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Modification of fractal algorithm for oil spill detection from RADARSAT-1 SAR data
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A B S T R A C T

This paper introduces a modified formula for the fractal box counting dimension. The method is based on

utilization of the probability distribution formula in the fractal box count. The purpose of this method is

to use it for the discrimination of oil spill areas from the surrounding features, e.g., sea surface and look-

alikes in RADARSAT-1 SAR Wide beam mode (W1) and Standard beam mode (S2) data have been

collected under different wind speeds. The results show that the new formula of the fractal box counting

dimension is able to discriminate between oil spills, look-alike areas and pixels of the size of a single ship.

The W1 mode data illustrate an error standard deviation of 0.05, thus performing a better discrimination

of oil spills as compared to S2 mode data. We conclude that automatic detection and discrimination of oil

spill and other sea surface features can be opertionalized by using the new formula for fractal box

counting.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Synthetic aperture radar (SAR) has been recognized as a
powerful tool for oil spill detection. Several algorithms have been
introduced to automatically detect oil spills from SAR images.
These algorithms involve three steps: (i) dark spot detection, (ii)
dark spot feature extraction, and (iii) dark spot classification.
Various classification algorithms for oil spill detection have been
utilized, including pattern recognition algorithms (Fukunaga,
1990), spatial frequency spectrum gradient algorithm (Lombardini
et al., 1989; Teivero et al., 1998) and fuzzy and neural networks
based algorithms (Mohamed et al., 1999; Calaberesi et al., 1999).
Dark spot detection is done by adaptive thresholding. This step is
controlled by wind conditions and the specific type of SAR sensors.
In doing so, the sea surface appears dark in SAR images when the
wind speeds range between 0 and 2–3 m s�1. This allows a
probable oil spill detection under low wind speeds. In fact, wind-
generated waves are barely developed and oil spill appears as dark
features on a dark SAR background. According to Solberg and
Volden (1997), the ideal detection of oil spill in SAR images
requires moderate wind speeds not exceeding 6 m s�1. In these
circumstances, sea surface roughness develops and oil slicks
appear as dark patches on a bright background in SAR images. In
regions of higher wind speeds ranging between 10 and 12 m s�1,
however, slick disappears from the sea surface and also from the
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SAR imagery, because of the redistribution of oil slicks by surface
waves and wind-induced mixing in the upper ocean layer. Gade
and Redondo (1999) suggested that the highest wind speed
threshold for spill detection in SAR images is between 10 and
14 m s�1. Hence oil spill monitoring is limited to the 3–10 m s�1

wind speed range (Lu et al., 2000). Threshold procedures, however,
have failed to detect thin and linear slicks. Available in situ wind
measurements can be used to determine the threshold, whereas
local homogeneity can be used to determine the threshold in the
absence of in situ wind measurements. In fact, oil spills detection
from SAR images is still a major challenge, as other physical
phenomena can generate similar dark patches, whereas SAR
images are also affected by multiplicative noise known as speckle.
In this context, dark patches not related to oil spill are known as
look-alikes. They can be due to low wind speed areas, internal
waves, biogenic films, grease ice, wind front areas, areas sheltered
by land, rain cells, current shear zones, and up-welling zones
(Lombardini et al., 1989; Teivero et al., 1998; Calaberesi et al.,
1999).

The surrounding sea water around dark spots will appear fairly
homogenous under high or medium wind speed. This explains the
low possibilities of the presence of oil spill and look-alikes in SAR
scenes. Utilization of homogeneity is a function of wind conditions.
A large number of oil spill and look-alikes, however, could emerge
in SAR imagery with a wind speed below 3 m s�1 (Teivero et al.,
1998). Detection of oil spill and look-alike features in SAR scenes
can be obtained by power-to-mean ratio values. The power-to-
mean ratio being a general measure of homogeneity is used to
adjust the threshold. Various authors (Solberg and Solberg, 1996;
Solberg and Volden, 1997; Kanna et al., 2003; Nirchio et al., 2005)
of fractal algorithm for oil spill detection from RADARSAT-1 SAR
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Table 1
RADARSAT-1 SAR Wide beam mode (W1) and Standard beam mode (S2)

characteristics.

Beam

mode

Incidence

angle (8)
Swath

area (km)

Looks Width

(km)

Resolution

(range � azimuth, m)

W1 20–31 150 4 165 30–48 � 28

S2 23.7–31 100 3.1 100 25 � 28
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have reported that for RADARSAT-1 SAR thresholding is done at
three different scales. Using three different scales, however, did not
work well for ENVISAT due to its larger pixel size.

A new approach has been introduced by Maged (2001) to
detect thin and linear slicks by using the Lee algorithm (Touzi,
2002). The Lee filter is primarily used on radar data to remove
high frequency speckles without removing edges or sharp
features from the images. Maged and van Genderen (2001)
reported that the Lee algorithm operates well to determine
linear slick features. According to Maged (2001), the Lee
algorithm avoids a decreasing resolution by making a weighted
combination of a running average with neighbour pixels. This
reduces the noise in the edge areas of slicks without sacrificing
edge sharpness. Recently, Huang et al. (2005) explored
segmentation of oil slicks using a partial differential equation
(PDE)-based level set method with ERS-2 SAR data. They
concluded that the level set method allows an extraction of
smooth and ideal boundaries rather than a number of zigzag
edges. This method, however, failed to distinguish between oil
slicks and dark spot areas that were located close to the
coastline, due to low wind speed. In fact this method produced
automatic snake contours around the presence of dark spot
areas in SAR imagery. Furthermore, Maged and van Genderen
(2001) introduced a new approach by using texture algorithms
for automatic detection of oil spills in a RADARSAT-1 SAR image.
In fact, grey-tone spatial-dependence or co-occurrence matrices
provide the basis for a number of measures including range,
variance, standard deviation, entropy, or uniformity within a
moving kernel window (Tricot, 1993). Computing the texture
features from a co-occurrence matrix, however, may become
critical due to multiplicative noise impacts. Different
approaches to texture identification have been introduced that
involve exploiting the fractal algorithm that can be applied to a
multi-resolution representation of SAR images. Fractal analysis
provides tools for measuring how the geometric complexity of
objects on images such as the number of discrete objects, the
perimeter to area ratio, and the degree of spatial auto-
correlation changes when the image resolution is altered. The
main question that we address in this paper is how the fractal
algorithm can be used to discriminate between oil spills and
look-alikes in RADARSAT-1 SAR data.

2. Fractal analysis and SAR data

According to Redondo (1996) fractal geometry can be used to
discriminate between different textures. A fractal refers to entities,
especially sets of pixels that display a degree of self-similarity at
different scales. Self-similarity is the foundation for fractal
analysis, which is applied to a group of pixels intensities with
the same trend of variation. It is defined as a property of a curve or
surface where each part is indistinguishable from the whole, or
where the form of the curve or surface is invariant with respect to
scales. In this case, the curve or surface consists of copies of itself at
different scales.

The best known procedures for estimating the fractal
dimension of SAR images are box counting, fractal Brownian
motion (Falconer, 1990; Gade and Redondo, 1999; Benelli and
Garzelli, 1999a,b) and the fractal interpolation function for
system dimension of images (Aiazzi et al., 2001). Initially,
Falconer (1990) introduced the fractional Brownian motion
model with SAR image intensity variation, which has shown
promise in the SAR data textures. In fact, both the sea surface and
its backscattered signal in the SAR data can be modeled as
fractals (Wornell and Oppenheim, 1992; Maragos and Sun, 1993;
Benelli and Garzelli, 1999a,b; Aiazzi et al., 2001).
Please cite this article in press as: Marghany, M., et al., Modification
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By contrast, Gade and Redondo (1999) found that a box
counting fractal dimension model provided excellent discrimina-
tion between oil spills and look-alikes, although they did not
consider the backscatter information, which could allow a first
robust localization of the oil spills. Benelli and Garzelli (1999a,b)
used a multi-resolution algorithm, which was based on the fractal
geometry for texture analysis. They found that the sea surface is
characterized by an approximately steady value of the fractal
dimension, whereas oil spills have a different average fractal
dimension compared to look-alikes.

This main hypothesis is the fact of modelling as fractals the
SAR backscattered signal from dark spot areas, being either oil
spill or look-alike pixels, and their surrounding sea environment.
In this context, a box-counting fractal estimator can be used as a
semiautomatic tool to discriminate between oil spills, look-alikes
and surrounding sea surface waters. In addition, utilization of a
probability density formula in the box-counting equation can
improve the accuracy of discrimination between oil slick pixels
and surrounding feature pixels such as ocean surface and look-
alikes. In doing so, this study extends the previous theory of
fractal dimension by implementing a probability density
formula. In addition, it uses two different RADARSAT-1 SAR
beam mode data, i.e. the Wide beam mode (W1) and the Standard
beam mode (S2).

3. Methodology

3.1. Data set

SAR data acquired in this study were derived from the
RADARSAT-1 images that involve Wide beam mode (W1) and
Standard beam mode (S2) images, respectively. Both images are
C-band and have a lower signal-to-noise ratio due to their HH
polarization with a wavelength of 5.6 cm and a frequency of
5.3 GHz. RADARSAT-1 W1 mode data have four independent
looks and cover incidence angles of 20–318 (RADARSAT
International, 2006), whereas S2 mode data have 3.1 looks
and cover an incidence angle of 23.7–31.08 (RADARSAT
International, 2006). Further, W1 data and S2 mode data cover
a swath width of 165 and 100 km, respectively, and have
different azimuth and ground range resolution (Table 1). Both
Mohamed et al. (1999) and Hashim et al. (2006) reported the
occurrence of oil spill pollution on 15 December 1997 and 20
December 1999, respectively, along the coastal water of the
Malacca Straits.

3.2. Fractal algorithm for the oil spill identification

The oil slick detection tool uses fractal algorithms to detect self-
similarity characteristics. A box-counting algorithm introduced by
Benelli and Garzelli (1999a,b) divided a convoluted line of slick
embedded in the RADARSAT-1 SAR image plane (i, j), into smaller
boxes. This was done by dividing the initial length of the
convoluted slick line at backscatter level bs by the recurrence
level of the iteration (Gade and Redondo, 1999). We define a
decreasing sequence of backscattering bs tending from b0, the
of fractal algorithm for oil spill detection from RADARSAT-1 SAR
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Fig. 1. Oil spill locations are indicated by dash lines during acquisition of (a)

RADARSAT-1 W1 and (b) S2 mode data.
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largest value, to less than or equal to zero. The fractal dimension D

(bs) as a function of the RADARSAT-1 SAR image intensity bs is
given by

DðbsÞ ¼ DB ¼ lim
s!1

log MðbsÞ
�logðbsÞ

(1)

where M(bs) denotes the number of boxes needed to cover the
various slick areas with different backscatter intensitybs in the
RADARSAT-1 SAR images. The number of boxes of side length ls
needed to cover a fractal profile, varies as b�D

s , where D is the
fractal dimension that is to be estimated. If the sampled profile is a
fractal object, then M(bs) is proportional to b�D

s . Therefore, the
following relation, adopted from Milan et al. (1993), should be
satisfied:

MðbsÞ ¼ Cb�D
s (2)

where C is a positive constant, derived from a linear regression
analysis between log M(bs) and log(bs). For different box sizes bs,
points are plotted in the log-log plane. The dimension D(bs) = DB

can then be estimated (Milan et al., 1993).
According to Sarkar and Chaudhuri (1994), a complication

occurs when computing D(bs) with Eq. (1), due to the discrete
RADARSAT-1 SAR images surfaces. Therefore, approximations to
this relationship are employed. First, the RADARSAT-1 SAR
intensity image is treated as a two-dimensional matrix (b � b).
This b � b intensity image matrix is then divided into overlapping
or abutted windows of size ls � ls. For each window, there is a
column of accumulated boxes, each of size of l2s � l. The backscatter
values b0 are stored at each intersection of the column i and row j

of the various slick areas. Then l is calculated by using the
differential box counting proposed by Sarkar and Chaudhuri
(1994):

bs

l

� �
¼ b

ls

� �
(3)

Let the minimum and maximum (bs) in the (i, j) window fall
into boxes numbered n and m. The total number of boxes needed to
cover the various slick pixels in the RADARSAT-1 SAR image with
the box size ls

2 � l equals:

MðbsÞ ¼
Xl

i; j

nðb0Þ �mðbsÞ þ 1 (4)

Let P[M(bs),ls] be the probability of the total number of box
M(bs) with box sizes ls. This probability should be directly
proportional to the number of boxes

Pl
i; j nðb0Þ �mðbsÞ þ 1

spanned on the (i, j) windows. By using Eq. (4) the expected
number of boxes with size ls needed to cover the slick pixels can be
calculated as

MðbsÞ ¼
X

i; j

1

n
P½MðbsÞ; ls� (5)

According to Fiscella et al. (2000), the probability distribution of
the dark area belonging to slick pixels can be calculated as

P½MðbsÞ� ¼
1þ

Q
nqnðMðbsÞÞ

pnðMðbsÞÞ
(6)

Let n ¼
Pl

i; j nðb0Þ �mðbsÞ þ 1, and let q and p be the probability
distribution functions for look-alike and oil spill pixel areas,
respectively. From Eqs. (5), (6) and (1), one obtains a new formula
for estimating the fractal dimension DB:

DðbsÞ ¼ DB ¼ lim
s!1

log
P

i; jn
�1½1þ

Q
nqnðMðbsÞÞ= pnðMðbsÞÞ�
�logðbsÞ

(7)
Please cite this article in press as: Marghany, M., et al., Modification
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In practice, the limit for M going to zero cannot be taken as it does
not produce a texture image for oil spills or look-alikes in SAR data.
Using fractal dimensions to quantify texture for segmentation, we
divide the slick’s pixel areas into overlapping sub-images. Each
sub-image is centred on the pixel of interest. We then estimate the
fractal dimension D(bs) within each sub-image, and assign the
fractal dimension value to the central pixel of each sub-image. This
produces a texture image that may be used as an additional feature
in a slick pixel classification.

Prior to the fractal application to the amplitude RADARSAT-1
SAR data, a radiometric correction has been performed. The
radiometric correction establishes a constant correlation between
intensity in the SAR data and backscatter from the oil spill pixels.
This results into the oil spill pixel targets with the same intensity,
regardless of their position within the RADARSAT-1 SAR image
swath (Maged and Mazlan, 2005). The digital number is then
converted into the normalized radar cross-section s8 and incident
angle to determine the spatial variation of oil spill pixels, being a
function of s8 and the incident angle. ENVI software was used in
estimating s8 and the incident angle.

4. Results

The RADARSAT-1 SAR images contain the confirmed oil-spills
which occurred near the west coast of Peninsular Malaysia on 26
December 1997 and 20 December 1999, respectively (Fig. 1). The
RADARSAT-1 W1 mode data covered an area located in between
102803009.700E to 103835023.600E and 1810030.200N to 2820.23030.200N
while S2 mode data covered an area located between
101818023.700E to 101836027.800E and 2832046.200N to 2850050.500N.
Fig. 2 shows the variation of the average backscatter intensity
along the azimuth direction in the oil-covered area as a function of
the incidence angle for the W1 and S1 mode data. The back-
scattered intensity is damped by �8 to �18 dB in W1 and �10 to
�18 dB in S2 mode data. Both backscatter intensities are above the
RADARSAT-1 noise floor value of nominally �20 dB.
of fractal algorithm for oil spill detection from RADARSAT-1 SAR
.2008.09.002
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Fig. 2. Radar cross-section intensity along oil slick locations (dash lines were drawn

in figure) and wind speed distribution during date of acquisitions.

Fig. 3. Fractal map for RADARSAT-1 SAR (a) W1 mode data and (b) S2 mode data.

Table 2
Fractal values for different features in RADARSAT-1 SAR Wide (W1) and Standard

(S2).

Area Fractal dimension

RADARSAT-1 SAR (W1) RADARSAT-1 SAR (S2)

Oil spill

A 1.48 1.49

B 1.52 1.52

C 2.0 1.57

Look-alike

D 2.5 2.4

E 2.6 2.6

F 2.8 3.0

Ship

G 4.0 4.0

H 3.6 2.4

I 3.9 3.9

Shear current

J 3.7 3.8

K 3.8 3.9

L 3.9 3.9

Low wind zone

M 2.4 1.57

N 2.4 2.00

O 2.5 2.34
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The wind speed conditions acquired from the Malaysian
Meteorological Survey Department showed a maximum
offshore wind speed velocity of 4.11 m s�1 during the W1 data
overpass and of 7 m s�1 during the acquisition of the S2 data. In
addition, the oil spill in W1 data with steeper incidence angle is
between 268 and 308 (Fig. 2), whereas in the S2 mode data the
oil spill is portrayed by shallower incidence angle, between 258
and 278.

The proposed method to estimate the fractal dimension has
been applied to the amplitude RADARSAT-1 SAR data by using a
10 � 10 block at full resolution (Fig. 3). The fractal dimension
maps show a good discrimination between different textures on
the RADARSAT-1 SAR images and correlate well with image
texture regions. The oil spill pixels are dominated by lower
fractal values than look-alikes and surrounding environment
(Fig. 3). In Fig. 3a, the fractal values of oil spill regions vary
between 1.48 and 2. In Fig. 3b, however, a reduction in the
maximum fractal dimension of oil spill at area C in S2 data
occurs as compared to W1 data where the fractal dimension
value is 1.57. This is probably caused by the short span of oil
spill in the S2 mode data and could attributed to the spatial
variation of S2 mode data reflectivity as a function of shallower
incidence angle (Fig. 2) and smaller swath area compared to the
W1 mode data (Table 1). In contrast to the W1 mode data, the
fractal dimension values of look-alikes in the S2 mode data are
higher. In the S2 mode data, areas F and E are represented the
occurrence of look-alikes. Table 2 shows that area F corresponds
to a fractal dimension value equal to 3.0, whereas area E
corresponds to a fractal dimension equal to 2.6. In both modes,
the highest fractal dimension values of 3.9 and 4.0 in areas I and
G, respectively, are represented by the presence of a ship,
whereas ship waves have lower fractal dimension values
between 2.4 and 3.6 in area H in both S2 and W1 mode data,
respectively (Table 2). Furthermore, the occurrence of shear
current flow can be seen in areas J, K and L, respectively. In both
modes, area L corresponds to the maximum fractal value of 3.9
(Table 2).

Both modes further show that low wind zones in areas M, N and
O occur close to the coastline with a maximum fractal values equal
to 2.34 and 2.5 in area O in S2 and W1 mode data, respectively
(Fig. 3). Look-alikes occupy narrow areas parallel to the coastline
(Fig. 3b). Further, in W1 mode data, the sea surface roughness has a
fractal value of 3.2 and a normalized radar cross-section of 0.85
whereas the oil spill pixels have fractal dimension values between
Please cite this article in press as: Marghany, M., et al., Modification
data. Int. J. Appl. Earth Observ. Geoinform. (2008), doi:10.1016/j.jag
1.5 and 1.56 and a normalized radar cross-section 0.2 and 0.29 in
S2 and W1 mode data, respectively (Fig. 4).

The receiver–operator-characteristics (ROC) curve in Fig. 5
indicates significant differences in the discrimination between oil
of fractal algorithm for oil spill detection from RADARSAT-1 SAR
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Fig. 4. Fractal dimension curve for different features in RADARSAT-1 SAR (a) W1

mode data and (b) S2 mode data.

Fig. 6. Accuracy assessment of fractal dimension performance.
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spill, look-alikes and sea surface roughness pixels. For the ROC
curve, this evidence is provided by an area difference of 15% for oil
spill and 45% for the sea roughness and a p value below 0.05.
Further, Fig. 6 shows an exponential relationship between fractal
dimension and the standard deviation of the estimation error for
the fractal dimension. The maximum error standard deviation is
0.45, corresponding to the fractal dimension value of 2.9 which is
found in S2 mode data. For oil spill detection, the minimum error
standard deviation of 0.05 (Fig. 6) occurs in a region of fractal
dimension of 1.49 in W1 mode data.
Fig. 5. ROC Curve for different feature detection in both RADARSAT-1 SAR data.

Please cite this article in press as: Marghany, M., et al., Modification
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5. Discussion

The results show the potential of RADARSAT-1 SAR data for oil
spill detection where RADARSAT-1 SAR C-band HH-polarized
backscatter depression across oil spill pixels agrees satisfactorily
with previously published results (Mohamed et al., 1999; Lu
et al., 2000; Maged and van Genderen, 2001; Maged and Mazlan,
2005; RADARSAT International, 2006). In fact, RADARSAT-1 SAR
is a C band instrument with a variable acquisition swath,
presenting a large variety of possible incidence angles, swath
width, and resolution (RADARSAT International, 2006). Oil slicks
can be detected with a contrast as small as 4 dB (Kotova et al.,
1998; Farahiday et al., 1998; Lu et al., 2000). This suggests that a
large part of the RADARSAT-1 SAR swath could be useful for oil
slick detection. Nevertheless, Ivanov et al. (2002) reported that
the RADARSAT-1 SAR in its ScanSAR Narrow mode with swath
width above 300 km, is attractive for marine oil pollution
detection.

In both modes fractal dimension values of look-alikes are
different. This could be attributed to the long span of look-alikes in
S2 mode data. Furthermore, area L corresponds to maximum
fractal value of 3.9 in both modes (Table 2). This could be attributed
to strong current occurrence (Maged and Mazlan, 2005). It is
interesting to discover that the fractal dimension algorithm based
probability is able to extract ship wake information in area H with
highest value of 3.6 in W1 mode data. This suggests that the
corresponding value of the fractal dimension for different
categories allows a multi-fractal characterization of different
features in different RADARSAT-1 SAR modes. These results
confirm the study of Maged and Mazlan (2005).

It is interesting to note that the new fractal dimension formula
is able to detect oil spill spreading. According to Maged and Mazlan
(2005), the oil spill becomes thinner when the fractal dimension
value increases. This can be noticed in areas A to C (Fig. 3). In fact, a
thick oil spill dampens small-scale waves and therefore there is no
Bragg resonance, which reduced the roughness of sea surface as
compared to a thin oil spill (Bern et al., 1993). In this context, the
fractal dimension is a function of sea surface level intensities over
the RADARSAT-1 SAR images which express the self-similarity
(Benelli and Garzelli, 1999a,b).

The maximum fractal value of 4.0 is observed for the group of
ship pixels. This suggests that the strong amplitude of variation in
RADARSAT-1 SAR images can be mapped as fractal discontinuities
and that small objects like ships can be detected. This confirms the
study of Maged and Mazlan (2005). In fact, the sea surface can be
considered as a fractal object. According to Falconer (1990), the
of fractal algorithm for oil spill detection from RADARSAT-1 SAR
.2008.09.002
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slope measure of fractal objects corresponds to the complexity of
the objects, with the natural implication that the sea surface would
have a steady value (Figs. 3 and 4). There appears to be a reduction
in the maximum fractal dimension of the oil slick compared to that
of the look-alikes. This could be due to the short spatial extent of
the oil spill as shown in S2 mode data. Also a large difference of 2.6
in fractal values occurs between the maximum peaks of look-alike
and oil spill, in both modes (Fig. 5). Therefore, oil spills have lower
normalized radar cross-section in both RADARSAT-1 SAR mode
data as compared to the surrounding sea surface environments, sea
surface roughness, low wind zone and look-alikes (Fig. 4). This
could be attributed to an exponential relationship between fractal
surface and normalized radar backscatter cross-section (Fig. 4)
(Bertacca et al., 2005). Further, in both modes the wide distribution
of dark zone pixels represents the natural slick in low wind areas
(Henschel et al., 1997), which is aligned with what could be a
current shear or convergence zone.

The validation of the new fractal formula can be discussed by
ROC and error standard deviation results. ROC suggests best
discrimination between oil spill and surrounding sea environ-
ments which confirms the study of Maged and Mazlan (2005). The
reason is that the fractal dimension can be viewed as a measure of
the scale of the self-similarity of the object. Also the interference is
statistically similar if the scale is reduced, which is similar to the
result of Bertacca et al. (2005). This suggests that a fractal analysis
is a good method to discriminate regions of oil slick from
surrounding water features.

Using this new approach, we have reached a lowest error
standard deviation in W1 mode data as compared to S2 mode data.
This means that W1 mode data perform better for detection of oil
spill as compared to S2 mode data. In fact, W1 mode data show
steeper incident angle of 308 than S2 mode data. According to
Maged and Mazlan (2005), steeper incidence angles are preferred
for oil spill detection since they tend to maximize the signal from
the ocean surface. The offshore wind speed during W1 mode data
overpass was 4.11 m s�1 whereas the offshore wind speed was
7 m s�1 during S2 mode data overpass. In fact, wind speeds bellow
6 m s�1 are appropriate for detection of oil spill in SAR data
(Solberg and Volden, 1997). Therefore, steep incidence angles are
preferable for applications that require imaging of the ocean
surface as there is a greater contrast of backscatter manifested at
the ocean surface.

The fractal-modified formula leads to a good discrimination
between oil spill, look-alike, low wind zone and sea surface
roughness when the error standard deviation is situated between
0.05 and 0.45. The reason is that the fractal dimension is a measure
of the scale of the self-similarity of the object. The low standard
deviation error value of 0.05 for fractal area value equal to 1.49
dominated by the oil spill is lower than that for the surrounding
sea. This is thus an excellent indicator for the validation of the
fractal formula modification by implementing a probability
distribution function (PDF).

Use of the fractal dimension based on the probability
distribution function (PDF) improves the discrimination between
oil spill, look-alikes, sea roughness and low wind zones. In fact,
involving the PDF formula into the fractal dimension map directly
relates textures at different scales to the fractal dimension. Such
modification of the fractal equation reduces the problems of
speckle and sea clutter and assists in the accurate classification of
different textures for SAR images.

6. Conclusions

This work has demonstrated a new method to utilize
RADARSAT-1 SAR imagery for oil slick detection. Two different
Please cite this article in press as: Marghany, M., et al., Modification
data. Int. J. Appl. Earth Observ. Geoinform. (2008), doi:10.1016/j.jag
RADARSAT-1 SAR beam modes are used: Wide beam mode data
(W1) and Standard beam mode data (S2). A fractal dimension
algorithm was used as an automatic tool to discriminate between
an oil slick and other surface features such as slick look-alikes
and variability of surface roughness. The oil spill has fractal
dimension values between 1.49 and 1.57 in both modes. The sea
surface roughness has a fractal dimension value of 3.5. Oil spill,
look-alikes and sea surface roughness are discriminated well
based on the ROC curve. W1 mode data have a lower standard
deviation error of 0.05 for oil spill detection than S2 mode data
due to the steeper incidence angle of 26–308 and a moderate
offshore wind speed of 4.11 m s�1 during the satellite overpass.
In conclusion, the modified formula of the fractal box counting
dimension has improved distinction of oil spill from the
surrounding sea surface feature. This new approach can be used
as an automatic tool to distinguish oil spill from other sea surface
features.
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