

Instead of the traditional approach based on decoupling themulticell resource allocation from

the optimization of the single cell capacity, one may naturally think that a joint optimization

of resources in all cellssimultaneouslywill give better system performance. When doing so,

the per cell of optimization proposed previously involvinge.g. code assignment, power control,

multiple antenna beam design, and time/frequency channel-aware scheduling, is now expanded

to take into account the dimension offered by the multiple cells of the network.

Evidently, such a joint multicell resource allocation offers an enormous number of degrees

of freedom (governed by the number of cells, times the numberof users, times the number

of possible scheduling slots, codes, power levels etc.) that can be exploited to optimize the

network performance at all times. As a key instance of such anoptimization problem, we will

be considering in later sections the problem of joint multi-user scheduling and power allocation

in multiple cells for the purpose of maximizing the sum network capacity under an ideal link

adaptation protocol.

The potential in coordinated resource allocation across cells also comes with several practical

challenges. This includes among others the need for slot level synchronization for large network

areas. However, this problem may be partly alleviated byclustering the optimization. Another

severe problem is the need for the joint processing of trafficand channel quality parameters fed

back by all network nodes to a central control unit (see Fig.1(a)), which necessitates significant

computational power and huge signaling overhead. This makes global network coordination hard

to realize in practice, especially in mobile settings wherethe control unit ought to cope with fast

time-varying channels. Despite this important challenge,some recently published and promising

methods have hinted at how some of the multicell coordination gains may be realized with

limited complexity and/or limited centralized control, asdiscussed next.
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C. Putting multicell coordination to practice

Following the recent literature, three leading and independent strategies may be identified in

the effort toward making multicell coordination of resource more practical, though overall many

interesting questions and challenges remain open. Some of these ideas are now briefly reviewed,

while others are described in greater detail in the rest of this paper.

1) Structuring: One of the major difficulties associated with interference avoidance in packet

access communications is the lack of predictability of interference coming from other transmit-

receive links, due to burstiness of the traffic combined withthe temporal channel variability.

As an approach to counteract this effect, structure may be enforced on the resource planning

grid to make interference more predictable. For instance, in the joint user scheduling and power

allocation problem, a particularpower shapingof the time frame can be exploited by allowing

the AP to transmit with different powers in different portions of the frame, while users are

allotted slots according to the amount of interference theycan tolerate given their local channel

conditions. This type of approach was pursued in e.g. [10], [11]. In an analogous strategy, power

shaping over the cell sectors can be implemented by turning off sector beams according to a

determined sequence, which permits users to measure the interference received and then tell their

respective AP their preferred sub-frame for reception; this idea is referred to asTime-Slot Reuse

Partitioning in [12]. In another approach, structure may be enforced by fixing theorder in which

time/frequency slots are being filled up with user packets. In the case of under-loaded systems, a

predictable average portion of the slots remain unused (power-free) and the location of such slots

on the multicell resource grid can be optimized to reduce interference for selected users [13].

The spatial position of users in the cell can also be used to coordinate intercell transmissions to

avoid excessive interference [14]. Limited exchange of information between dominant interfering

(neighboring) APs is yet another way of gaining knowledge about the worst-case interference,

enabling the orthogonalization of these transmissions [15].

Such clever resource planning schemes are interesting as they offer additional flexibility in

mitigating interference with very low complexity and little need for signaling. On the other hand,

they are not fully exploiting the degrees of freedom provided by the joint multicell resource

allocation problem, as the imposed structure tends to reduce the dimensions offered in the

optimization.
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2) Discretization:As certain quantities entering the resource allocation problem may be con-

tinuous, e.g. the transmit power levels, or the beamformingcoefficients if multiple antennas are

used, a potentially interesting tool in modifying the optimization problem consists of discretizing

the optimization space so as to further reduce the number of potential solutions to search over,

and also to reduce the feedback rate needed to communicate overhead data between network

nodes. Discretization (via vector quantizing) of the optimal beamforming weights through the

use of vector precoding has been proposed, but interestingly, mostly for the single cell scenario,

and only for the purpose of feedback reduction (see e.g. [16]). In the case of beamforming

weights, discretization can be applied posterior to beamforming weight computation. In the case

of power control, discretization can be carried out prior tooptimization, as a way to greatly

simplify the power level search procedure. Remarkably, the discretization of power control, even

to its extreme of binary on/off control, can be shown to yieldquasi-optimal results in a number

of cases [17], and as such constitutes a promising tool to making multicell coordination a reality.

This is a central idea which is also developed in greater detail later in this article.

3) Greedy and iterative optimization:Due to the non-convexity of many of the multicell

resource optimization problems, finding globally optimal solutions from standard techniques

proves difficult, and an analytical formulation of the solution is often out of reach. In this case,

heuristic approaches based on alternating optimization orgreedy search may provide a good

performance/complexity compromise. While greedy search techniques have been popularized

over the last few years in the area of resource allocation in multiuser spatial division multiple

access [18] and OFDMA scheduling [19], [20], their application to multicell resource allocation

seems to have drawn attention only recently. Greedy multicell optimization operates by optimiz-

ing on a cell by cell basis, sequentially, just as individualusers are optimized sequentially in

the single cell scenario. At each cell visited, the resourceis optimized based on local channel

conditions and newly updated interference conditions originating from the other cells [21], [22].

Such techniques may also be applied in an iterative manner byrevisiting a sequence of cells

several times until capacity convergence is reached.

D. Distributed vs. centralized control

In most of the approaches above, including greedy optimization, the need may exist for

centralized knowledge of all channel and interference state conditions for all nodes in the
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network. In the case of the greedy approaches, the algorithmthen only visits the cellvirtually,

and the actual computation takes place within the central control unit shown in Fig.1(a). Central-

ized channel state information for a many-cell many-user network involves immense signaling

overhead and will not allow the extraction of diversity gains in fast-fading channel components.

To circumvent this problem, the design of so-calleddistributedresource allocation techniques is

crucial. Distributed optimization refers to the ability for each cell to manage its local resources

(say e.g. rate and power control, user scheduling) based only on locally observable channel

conditions such as the channel gain between the access pointand a chosen user, and possibly

locally measured noise and interference.

At first sight, joint multicell resource allocation does notlend itself easily to distributed

optimization because of the strong coupling between the locally allocated resources and the

interference created elsewhere in the network. Hence the maximization of the cell capacities

taken individually will not in general result in the best overall network capacity, although we

suggest later cases for which the outcomes for the per cell and multicell capacity optimization

will differ little.

An interesting and recently explored path toward enforcinga distributed control of resource

has been through the use ofgame theoreticconcepts. Game theory, in its non-cooperative setting,

pitches individual players in a battle, each seeking to maximize a utility function by selecting

one of several available strategic actions. In the resourceallocation framework, users can be

terminals competing for access in a single cell, or interfering transmit-receive pairs of a multiple

cell network or an adhoc network. The actions may be resourceallocation strategies, and the

utility may be capacity related. Non-cooperative game models allow transmit-receive pairs to

maximize their capacity under reasonable guesses of what competing pairs might be doing [23].

In that respect, it naturally and beautifully lends itself to distributed optimization. The game

theoretic framework is very well suited to network scenarios where infrastructure is sparse or

completely absent, as in peer-to-peer and adhoc networks. In infrastructure-based networks like

cellular, broadband access and to some extent WLAN networks,where a centralized operator

retains control over the common resource, it remains to be seen if the purely non-cooperative

model is overly pessimistic, as it may not be able to fully capture the gain that could be obtained

from coordination. However, pricing-based game theoreticapproaches have been proposed to

alleviate this problem (see for instance [24]). These aspects are further detailed later in the

DRAFT



8

paper.

Finally, as an alternative to game theory techniques, this paper also investigates distributed

forms of iterative multicell resource allocation. In such approaches, APs individually make a

decision on their transmit power so as to optimize their contribution to the sum rate. At the core

lies the idea that the interference behavior can be made morepredictable by making the network

larger or denser, and consequently the resource allocationproblem in a given cell is made more

dependent on the local channel conditions in that cell, thusfacilitating distributed optimization.

E. Scope and organization

This paper reviews various interesting strategies for the joint multicell resource allocation

problem. We consider transmitters with backlogged traffic,i.e. which always have data to send.

We are taking a sum-rate point of view on the network performance, as opposed to considering

packet delivery delays and other QoS issues. Issues relatedto queue-stabilizing routing and

resource allocation protocols are therefore not addressedhere but should rather come as possible

extending direction for this study.

We formulate our ideas for a certain cellular network model,but we emphasize the strong links

to the corresponding problem in adhoc networks. In Section II we review typical optimization

models and first formulate the optimal, centralized solutions, focusing on the key problems of

power control and user scheduling. We then give useful results on discretization of power control,

including the case where power levels only admit two values{0, Pmax}, and show the central

role that this type of solutions seems to be playing in our problem (Section VI). We refer to this

strategy asbinary power control.

Optimal (even binary) power control solutions necessitateby essence a centralized treatment.

In Section VII we next turn to strategies allowing distributed optimization. We show that

distributed strategies, which are optimal from a capacity scaling point of view, can be derived

for multicell systems with an asymptotic number of users percell. For a small to moderate

number of users, we consider more practical alternatives, including game theoretic and iterative

optimization techniques. We present some approaches usingiterative optimization in the binary

power control setting. We show how simple distributed algorithms can be derived from such

techniques, particularly in the case of dense random networks. The performance of these and other

existing schemes are compared. As in the single cell case, the multicell resource optimization
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problem inevitably leads to a capacity vs. fairness debate.These issues are addressed briefly in

Section VIII. We then conclude and discuss future areas of study in Section IX.

II. N ETWORK MODEL AND ASSUMPTIONS

We consider a wireless network featuring a number of transmitters and receivers. Among these,

there areN active transmit-receive pairs, which are simultaneously selected for transmission by

the scheduling protocol at any considered instant of time, while others remain silent. In this

network thei-th transmitter, denotedTi, (T1, T2,... are shown in Fig.2), sends a message which

is intended to thei-th receiverRi only. HoweverRi is being interfered by allTj,∀j 6= i due to

reuse of the spectral resource. This setup can be seen as an instance of the interference channel,

the analysis of which is a famously difficult problem in information theory [25]. In practical

terms, the situation depicted above can be that of a cellularnetwork with reuse factor one (say

e.g. the downlink withTi being access points (AP) or base stations). It can also depict a snapshot

of an adhoc network (see Fig.2(b)).

A. Signal Model

To facilitate exposition, we shall adopt a cellular terminology from here on. We thus consider

N time-synchronized cells, andUn users randomly distributed over each celln ∈ [1..N ]. In each

cell, we consider an orthogonal multiple access scheme so that on any givenspectral resource

slot (where resource slots can be time or frequency slots in TDMA/FDMA, or code in orthogonal

CDMA) a single user is supported2. Therefore, focus is on intercell interference rather thanon

intra-cell interference and the latter would come as a further extension of the study. On any

given spectral resource slot, shared by all cells, letun ∈ [1...Un] be the index of the user that is

granted access to the channel in celln.

We denote the downlink channel pathloss gain and random complex fading coefficient between

AP i and userun in cell n by γun,i and hun,i, respectively. We hereby focus on the downlink,

but all ideas presented here carry over to the uplink as well,unless otherwise stated. We shall

assume that the coherence time of the channel is long enough so that the receiver can estimate

2If the access point is equipped with multiple antennas we can generalize this model to multiple users per slot or code, giving

rise to so-called spatial division multiple access (SDMA).
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the gain (in each resource slot) and send this information toa local or global resource allocation

unit via a feedback channel if necessary. The received signal Yun
at the user in a given resource

slot is then given by

Yun
= γun,nhun,nXun

+
N∑

i6=n

γun,ihun,iXui
+ Zun

,

whereXun
is the message-carrying signal from the serving AP,

∑N
i6=n γun,ihun,iXui

is the sum

of interfering signals from other cells, andZun
is additive noise or additional interference.Zun

is modeled for convenience as complex AWGN, with powerE|Zun
|2 = σ2.

III. T HE MULTICELL RESOURCE ALLOCATION PROBLEM

We now turn to the core problem of resource allocation. Giventhe orthogonal multiple access

protocol described above, the resource allocation problemconsists inpower allocationanduser

schedulingsubproblems. Importantly, we focus here oncapacity maximizingresource allocation

policies, rather thanfairness-orientedones. Fairness issues are very briefly touched upon later in

the paper. In this setting, the optimization of resources inthe various resource slots decouples,

and we may consider the power allocation and user schedulingwhich maximize capacity in a

particular slot, independently of others.

A peak transmit power constraintPmax is imposed at each AP and to simplify exposition, we

shall assume that it is identical for all transmitters. In order to facilitate the problem formulation

of the joint power allocation and scheduling problem, we state the following definitions:

Definition 1: A scheduling vector U for a given resource slot contains the set of users

simultaneously scheduled across all cells:

U = [u1 u2 · · · un · · · uN ]

where [U ]n = un. Noting that1 ≤ un ≤ Un, the feasible set of scheduling vectors is given by

Υ = {U | 1 ≤ un ≤ Un ∀ n = 1, . . . , N}.

Definition 2: A transmit power vector P for a given resource slot contains the transmit power

values used by each AP to communicate with its respective user:

P = [Pu1
Pu2

· · · Pun
· · · PuN

]

where [P ]n = Pun
= E|Xun

|2. Due to the peak power constraint0 ≤ Pun
≤ Pmax, the feasible

set of transmit power vectors is given byΩ = {P | 0 ≤ Pun
≤ Pmax ∀ n = 1, . . . , N}.
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A. Utility-optimal resource allocation

The merit associated with a particular choice of a scheduling vector and power allocation vector

is measured via the help of anetwork utility function, denoted byF (U ,P ) : Υ × Ω −→ R+.

BecauseN pairs are served in parallel, the total utility typically decomposes into the sum

F (U ,P ) =
∑

n fn(U ,P ), wherefn(·) is the utility enjoyed by the network in celln. A logical

choice for the utility in the above interference limited system is to pick a function of the signal

to noise and interference ratio (SINR),fn(U ,P ) = f(Γ([U ]n,P )), whereΓ([U ]n,P ) refers to

the SINR experienced by the receiverun in cell n as a result of power allocation in all cells.

This SINR is given by

Γ([U ]n,P ) =
Gun,nPun

σ2 +
N∑

i6=n

Gun,iPui

, (1)

whereGun,i = γ2
un,i|hun,i|

2 is the channel power gain from celli to receiverun.

1) Capacity optimal resource allocation:In connection-oriented communication, a typical

utility function is a step function of the SINR with the SINR threshold dictated by the receiver’s

sensitivity. In data-centric applications however, whererate adaptation is implemented, a more

reasonable choice of utility is a monotonically piece-wiseincreasing function of the SINR,

reflecting the various coding rates implemented in the system. Assuming an idealized link

adaptation protocol, i.e assuming Shannon capacity can be achieved at any SINR in any resource

slot, the utility eventually converges to a smooth functionreflecting the user’s instantaneous rate

in bits/sec/Hz. For the overall network utility we thus define thesum capacity[25] as

C(U ,P )
∆
=

1

N

N∑

n=1

log
(
1 + Γ([U ]n,P )

)
. (2)

The capacity optimal resource allocation problem can now beformalized simply as:

(U ∗,P ∗) = arg max
U∈Υ
P∈Ω

C(U ,P ), (3)

The optimization problem above can be seen as generalizing known approaches in two ways:

First, the capacity-maximizing scheduling problem is well-studied for a single cell scenario, but

traditionally not jointly over multiple cells. Second, theproblem above extends the classical

multicell power control problem (which usually rather aimsat achieving SINR balancing) to
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include joint optimization with the scheduler. Despite itspromise, solving (3) presents the system

designer with several serious challenges.

The problem above is non-convex, and standard optimizationtechniques do not apply directly.

On the other hand, an exhaustive search for the(U ∗,P ∗) pair over the feasible set is prohibitive.

Finally, even if computational issues were to be resolved, the optimal solution still requires a

central controller updated with instantaneous inter-cellchannel gains which would create acute

signaling overhead issues in practice. The central question of this paper thus arises: Can we

extract all or some of the gain related to multicell resourceallocation using the solution of

(3), within reasonable complexity and signaling constraints? Inspection of the recent literature

reveals that this is a hot research issue with many possible tracks of investigation. We do not

pretend to exhaust all of them here by any means. Instead we simply draw the reader’s attention

to a few promising ideas. As a first approach we examine so-called scaling laws of the network

capacity under the optimal resource allocation solution. This study reveals in fact a much simpler

structure for the problem (3) in the asymptotic regime (in the number of users per cell). For

a fixed (moderate) number of users, however, we must considertechniques allowing for a sub-

optimal solution to (3), using different approaches in Section V. These techniques however,

remain mostly non-distributed. Next we turn to some distributed techniques, and offer some

comparisons, in Section VII.

IV. N ETWORK CAPACITY FOR ASYMPTOTIC NUMBER OF USERS

Let us consider a system with a large number of users in each cell. For the sake of exposition

we shall assume in this particular sectionUn = U for all n, whereU is asymptotically large,

while N remains fixed. We expect a growth of the sum capacityC(U ∗,P ∗) thanks to themulticell

multiuser diversity gain3. Thus we are interested in how theexpectedsum capacityscaleswith

U . To this end a series of bounding arguments can be used [26].

A. Bounds on network capacity

First we present some simple bounds which hold in both the asymptotic and non-asymptotic

regimes.

3The multicell multiuser diversity gain is a straightforward generalization of the conventional multiuser diversity [5] to multicell

scenarios with joint scheduling.
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Upper bound: An upper bound (ub) on the capacity for a given (not necessarily optimal)

resource allocation vector is obtained by simply ignoring intercell interference effects:

C(U ,P ) ≤
1

N

N∑

n=1

log
(
1 +

Gun,nPun

σ2

)
. (4)

In the absence of interference, the maximum capacity is clearly reached by transmitting at a

level equal to the power constraint, i.e.Pmax = [Pmax, .., Pmax] and selecting the user with

largest channel gain in each cell (maximum rate scheduler),thus giving the following upper

bound on capacity:

C(U ∗,P ∗) ≤ Cub =
1

N

N∑

n=1

log
(
1 + Γub

n

)
. (5)

where the upper bound on SNR is given by the so-called MAX-SNRscheduler:

Γub
n = max

un=1..U
{Gun,n}Pmax/σ

2 (6)

Lower bound: A lower bound on the optimal capacity (in the presence of interference)

C(U ∗,P ∗) can be derived by restricting the domain of optimization. Namely, by restricting the

power allocation vector to full powerPmax in all transmitters, we have

C(U ∗,P ∗) ≥ Clb = C(U ∗
FP ,Pmax) (7)

whereU
∗
FP denotes the optimal scheduling vector assuming full power everywhere, defined by

U
∗
FP = arg max

U∈Υ
C(U ,P max), (8)

Note that then-th cell’s user inU
∗
FP is found easily via:

[U ∗
FP ]n = arg max

U∈Υ
Γlb

n (9)

whereΓlb
n is a lower bound on the best SINR given by:

Γlb
n = max

un=1..U

Gun,nPmax

σ2 +
∑N

i6=n Gun,iPmax

(10)
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B. Scaling laws with number of users

We now investigate the rate of scaling withU for both upper and lower bounds on capacity.

The scaling must depend on the statistics of the channel power gains and interference level,

and in turn, on the assumed geometry of the network. In [26], an asymptotic analysis is carried

out for two network geometries. In the first one, users are assumed to be located at a similar

distance from their AP and at least at a distanceR from interfering APs, whereR plays the role

of the cell radius. In this case, the following result is obtained for the scaling laws ofCub and

Clb respectively:

Theorem 1:Let Gun,n = γ2
un,n|hun,i|

2, un = 1...U, n = 1...N , whereγun,n = γ under constant

path loss. Assume that|hun,n|
2 is Chi-square distributed with 2 degrees of freedom (χ2(2)) (i.e.

hun,n is a unit-variance complex normal random variable). Assumethe |hun,n|
2 are i.i.d across

users. Then for fixedN and U asymptotically large, the upper bound on the SINR in celln,

and on the capacity scale respectively like

Γub
n ≈

Pmaxγ
2

σ2
log U (11)

E(Cub) ≈ log log U (12)

where the expectation is taken over the complex fading gains.

The capacity scaling for the full-interference case (lowerbound) is obtained as follows:

Theorem 2:Let Gun,i = γ2
un,i|hun,i|

2, un = 1..U, n = 1..N , whereγun,n = γ, γ2
un,i = βd−ǫ

un,i

for i 6= n, where dun,i is the distance between userun and AP i, β is a positive constant

and ǫ is the path loss exponent. Assume|hun,i|
2 is Chi-square distributed with 2 degrees of

freedom (χ2(2)). Assume that the|hun,i|
2 are i.i.d across users and cells. Then for fixedN

and U asymptotically large, the lower bound on the SINR in celln and on the capacity scale

respectively like

Γlb
n ≈

Pmaxγ
2

σ2
log U (13)

E(Clb) ≈ log log U (14)

Note that the results above exploit tools from extreme valuetheory [27], which have been used

before in the context of single cell opportunistic scheduling [28], [29].
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Due to the upper and lower bounds showing similar scaling laws, the average of the network

capacity with optimum power control and scheduling scales like

E(C(U ∗,P ∗)) ≈ log log U (15)

The results above suggest that, in a symmetric multicell network, the capacity obtained with

optimal multicell scheduling in both an interference-freeenvironment and an environment with

full interference power have identical scaling laws inlog log U . This result bears analogy to the

results in [29] which indicate that in a single cell broadcast channel with random beamforming

and opportunistic scheduling, the degradation caused by inter-beam interference becomes negligi-

ble when the number of users becomes large. Here the multicell interference becomes negligible

because the optimum scheduler tends to select users who haveboth large instantaneous SNR

andsmall interference power.

Of course, it is better to take interference into account when doing the resource allocation.

However, a system where the full power is allocated at all transmitters will be asymptotically

optimal. As a result, a simple procedure based on (9) must be also asymptotically optimal.

Interestingly, this algorithm is completely distributed as only local CSI is exploited by each user

and fed back to its serving AP only. The SINRs can be computed during a preamble phase

where all APs are asked to transmit pilot or data symbols at full power.

We may wonder what the scaling law becomes in a non-symmetricnetwork where users are

located at a random distance to their serving AP. This problem can also be investigated using

extreme value theory and a surprising result is reached. In this case, the capacity is dominated

by the selection of users located close to their serving AP. For a uniform distribution of users

in a disc around the the AP, the growth rate obtained with optimum user scheduling and power

control is shown to be [26]:

C(U ∗,P ∗) ≈
ǫ

2
log U (16)

Hence a much faster growth rate than in the case of symmetrically located users. In this case too,

the power allocation based on transmitting at full power everywhere is asymptotically optimal

and gives rise to a distributed user selection algorithm based on maximum SINR.

For a small to moderate number of users per cell, the analysisabove may not be valid, and

other approaches must be investigated. In particular the intuition is thatsome(maybe a small

number of) selected transmitters then ought to back off fromfull power, for the good of the
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network, and even possibly shut down completely for the considered resource slot. To pursue this

idea in more depth we now consider the specific problem of capacity optimal power allocation.

First we consider below centralized schemes in Section V andSection VI, then finally turn to

distributed solutions in Section VII.

V. A PPROXIMATING THE SOLUTION FOR A FINITE NUMBER OF USERS

In this and the next section we imagine that a candidate scheduling vectorU has been selected,

and focus on optimal power allocation. Even given a set of scheduled users, the simultaneous

optimization of transmission rates and power with the goal of maximizing the sum network

capacity is still a difficult problem, which perhaps explains why the problem has received only

modest attention in the past. However, by restricting our attention to the high or low SINR

regime, the power control problem can be efficiently solved.

A. Low SINR regime

In this regime we can apply an approximation of the achievable rate of each user, thus

simplifying the problem. Specifically, when the SINR is low,the following approximation holds:

log(1 + Γ([U ]n,P )) ≈ Γ([U]n,P )
ln 2

. Thus, we have

C(U ,P ∗) =
N∑

n=1

log(1 + Γ([U ]n,P )) ≈
1

ln 2

N∑

n=1

Gun,nPun

σ2 +
N∑

i6=n

Gun,iPui

. (17)

Inspecting (17), we see that there is a linear relationship between each user’s achievable rate

and power, equivalent to the setup in [30]. Then, it is clear that the sum rate in (17) is convex in

each variablePun

4 [30], and hence each base station, when on, should transmit with full power

for optimality, i.e., on/off power control is optimal.

B. High SINR regime

On the other hand, if a high SINR assumption can be made we are again able to simplify

the problem. In particular, when the SINR is much larger than1, we can apply the following

4Note that this does not necessarily imply that the function itself is convex.
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approximation [31]5, [32]:

log(1 + Γ([U ]n,P )) ≈ log(Γ([U ]n,P )). (18)

By virtue of this approximation, it can be shown that the sum rate maximization problem now

is convex, and can be efficiently solved using geometric programming techniques [32].

The approximation is valid when the signal level is much higher than the interference level, or

in CDMA systems where the spreading gain is large. However, this approximation by construction

prohibits completely turning off any base stations at any time slot. This extra constraint may

in fact cause the resulting power vector to steer away from the optimum solution. Indeed, as

we will see in the next section, the ability to turn off base stations in certain time slots can be

instrumental in approaching the maximum network capacity.

VI. B INARY VS . OPTIMAL POWER CONTROL

Designing wireless networks where the resource is to be optimized over many dimensions

is a very complex task, and the complexity grows as fast as thenumber of variables in the

design space increases. As discussed in the introduction, to reduce the complexity one idea is to

limit the network parameter design space, for example by letting the transmit power take only

quantized values. When reducing the design space, obviouslya loss in system capacity can occur,

and there will be a tradeoff between capacity and complexity. Although this trade-off is still by

far an open problem, there has been some recent understanding as to how by a very coarsely

quantized transmit power allocation, namely a binary or an “on-off” one, we can actually come

very close to optimal power allocation. Besides complexity reduction, an important additional

benefit of quantizing the power space is to allow distributedoptimization. However this aspect

is addressed later in the paper.

A. Binary vs. optimal power control forN = 2

We now consider the case of a cellular network with a small to moderate number of users,

so the asymptotic results of Section IV do not apply. We starthere by consideringN = 2 cells.

Note that the network may have more than two cells, in which case the cells are simply clustered

5In [31] instead of using this approximation, the authors present an alternative objective function that has certain properties,

not commenting on the fact that the new objective function is identical to this high SINR approximation.

DRAFT



18

into adjacent groups of two cells, over which the power allocation is carried out. The two-cell

case is treated separately here as it allows for an analytical derivation of a surprising result for

the optimal power allocation. In particular the following result holds [17]:

Theorem 3:For the two-cell case, the capacity maximizing power allocation is binary. Math-

ematically, for anyU ∈ Υ,

arg max
(P1,P2)∈∆Ω2

C(U , (P1, P2)) = arg max
(P1,P2)∈Ω

C(U , (P1, P2)) (19)

where∆Ω2 = {(Pmax, 0), (0, Pmax), (Pmax, Pmax)} is the set of corner points in the feasible power

domain. Interestingly, a similar result was independentlyreported also in [33].

In fact, this result remains true even when the noise variance is different in each cell, thus

possibly accounting for out-of-cluster interference. Hence for the two-cell cluster case, the sum

rate optimal power allocation has a remarkably simple nature: Depending on the noise variances

and channel gains,either both APs should transmit at full power,or one of them should be shut

down completely. From a practical point of view it means thatthe transmit power range per cell

can be quantized to two values, either on or off,without loss in capacity! The optimal decision

however requires simultaneous CSI from both cells.

B. Binary vs. optimal power control forN > 2

Without resorting to the high or low SINR approximations discussed in Section V, in the

general SINR regime the power control problem proves to be very difficult due to the lack of

convexity and the fact that the analysis for the two-cell case does not generalize toN cells. One

of the first paper to treat the problem in detail was [31], giving an iterative procedure to solve the

sum throughput maximization. However, due to the inherent non-convexity of the problem, no

guarantees about the quality of the solution can be given. Another approach is to take advantage

of recent developments in the mathematical framework of geometric programming. It can be

shown that the sum of rates maximization subject to peak power constraints can be very well

approximated by a geometric program.Geometric programsare a class of non-linear optimization

problems characterized by objective and constraint functions that have a special form [34]. Then

by solving a series of such geometric programs, at each step improving the approximation, the

power control problem becomes manageable [32], [35].
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Motivated both by the optimality of binary power allocationfor the two-cell case and its sim-

plicity, we also investigate the properties of binary powercontrol also in theN -cell case. Binary

power control forN cells is done by evaluatingC(U ,P) at the corners ofΩ. Mathematically,

Pbin = arg max
P∈∆ΩN

C(U ,P), (20)

where∆ΩN is the set of2N − 1 corner points ofΩ (minus the all-zero point).

Unfortunately, a pessimistic theoretical result is obtained there: It can be shown that binary

power allocation is no longer optimal forN > 2. However, it appears to be very well approxi-

mating the capacity obtained by the optimal solution resulting from continuous power control,

as illustrated below.

Example 1:We simulated aN = 3 cell network with the following parameters. Common

peak and minimum power constraints ofPmax = 10−3, and Pmin = 0, respectively, assuming

identical noise figures for the different receivers, the AWGNpower is found askT0B, where

k is Boltzmann’s constant,T0 = 290 Kelvin is the ambient temperature, andB = 1 MHz is

the equivalent noise bandwidth, i.e.,σ2
Z1

= σ2
Z2

= σ2
Z3

= 4.0039 × 10−15. As an example of the

randomly generated channel gain matrix, based on path loss,shadowing and multipath effects

we have

G = 10−9 ×





0.0432 0.0106 0.0012

0.0004 0.2770 0.0043

0.0045 0.0137 0.1050




.

Then, by the best binary power allocation(P1, P2, P3) = (1, 1, 1)Pmax, a sum throughput of9.4555

bits/s/Hz is obtained, while by assigning the optimal powers (P1, P2, P3) = (1, 0.8595, 1)Pmax

we get a throughput of9.4590 bits/s/Hz. As we will see later, this example is quite typical in

the sense that binary power control, though suboptimal, very often yields a throughput close to

that obtained by optimally allocating the powers. While achieving only marginally higher sum

throughput under the given power constraints, optimal continuous control can however offer

some savings in terms of sum transmit power.

For a numerical comparison, we consider a hexagonal cellular system with an operating

frequency of 1.8 GHz. Gains forall inter-cell and intra-cell AP-UT links are based on the

COST-231 [36] path loss model including lognormal shadowingwith standard deviation of 10

dB, as well as fast fading which is assumed i.i.d. with distribution CN (0, 1). The peak power
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constraint is given byPmax = 1 watt. Fig. 3 depicts the network capacity, in bits/s/Hz/cell,

versus the number of cells. It is clear that introducing power control improves the throughput

performance, and that binary power control is optimal for one and two cells. However, note

that only marginal improvement is obtained in going from binary power control to optimal GP

power control based on geometric programming forN ≥ 3. As an example of how instrumental

it is to be able to operate some cells at minimum power, we see that the total network capacity

in bits/s/Hz/cell is less for two cells than for one cell whenusing full power. However, using

binary and GP power control, we observe an increase in the total network capacity when going

from one to two cells, due to better management of interference.

Although close to optimal, the binary power allocation based on (20) remains nonetheless

exponentially complex inN , as well as centralized. In addition, it must be coupled witha proper

scheduling algorithm. However the discrete nature of the power optimization opens a door onto

simpler, iterative and/or even distributed approaches. One interesting way of cutting the search

complexity for large values ofN is clustering. For small cluster sizes, (20) can easily be solved

by checking all corner points, based on the knowledge of or assumptions about interference

created by the remaining clusters. For a given cluster of size K << N , the interference from

the remainingN − K cells then contributes as noise, i.e. the sum throughput of aclusterQ is

given as,

Ccluster,Q =
∑

q∈Q

log2

(
1 +

PqGq,q

σ2
Zq

+ σ2
Iq

+
∑

j 6=q

j∈Q
PjGq,j

)
, (21)

where σ2
Iq

=
∑

j /∈Q PjGq,j is the interference from out-of-cluster. Assuming this interference

term can be estimated or averaged, from the knowledge of the power activity in other clusters,

then the following problem is solved for each clusterQ:

PQ = arg max
P∈∆ΩK

Ccluster,Q. (22)

VII. D ISTRIBUTED RESOURCE ALLOCATION TECHNIQUES

Except in the asymptotic number of users regime, and to some rare exceptions (such as [32]),

the methods presented so far require CSI of all cells to be centrally collected and processed

(Fig.1(a)). As the network size grows, this turns into a serious impairment, especially in high

mobility scenarios where the coherence time of the channel gain may not exceed a few tens of

milliseconds. In adistributedscenario (Fig.1(b)), a resource allocation unit is insteadlocated in
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each cell, handling scheduling and resource management forthe cell users based on local CSI

and possiblylimited remote CSI. Note that local CSI includes any information that is observable

by a local user, such as the gain from its preferred AP as well as the power from the various

interference sources. Though such information is enough toevaluate the capacity within the

observed cell, it is not sufficient to evaluate the impact of the interference on the rest of the

network, and in turn, on global capacity. Therefore, a framework allowing each cell to maximize

its capacity without concern for interference created elsewhere must be suited to a distributed

implementation. This is precisely the idea followed ingame theoreticapproaches, especially in

so-callednon-cooperativesettings. This interesting line of work is examined below.

A. Game theoretic resource allocation

In recent years, game theory which has its roots in economics(see [37] for an overview),

has been applied to several problems in communications [23]. Game theory involves a set of

competing players looking to maximize their own utility, based upon certain actions they can

take. When the users have no knowledgea priori about what others are simultaneously doing,

e.g. in a distributed system, the game isnon-cooperative, as users have no information on the

basis of which they could cooperate. Non-cooperative game theory was first proposed as an

efficient framework to formulate the power control problem for wireless data networks without

centralized control, e.g. inad-hocnetworks [24].

Consider a setN of transmit-receive pairs communicating over a shared medium. Each

transmit-receive pair represents a player, where each player n can adjust its transmit power

0 ≤ pn ≤ Pmax
n to maximize its individual utility functionfn. Different utility functions can

be considered, but for mutually interfering links, these are invariably dependent upon the user

SINR. The user rate is an obvious candidate for utility. The SINR in turn depends on the transmit

powers of all users in the network. Using the standard notation in the game theory literature,

we denote the transmit power vector of usersother than usern by p−n. The non-cooperative

power control game can then be written as

max
0≤pn≤Pmax

n

fn(pn,p−n) ∀ n.

In this setting, the resulting optimal outcomes of the game are categorized in two different ways,

as seen below.
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Nash EquilibriumandPareto Optimality: A set of strategies (in this case transmit powers) are

said to be at Nash equilibrium if no user can gain individually by unilaterally altering its own

strategy. Mathematically, a transmit power allocation vector (p̂n, p̂−n) is at Nash equilibrium if

for everyn,

fn(p̂n, p̂−n) ≥ fn(pn, p̂−n) ∀ pn ≤ Pmax
n .

Unfortunately, it is well known that the Nash equilibrium isnot efficient in terms of sum utility

i.e.
∑

n fn. In particular, if the utility is the rate, it has been shown that players tend to act

selfishly by increasing their transmit powerPmax
n beyond what is reasonable [24]. By altering

the strategy of some players, one may achieve a moresocially favorableoutcome. We thus define

a Pareto optimal power allocation vectorp∗, i.e. a vectorp∗ for which there is no other power

vectorp such that for alln ∈ N , fn(p) ≥ fn(p∗) and for somen ∈ N , fn(p) > fn(p∗). In

other words, some players benefit while some players remain unaffected by this altered strategy.

In order to find a Nash equilibrium that is more Pareto efficient, pricing mechanisms have

been investigated. Pricing aims at forcing users to act in a way that is more socially beneficial, in

other words, to improve the sum of the utilities of the players. Pricing is typically incorporated

as a penalty paid by a player in the utility function that is tobe optimized. In our application, it

is natural to suppose that the penalty a player pays should depend on its transmit power, since

this determines the interference it is creating to the rest of the network. There are various ways

of integrating a power-related cost in the utility. In [38] for instance, the utility is the ratio of

the goodput by the power level itself. Additive costs are also possible, in which case, denoting

the cost paid by each user bycn(pn), we can rewrite the non-cooperative game with pricing as

a maximization of the net utility:

max
0≤pn≤Pmax

n

{fn(pn,p−n) − cn(pn)} ∀ n.

There is a large body of literature considering various choices of utility and pricing mech-

anisms. In voice-oriented systems, utility functions are step function or sigmoid-like, geared

toward trying to achieve a target SINR at each user as in [8]. In that case pricing may be used

to stabilize power consumption when the SINR targets are close to the non-feasible region [39].

In data-oriented settings, the utility is usually a smoothly increasing function of the SINR.

For instance the authors in [24], [40], [41] consider a function giving the amount of information

successfully transferred per unit energy by each player, while the incurred cost is a linear function
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of the transmit power. An iterative algorithm is proposed which maximizes the net utility by

updating individual transmit powers assuming other players’ power vectors to be constant. The

downlink of a two-cell CDMA data network is studied in [42], with the goal of finding the

optimal transmit powers for utility and revenue maximization. The AP announces a price to the

users, which then demand certain powers based on maximization of the net utility.

Power control for transmit-receive pairs in an ad-hoc network is considered in [43]. Here, the

cost is not a constant function, but is based on prices announced by the players to each other.

Interestingly, the players charge each other for the interference created. The iterative algorithm

updates the power and prices at every step, but this is not completely distributed as it requires

channel gain information, as well as price updates, from allother users in the network. A truly

distributed setting is obtained by making the pricing a simple linear function of the consumed

power, as considered in some of the approaches discussed above. Clearly, an issue with pricing

is that it should eventually be a function of the macroscopicparameters, like the number of

cells, users, cell size etc. Finally, it is worth noting that, although significant work on resource

allocation using game theoretic frameworks can be found, itappears that the problem of user

scheduling in cellular networks has been little or not addressed in this framework, a fact probably

due to the historic ties between game theory approaches and adhoc networks. In Section VII-D

we investigate the performance of game theoretic power allocation using a pricing mechanism

paired with a reasonable distributed user scheduling algorithm.

B. Distributed techniques using “on-off” power allocation

In this section, we exploit lessons learned from Section VI in terms of the near optimality

of an “on-off” power allocation strategy in order to come up with a distributed optimization

strategy. Hence we take on the discretized problem defined by:

(U ∗,P ∗) = arg max
U∈Υ

P∈∆ΩN

C(U ,P ) (23)

In order for a solution to be practically feasible, computationally simple and distributed (although

possibly sub-optimal) algorithms are desirable. In the following sections, we discuss various

distributed approaches. A central idea behind all of these approaches is that ofinterference-

averaging, which helps make the total interference more predictable in the case where the number
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of interference sources is large. It also makes the SINR lessdependent on CSI information not

locally available at each cell.

C. Modeling interference in dense networks

Dense networks lend themselves to modeling of the total interference experienced by any user,

thanks to the large number of interference sources being averaged at the receiver. Based on the

observation that interference to any user in a large dense network is only weaklydependent on

the user’s position in the cell, we can approximate the interference term in (1) by an average

interference gain, denoted byG, which is independent of the user location multiplied by the

total transmit power of active interferers:

Ñ∑

i6=n

Gun,iPi ≈ G

Ñ∑

i6=n

Pi = G(Ñ − 1)Pmax, (24)

whereG is independent ofun, and is a certain function of pathloss, link budget parameters, etc.,

andÑ is the number of active “on” cells. Though only an approximation, this model is supported

by simulations [44]. More importantly, it proves a remarkably useful tool for algorithm design

in large networks. The estimation ofG can be made from simulations for a given network. It

can be also used as a tuning parameter, expressing the overall weight we want to give to co-

channel interference in the resource allocation. To this end, worst case and best case values can

be obtained from statistical analysis [44]. However, a nicer and more practical result is reported

below.

1) Iterative power allocation in the interference limited regime: A general approach for

distributed power allocation under the framework of (23) consists in letting each cell take a

activate/deactivate decision corresponding to a transmission with full or zero power. From the

point of view of sum capacity, each cell will exploit locallyavailable CSI in order to determine

whether its activation creates a capacity gain that outweighs (or not) the capacity loss caused by

its interfering power to the rest of the network. From manipulations of (2), (1), and assuming

both high SINR in active cells and a high interference-to-noise ratio, the best decision regarding
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activation of cellm is taken upon inspection of the following inequality :

Gm,mPm∑

i6=m
i∈N

Gm,iPi

≥

∏

n∈N
n6=m

G
∑

i6=n
i∈N

Pi

∏

n∈N
n6=m

G
∑

i6=n6=m
i∈N

Pi

.

where the average interference model (24) was used, yet the knowledge of the average interfer-

ence gainG is not needed, suggesting robustness with respect to the model (24). If all “on” cells

transmit with same powerPmax, and denoting|N | = Ñ whereN is the set of active cells, cell

m will activate itself if

Gm,m∑

i6=m
i∈N

Gm,i

>

(
Ñ − 1

Ñ − 2

)(Ñ−1)

≈ e, (25)

where the right hand side approximation is valid for a large enough network (more than, say, 10

cells). Note that the left hand side is the signal-to-interference (SIR) level. Depending on whether

(25) is used with or without the approximation, semi- or fully-distributed power control can be

obtained. In the semi-distributed case, the number of active cells from the previous iteration must

be communicated to the new cells. However this information could also be measured locally

from pilot signals.

The overall algorithm works as follows: Starting with an all“on” power allocation vector,

each cell simultaneously measures the SINR of the best user and based on (25) remains active

or inactive during the next iteration. For a cell to have the best chance to be active and thus

contribute to the network capacity, at every iteration it should schedule the user which has the

best chance of satisfying the inequality (25) i.e. the user with the maximum left-hand-side of

(25), based on the power allocation resulting from the previous iteration. Thus, along with power

allocation, the technique above suggests a corresponding scheduling policy. This is in contrast to

the game theoretic approach described previously in which only power allocation is addressed.

As a result of this algorithm, a subset of the total number of cells transmit simultaneously

during a given scheduling period. Though some cells may staysilent, they may be active during

the next scheduling period. This approach can also be considered as a distributed mechanism for

dynamic spectral reuse. In contrast with traditional cellular networks, the reusepattern obtained
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with this method is random, possibly highly irregular as illustrated in Fig. 4, and varies from

one scheduling period to the next as a function of the channelstate information of the cell users.

D. Performance issues

In this paper, we have essentially discussed two different approaches for multicell resource

allocation in wireless networks equipped with link adaptation capabilities:

1) Thegame theoretic formulation, allowing users (cells) to behave selfishly by individually

maximizing their capacity and then inducing a sort of socialbenefit (for network capacity)

through pricing. This approach is by nature distributed, asthe measure of performance is based

on individual cell capacity which can be calculated locally. However, maximizing individual

capacity does not necessarily maximize the network capacity. Pricing does try to move the

behavior to benefit the network, but this entails finding the right cost function, which sets up

another optimization problem to solve. Moreover, the game theoretic approaches in the literature

deal mostly with power allocation. To the best of our knowledge, coupling user scheduling with

power allocation for multiuser diversity gain has been overlooked so far in the game theoretic

framework.

2) Iterative Binary Power Allocationon the other hand, tries to directly maximize the net-

work capacity by exploiting the interference-averaging effect in large (in the number of nodes)

networks. Thus, it can be truly said to address the joint userscheduling and power allocation

problem. However, it relies on a restricted feasible power set, as well as on an approximate

model for interference in large wireless networks.

Due to the differing philosophies of tackling the multicellresource allocation problem, the

outcome of a quantitative comparison of the two methodologies is difficult to predict. To this

end, we compare the two through Monte Carlo simulations. However, in order to have a fair

comparison, we need to adapt the game theoretic approach to handle user scheduling as well.

Thus, given a multicell system, the user with the best SINR isselected in each cell and then

the power allocation game with pricing is played. As our goalis capacity maximization, for this

game,fn is the cell capacity given by,

fn(pn,p−n) = log2



1 +
pnGn,n

σ2 +
∑

i6=n

piGn,i



 .
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As in much of the current literature, pricing is considered to be a linear function of the transmit

power,

cn(pn) = αpn,

whereα is thecost factor. An iterative algorithm is adopted, where at each iterationthe transmit

power which maximizes the net utility is found, consideringthe interference to be constant. As

already stated, an issue that arises in the game theoretic approach is tuning the value ofα. Here,

as the number of users vary, the net utility is calculated fora range of cost factors. Theα that

gives the best net utility is considered the optimal cost factor, and the corresponding net utility

is used to calculate the network capacity.

We consider a 19-cell (hexagonal layout) system with the same parameters as described in

Section VI-B. We measure the average network capacity as the number of users per cell is varied.

We also plot the network capacity for a network employing maximum SINR scheduling with full

reuse (maximum power at all AP). The results show (Fig. 5) that the game theoretic approach

and the iterative binary power allocation in this case both perform better than full reuse, and

that they give quite similar average network capacity. There is roughly a 50 percent capacity

gain, which decreases when the number of active users increases. It is important to note that the

number of active users corresponds to users simultaneouslyactive within a scheduling window

(of a few 10s of ms perhaps), therefore this number is likely to be low in all cases.

As the number of users increases, both implicitly converge to full reuse (Fig. 6). This result

is expected and can be explained as follows. From (3), ideally we want to scheduleN users at

full power that have good communication links and are not tooaffected by interference. Then,

with an increasing number of users, the probability of finding such users increases. This is also

the sense of the asymptotic results reported in Section IV.

VIII. FAIRNESS ISSUES

In single cell scenarios with channel aware scheduling, it is known that maximizing the cell

capacity is done at the expense of the fairness between the various users’ throughputs, as users

endowed with favorable channel conditions are allocated a relatively greater share of the spectral

resource. Analogous conclusions will be obtained in a multicell context. For instance, the iterative

binary power control algorithms tends to activate cells forwhich the best user enjoys good
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channel gain and little interference, while cells for whichusers suffer from worse SIR will have

a greater chance of shutdown. Although sum-rate optimal, this type of policy is not giving a

fully fair treatment to the various cells, and consequentlyto the users in it. For instance, some

cells might experience long periods of silence due to prolonged detrimental fading conditions

or a poor user distribution. However, over a longer timescale the system is likely to be fair

across cells for a symmetric user distribution over the cells. To maintain some minimum QoS at

every cell, different strategies may be imagined, althoughin the multicell context these remain

open research topics. One is to modify the utility measured by each cell to take into account the

accumulated throughput by each of the users, in a similar wayto the proportional-fair type utility

used in certain single cell scheduling techniques [28], [45]. The buffer state at each AP could

also be considered to prevent overflow. Finally, an interesting way to restore some fairness is to

open the resource space to generate additional scheduling slots, over which the channel quality

is different and cells get an additional chance of activation. This can be done using scheduling

in both time and frequency slots (multicell OFDMA).

IX. FURTHER DISCUSSIONS

We have given some leads towards optimizing the resource in an interference limited multicell

network, via joint power allocation and channel-aware userscheduling in view of maximizing

the sum of user rates. Although difficult to solve in general settings, this problem promises

significant gains in network capacity. It also admits simpleproperties in certain cases that can

substantially reduce the complexity and make it practically relevant. If the number of users

grows asymptotically, the transmitters should all operateat the power constraint level and the

best user in each cell can be scheduled, in a fully distributed fashion. The loss due to interference

then does not affect how the network capacity scales with thenumber of users. For small to

moderate number of users, power control simply based on an on-off policy yields near-optimal

performance for more than 2 cells and exactly optimal for twocells. The on-off power control

policy can be exploited to derive simple and to a large extentdistributed resource allocation

algorithms. When the number of cells is large, a cell can decide of its own activation based on

a condition involving purely locally measurable data, resulting in a fully distributed algorithm

for power control at the base stations. Unlike the centralized solutions, the distributed solutions

involve users feeding back channel gain information to their serving AP only, without the need
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for sharing this information across many APs. Channel gain feedback is the price to pay to

achieve coordination gains. Note however that this type of feedback is required in any case by

the link adaptation protocol to select the appropriate coding and modulation schemes, and thus

may be reused by the resource allocation protocol as well. Game theoretic approaches can also

yield distributed algorithms for resource allocation. Typical utilities used there depart from the

network’s sum capacity. However, an optimization procedure can be used to modify the per-user

utility so as to improve the social optimality of the Nash equilibrium, in terms of sum rate.

For other choices of utilities (such as energy efficiency [46]) the difference between the Nash

equilibrium and the Pareto optimal solution has been shown to be small.

In the techniques above, joint power control and schedulingmay be interpreted as a form

of cooperation between cells, which amplify or attenuate their power in the best interest of

the network capacity. Alternatively, forms of multicell cooperation which involve some degree

of coding or coherent signal combining between the base stations have been proposed [47],

[48]. One way to optimize the link between several APs and oneor more user is to imagine a

distributed multiuser MIMO system, over which standard multi-user MIMO techniques such as

Dirty Paper precoding, linear precoding or decoding, multiuser detection and space-time codes.

Although these are promising techniques, some of the immediate challenges associated with this

form of cooperation are the need to route data traffic to several sites in the network, the need for

accurate CSI at the APs, the fact that some of these algorithmsdo not lend themselves easily to a

distributed implementation (as opposed to MAC-layer oriented cooperation schemes), and finally

the lack of scalability when the number of AP gets large. As a result, an interesting direction

of research may lie in the combined use of cooperation concepts at the PHY layer (multibase

MIMO etc.) on a small scale basis and coordination at the MAC layer on a larger scale basis.
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Fig. 3. Network capacity vs. number of cells. GP power control based on geometric programming provides only marginal
improvement as compared with binary power control.
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power allocation. As the number of users increases, the majority of cells are active.
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