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Abstract—In this paper, we present a two-stage framework
that deal with the problem of automatically extract human
activities from videos. First, for action recognition we employ
an unsupervised state-of-the-art learning algorithm based on
Independent Subspace Analysis (ISA). This learning algorithm
extracts spatio-temporal features directly from video data and
it is computationally more efficient and robust than other
unsupervised methods. Nevertheless, when applying this one-
stage state-of-the-art action recognition technique on the ob-
servations of human everyday activities, it can only reach
an accuracy rate of approximately 25%. Hence, we propose
to enhance this process with a second stage, which define a
new method to automatically generate semantic rules that can
reason about human activities. The obtained semantic rules
enhance the human activity recognition by reducing the com-
plexity of the perception system and they allow the possibility
of domain change, which can great improve the synthesis of
robot behaviors. The proposed method was evaluated under
two complex and challenging scenarios: making a pancake
and making a sandwich. The difficulty of these scenarios is
that they contain finer and more complex activities than the
well known data sets (Hollywood2, KTH, etc). The results show
benefits of two stages method, the accuracy of action recognition
was significantly improved compared to a single-stage method
(above 87% compared to human expert). This indicates the
improvement of the framework using the reasoning engine for
the automatic extraction of human activities from observations,
thus, providing a rich mechanism for transferring a wide range
of human skills to humanoid robots.

I. INTRODUCTION

One of the main purposes of humanoid robots is to
improve the quality of live of elderly and/or disabled people
by helping them in their everyday activities. Therefore, such
robot systems should be flexible and adaptable to new situa-
tions. This means, they need to be equipped with capabilities
of action recognition, action understanding, among others.

Regarding the problem of action recognition, the robot
should be able to correctly identify through observations the
actions and motions of the demonstrator. It is important to
first identify the difference between the motions and activities
that a human could do [1], this distinction will help to
represent, recognize and learn human activities from videos.
The state-of-the-art on human action recognition based on
vision information identifies the local image representation as
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Fig. 1. Shows the overview of the approach proposed in this work. The
highlighted section represents the data obtain from ISA and the dimmed
section depicts the reasoning stage of the framework, similarly to [4].

a promising direction compared to the global representations.
The first one addressees visual occlusion and generalization
to different scenarios by taking into account spatio-temporal
correlation between patches [2]. There are four well known
benchmark datasets: KTH, Hollywod2, UCF and YouTube
and usually the action classes are: drive a car, eat, hand shake,
hand wave, run, swing, etc, where the highest accuracy
reported is around 75% [3]. Nevertheless, if we consider the
actions that involve objects such as: basketball shot, golf
swing, hand shake, answer a phone, etc, then we can notice
that the accuracy of recognition is low (in average 43.62%).
This shows how challenging those kind of activities are.
Many directions for action recognition have been pro-
posed, one of them is through the recognition of object(s)
instead of observing human motions, e.g. Worgotter et. al. [5]
introduced the concept of Object-Action Complexes (OACs),
which investigates the transformation of objects by actions,
i.e. how object A (cup-full) changes to object B (cup-empty)
through the execution of Action C (drinking). This framework
depends on the correct identification of the attributes of the
objects. In a similar way, Patterson et. al. [6] presented a
model that can be generalized from object instances to their
classes by using abstract reasoning. Nevertheless, sometimes



the activities are misclassified because of the class of the
object. Another direction is based on plan recognition [7]
where is stated that human behavior follows stereotypical
patterns that could be expressed as preconditions and effects.
However, those constraints must be specified in advance.

A different approach is through human observations. In
this work we follow this approach. Previous work presented
by Gehrig et. al. [8] where their framework combines
the motion, activity and intention recognition of a human
by using visual information of a monocular camera in
combination with the knowledge domain. This system is
restricted to manual annotations of the domain (time of
the day and the presence of the object). Also, the rela-
tionship between the activity and the motion is neglected.
Furthermore, from human observations, it is also possible to
extract the trajectory information and analyze its shape , with
either linear-chain Conditional Random Fields (CRF) [9],
or using Dynamic Time Warping [10]. Those classification
techniques are restricted to the position of the objects in
the trained environment, because if a different environment
is analyzed then those trajectories will change completely
and new models have to be acquired. Additionally, the
object could be considered into the classification, where a
library of Dynamic Motion Primitives (DMPs) enables the
generalization of motions to new situations based on the new
position of the goal [11], i.e. the motions are adjusted based
on the parametrization of the given goal within the same
neighborhood. This method takes perturbations into account
and includes feedback [12].

In this paper, we present our approach to successfully
recognize human actions from videos. We prove quantita-
tively the enhancement of the activity recognition using our
reasoning engine. The key factor in our framework is the ab-
straction of the problem in two stages. First, by recognizing
general motions such as moving, not moving or tool used.
Second, by reasoning about more specific activities (Reach,
Take, etc.) given the current context, i.e. using the identified
motions and the objects of interest as input information. An
illustration of the framework’s pipeline is depicted in Fig. 1.
In Section II, the Independent Subspace Analysis (ISA) will
be introduced. In Section III, the methodology to create the
rules is explained. In Section IV the data sets are described.
Then, the results will be shown in Section V. Finally, Section
VI will present the conclusions.

II. MOTION RECOGNITION OF HUMAN DEMONSTRATORS

In this work, we use the stacked Independent Subspace
Analysis (ISA) algorithm to extract low-level features from
videos, which will be later classified using Support Vector
Machine (SVM) in order to recognize the human activities.
The stacked ISA is an unsupervised learning technique
that extracts invariant spatio-temporal features directly from
unlabeled video data [3].

A. Stacked Independent Subspace Analysis (ISA)

Recent machine learning researches in the deep learning
domain showed that the learning-based feature extraction

algorithm is more effective than hand-designed visual feature
algorithms such as SIFT, HOG, SURF [3]. The key advan-
tage of those methods is that they are able to discover un-
expected features. In contrast to the hand-designed features,
which is totally based on the researcher’s own heuristics.

The stacked ISA algorithm is a deep architecture consist-
ing of several layers of ISA. It is often used to learn features
from unlabeled image patches. The best way to describe this
technique is as a two-layered network [13], where the first
layer contains simple units with square non-linearities and
the second layer is composed by pooling units with square-
root non-linearities (see Fig. 2, a)).
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Fig. 2. a) shows the ISA neural network architecture and b) shows the
stacked convolutional ISA for video data (Figure adapted from [3]).

The weights W in the first layer are learned, and the
weights V' of the second layer are fixed to represent the
subspace structure of the neurons in the first layer. Each
node of the second layer pools over a small neighborhood
of adjacent first layer units. This means that given an input
pattern z!, the activation of each second layer unit is

pi(as W, V) = | V(D Wiyat)? (D
k=1 j=1

where W is learned by finding sparse feature representations
over the second layer with

T m
minimize z Zpi(zt; W, V)
v t=1 i=1 2)

subject to WW7T =T

where {2'}7_, are linearly transformed input examples and
W € RFX" represents the weights connecting the input
data to the simple units. V € R™*F defines the connection
weights between the simple units and the pooling units.
n, k and m are the input dimension, the number of simple
units and the pooling units respectively. The orthonormal
constraint is to ensure that the features are sparse enough.
This algorithm needs to be adapted for the video domain.
The inputs to the network are 3D video blocks instead of
image patches, i.e. we flatten the sequence of patches into



a vector. This vector becomes the input features to a single
ISA. Therefore, to learn high-level concepts it is necessary to
stack several ISA networks. Then, a new convolutional neural
network architecture is designed that progressively makes use
of Principal Components Analysis (PCA) and ISA as sub-
units for unsupervised learning (see Fig. 2.b).

B. Human motion recognition methodology

We used a state-of-the-art processing pipeline similar to
[3]. First, we learn spatio-temporal features using informa-
tion from 3D video blocks as input. Those learned features
are then convolved with a larger region of the input data.
The outputs of this convolution are inputs to the next layer,
which is also implemented by another ISA algorithm with
PCA as prepossessing step to whiten the data and reduce
its dimensionality. Then, the norm-thresholding is used to
eliminate the features at locations where the activation norm
is below the defined threshold (9), i.e. this threshold will filter
out features from the non-informative background. In this
work, we choose § = 30%. Finally, in our experiments we
combine the extracted interesting features from both layers
and use them as local features for classification using a y2-
kernel Support Vector Machine (SVM). This methodology is
summarized in the video that is attached to this paper.

As a result of the above methodology, three human mo-
tions will be recognized: 1) Move, 2) Not Move and 3) Tool
Use'. A set of the recognized hand human motions, produces
an Activity and a set of activities, such as Reaching, Taking,
Releasing, etc., defines a Task, e.g. cut the bread.

1) Experimental ISA set-up: In order to learn the spatio-
temporal features, we use images from random video blocks
of size 16 x 16 (spatial?) and 10 (temporal®). Additionally,
we set the input dimension and the number of simple units
as k = m = 300. This means that the input of our first
ISA layer learns 300 features. Then, the inputs to the second
layer are defined of size 20 x 20 (spatial) and 14 (temporal).
The simple units of the stacked ISA are set to k = 200 and
the pooling units are set to m = 100, i.e. the second layer
ISA network learns 200 features.

III. AUTOMATIC GENERATION OF RULES

The segmented motions obtained from the above proce-
dure represent the abstract level of our model. Our goal
is to identify the human basic activities, and we propose
a novel methodology to handle this problem by inferring
the activities based on the observed human motions and the
information of the object of interest (environment informa-
tion). Therefore, the information of the objects involved in
the activity is also considered and they could be*:

1) Object Acted On’, 2) Object In Hand®.

IThis complex motion involves two objects, one is used as a tool and the
other is the recipient of the action, e.g. pouring or cutting.

2Spatial refers to the pixel dimensions of the image patches.

3Temporal represents the frames per second used to define a video.

4As a first approach, we will use the object information from manually
annotated videos.

SIdentifies the object which will be manipulated.

Defines the object that is physically in the hand, i.e. the object that is
currently manipulated.

Finally, from the above information, the robot should be
able to infer the activity that the human is performing by
automatically obtaining those inference rules. In this work,
we proposed to obtain those rules with a decision tree based
on the C4.5 algorithm [14]. This algorithm is very robust
to noisy data and it is able to learn disjunctive expressions.
Decision trees provides a very reliable technique to learn top-
down inductive inference rules (if-then rules). The central
core of the C4.5 algorithm is to select the most useful
attribute to classify as many examples as possible by using
the information gain measure, defined as:

Sy
Gain(S, A) = Entropy(S) — Z uEm‘/ropy(.S'v) 3)
veValues(A)

where Values(A) is the set of all possible values of the
attribute A, and S, = s € S|A(s) = v for a collection of
examples S. The entropy is defined as:

C

Entropy(S) = Z —pilogapi “4)

i=1

where p; is the probability of .S to belong to class .

IV. TASK EXAMPLES

In order to test the robustness of the generated rules
in different scenarios, we decided to use two real-world
scenarios, i.e. making a pancake and making a sandwich.
These activities present different levels of complexity and
they involve different kinds of objects as we will show in
the next sub-sections.

A. Making pancakes

In our first scenario, we recorded new videos of humans
performing the activity of making a pancake. We choose, this
realistic cooking activity, because it allow us to analyze goal-
directed movements, which contain finer humans motions
than the typical data sets. We recorded one participant
performing the action nine times. These recordings contain
information of three external cameras at 24 fps and the
cameras are located in different positions (see Fig. 3).

B. Making a sandwich

The second experimental scenario contains a more com-
plex activity, which is making a sandwich. These recordings
also contain the information of three external cameras at 60
fps. Additionally, this task is performed by two subjects and
each subject prepared two sandwiches, one sandwich was
prepared under normal time condition and the second one
under time pressure (in a hurry). One can see from Fig. 4
that this activity contains several objects as well as different
tasks. This means that this scenario is more complex than
the pancake making scenario. It is important to notice that
some activities are performed simultaneously from both the
right hand and the left hand, for example, Fig. 4.2) shows
that the left hand is holding the bread while the right hand
is cutting with a knife.



Fig. 3. This figure shows the three external cameras and some examples
of the main activities involved in making a pancake performed by the right
hand: 1) Reach, 2) Hold, 3) Pour, 4) Flip.
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Fig. 4.
subjects. A subset of activities executed with the right hand are shown: 1)
and 2) present the activities performed by Subject 1: Reach and Cut. 3) and
4) show similar activities performed by subject 2.

This figure depicts the sandwich making scenario made by two

V. RESULTS

This section presents the obtained results and it is divided
into two subsections. The first one presents the results
from the human motions recognition from videos using the
extended ISA algorithm. The second part shows the rules
extracted from the human observations and their robustness
in different data sets.

A. Action recognition

First, we present the results from the pancake making
video dataset (see Fig. 3). During the training phase, we
used the information of the three-view cameras for the first
subject during the first trial. Afterward, for testing, we used
another video from a different trial. We would like to stress
that people can not perform the same activity identically.
Hence, we can not expect a 100% accuracy in the activity

recognition. The results present that the correctly recognized
human high-level motions (such as move, not move and tool
use) is 81%, which represents a very high accuracy, even
when the videos were very short because the cameras were
at 24 fps. The obtained confusion matrix’ can be observed
in Table I a).

Then, we tested the sandwich making video dataset (see
Fig. 4). This video contains more objects in the scene and
more motions are used during the preparation of a sandwich.
Additionally, in this particular set-up, we constrained the
speed of the preparation of the sandwich. This means that
participants perform the first sandwich in normal speed and
the second in high speed (simulating they were in a hurry).
This means the variance between the trials is high, even when
they are performed by the same subject. Therefore, we use
for training the three-view videos from the first participant
during the normal condition and, for the testing stage, we
use the same participant but with the high speed condition.
Hence, the correctly classified human motions is 71%, which
is also very high, compared with the single-stage method
[3]. Please refer to Table I b) to see the obtained confusion
matrix. Additionally, it could be observed that fool used
motions are misclassified as move motions, because tool use
could be considered as a subclass of move, therefore we may
need the information of the objects to help the system to
distinguish between this two different motions.

TABLE I
CONFUSION MATRIX RESULTS FOR PANCAKE AND SANDWICH MAKING
a) Pancake making b)Sandwich making
Actual Cl Classified as Move | Not Tool Move | Not Tool
ctual L1ass Move | Use Move | Use
Move 6 6 0 13 2 6
Not Move 0 10 0 1 9 1
Tool Use 0 1 2 0 0 5

Afterward, we used the obtained features from the first
subject and we tested them on the second subject and the
classification accuracy for the high-level human motions
is around 65%, which is high considering that we used
different video sets for training and testing. This means
that the video features between the videos are different,
for example, the subjects have different shirt color and that
feature has not been previously trained. This represents a
very important aspect which is considered as a self-raught
learning problem. To the best of our knowledge the state-of-
the-art techniques for action recognition can achieve about
51.5% of accuracy for the self-taught learning [3]. It is
important to mention that if, instead of classifying the high-
level motion, we would have classified directly the low-
level activities (e.g. Reach, Take, Release, etc.), then the
classification performance would have decreased abruptly to
below 25%, considering the same video sets for training and
testing as before. Classifying the low-level activities is an
example of the single-stage method [3].

"This confusion matrix is computed for each sub-video, i.e. for the
pancake testing scenario we have 25 sub-videos of different length.



Another important advantage of using this model is the
reduced time required during the training process to 1-2
hours®, when the normal required time is 2-3 days. This
is because the stacked convolved network model is trained
greedily layer-wise in the same manner as other algorithms
proposed in the deep literature [15]. This means that the layer
1 was trained until convergence before training layer 2.

B. Automatic generation of rules

First, we need to build a decision tree as general as
possible in order to capture the relationships between the
objects, motions and activities to correctly infer the human
basic activities under different scenarios. Since this tree is
computed only once, we use as input information the labels
obtained from the manual annotation of the pancake making
videos executed by one subject during the first trial. The
weka data mining software was used to generate the decision
tree [16]. We only used the first 30% of the whole pancake
making video to build the tree and the rest (70%) was used
for testing. The tree that we obtained from the training data
set is shown in Fig. 5 and the testing data set was correctly
classified in 95.87%.

Right Hand

Tool use

GranularActivity

Object

Put something

No Motion
somewhere

Taking

‘ Releasing ‘

‘ Reaching

Fig. 5. This figure shows the obtained decision tree. Notice, that a correct
activity classification depends on the accurate recognition of the human
motion (blue letters).

From the above tree, it is possible to obtain some of the
following rules:

if RightHand(Not_Move) and ObjectInHand(Object)

— Activity(Taking) %)

if RightHand(Move) and ObjectInHand(None)
and ObjectActedOn(Object) — Activity(Reaching) (6)

if RightHand(Move) and ObjectInHand(Object)
— Activity(PuttingSomethingSomewhere) (7)

8The experiments were carried out with a PC-desktop with 8GB RAM
and Intel® Core™ i7.

The pancake making action has principally three main
tasks’: Pouring, Flipping and Sliding out. From the tree, one
can observe that these sub-activities are clustered using the
same rule:

if RightHand(T ool use)— Activity(GranularActivity) (8)

These activities will not be considered as human basic
activities, therefore in order to correctly classify those ac-
tivities more information is needed. In the remainder of this
paper this kind of activities will be called granular activities.
One possibility to classify those granular activities is to use
all the activities classified as Tool use and sub-classify them
again using the ISA methodology explained in Section II.

The next step is to test the robustness of the obtained
tree (see Fig. 5) by using as input the classification results
obtain from the ISA algorithm from the videos. Therefore,
first we used the motion recognition results obtained from the
extended ISA algorithm for the pancake making videos. The
correctly classified instances are 93.60% and the final human
activity recognition after the two stages is around 87.3%.
Second, we used as new input the classification results for
the sandwich making videos. Please take into account that
the tree was generated from a 24 fps video and the new
test set contains information at 60 fps. In this case, we used
the motion recognition results obtained from the testing data
set, which corresponds to subject 2 with the high speed
condition (the normal speed condition was used as training
for the ISA algorithm). Please notice that the recognition
results from ISA are lower than in the pancake making
data set. Hence, the correctly classified instances using the
tree from Fig. 5 are 81.1%, this is affected by the errors
produced by the incorrect classification generated by the ISA
algorithm. Therefore, the final action recognition is 76.05%.
The confusion matrix'® can be observed in Table II.

TABLE II
CONFUSION MATRIX FROM THE ACTIVITY OF SANDWICH MAKING
Classified as

Actual Class a b ¢ d ¢ f
a)ldle motion 3 0 0 0 2 3
b)Reach 20 190 1 8 12 24
¢)Take 0 4 56 12 0 28
d)PutSomethingSomewhere | 0 0 47 | 450 1 224
e)Release 0 1 1 3 72 27
f)Granular 0 0 0 21 0 1113

Afterward, we used the motions recognized as granular
activities (see Table IL.f) and re-classify them following
the ISA methodology. In the case of the sandwich making
data set, the granular activities are one of the following
categories: cutting, unwrapping, spreading and sprinkling
and the classification accuracy is 72.2%.

Using this methodology the complexity of action recogni-
tion decreases, because we propose to first classify the high-
level activities and then use that information to infer the

9A task (sub-activity) is defined as a motion where a tool is used, such as
flipping or cutting something, where the tools are the spatula or the knife,
respectively.

10This confusion matrix is obtained frame-wised.



low-level activities. If we want to classify this low-level ac-
tivities, the classification accuracy will decrease substantially,
because certain activities like Reaching will be misclassified
as Releasing due to their similarity.

The rules obtained from the decision tree can be pro-
gramed easily in any kind of language. Nevertheless, some
first order logic languages such as Prolog, could enhance the
system with more inference and reasoning capabilities. By
reasoning we mean that some facts will be derived (infer),
these facts are not necessarily expressed in the ontology or
in the knowledge base explicitly. Therefore, as part of our
framework, those rules represent an important part of our
reasoning engine, because they will help to recognize human
everyday activities. Hence, we introduce new features to our
reasoning engine to infer the new relationships between mo-
tions, objects and activities. The description of our ontology-
based reasoning engine can be found in [4].

C. Results summary

An important aspect of our work that needs to be high-
lighted is that, on one hand, if the human action recog-
nition for complex and real-world scenarios like the ones
presented here is classified using the classical approach,
i.e. trying to recognize the low-level activities, such as:
reaching, taking, releasing, cutting, sprinkle, etc., then the
classification accuracy will be around 25% (see Section V-
A). This is the classical approach that is used for action
recognition, where the state-of-the-art techniques for goal-
directed activities reported an accuracy of about 43.6% [3].

On the other hand, if the method introduced here is used,
i.e. split the classification problem into first recognizing the
three high-level motions (move, not move and tool use), and
later use the classification output as input into the reasoning
engine, then the action recognition will be inferred, increas-
ing the accuracy to approximately 82%. Therefore, with
our proposed framework the activity recognition accuracy
increases by 55% than with the classical approach using the
same datasets. Even though the results presented here are for
off-line classification, the extension to on-line classification
is possible. This is because once the video features are
extracted from the training process, the classification results
are obtained in seconds. This extension is considered as
future work.

VI. CONCLUSIONS

The correct identification of human activities is a chal-
lenging task in the robotics community and its solution is
very important because it is the first step toward a more
natural human-robot interaction. In this paper we presented
a methodology to correctly recognize human activities from
videos, by splitting the complexity of the activity recognition
problem into first classifying the high level human activities
from videos using the extended ISA algorithm and afterward
inferring the human activities with the semantic rules. Those
rules have the important characteristic that they can be used
in different scenarios. This represents our first approach to
find rules that could generalize human basic activities.

If the robot is able to correctly identify the activities from
his/her demonstrator, then it will probably be able to predict
his/her next motion or intention. In this paper, we present
our first approach to tackle the first part of that problem and
we prove that with this methodology different scenarios can
be considered. The second part is considered as future work.
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