
An Innovative Bio-inspired Fault Tolerant Unitronics Architecture

M. Samie1, G. Dragffy1, Tony Pipe1 and P. Bremner1

1Bristol Robotics Laboratory, Bristol, UK
Mohammad2.samie@uwe.ac.uk

Abstract
This paper presents the first implementation results of a novel
Unitronics (Unicellular Electronics) architecture based system
that uses a bio-inspired prokaryotic model. It is a programmable
cellular FPGA-like system inspired by unicellular bacterial
organisms, and transposes self-healing and fault tolerant
properties of nature to electronics systems. An e-puck object
avoidance robot controller was built to demonstrate all the
underlying theories of our research, the validity of the bio-
inspired model and the capabilities of the Unitronics architecture
that it facilitated. The robot successfully demonstrated that it
was able to cope with multiple, simultaneously occurring faults.
Integrity of the system is continuously monitored on-line, and if
a fault is detected its location is automatically identified.
Detection will trigger a self-repair mechanism and only when it
is complete will normal system operation resume.

Introduction
Bio-inspired system design is a relatively new emerging field
for the realisation of electronic systems. It attempts to learn
from processes and characteristics of living things, such as
self-replication and self-repair properties, adapting them to
electronic systems. Bio-inspired systems depending on this
type of motivation can be classified in two categories:
Eukaryotics (multicellular) or Prokaryotics (unicellular)
systems.
 The early 90’s saw the first attempts [1, 2] to construct bio-
inspired electronics systems using a cellular array type
architecture. They were based on properties and characteristics
of and used mechanisms found in multi-cellular eukaryotic
organisms. Here, similar to nature, all the cells of the system,
in order to configure them for a specific function, contained a
full or a partial copy of the organism’s DNA (genome). This
approach has invariably resulted in a large amount of DNA
memory in each cell. The task of the memory is to store the
genetic behaviour (DNA) of each cell of the system, in the
form of configuration bits (genes) for both its functional
characteristic and for the necessary interconnects. Embryonics
and the POEtic projects are examples of eukaryotic bio-
inspired systems [3, 4]. CellMatrix offers an alternative
approach for cellular implementation of systems [5].
 Self-healing properties, immunological protection and
learning abilities are amongst the advantages offered by the
eukaryotic model. All previously proposed Embrionic systems
suffer from several disadvantages:
• Inefficient functionality vs. silicon area requirement due to

large genome redundancy.
• Storing large amount of redundant information (each cell
required a copy the entire DNA of the system or a large part of
it) increases the probability of hardware faults and information
mutation in the memory cells.
• Inefficient self-repair: row or column elimination kills an
unnecessarily large number of healthy cells in response to the
occurrence of a single fault.
• Demanding routing resources, especially for long-distance
communication.
We suggest that if a model with at least similar performance
advantages but based on a simpler form of biological life
could be developed, then there is a chance that it might
provide a solution to the above problems. We believe that the
Unitronic artificial system, which is inspired by primitive
unicellular beings called prokaryotes, in particular, bacteria,
with its structure and characteristics does indeed offer the
answer. It combats the problem of high genome redundancy,
thus increases system reliability and is in all respect superior
to all Embrionics based systems.

The novel artificial prokaryotic model we have proposed [6,
7] is a solution to build efficient fault tolerant hardware
systems. It offers: efficient optimisation of genome
redundancy, smaller silicon area, smaller memory for the
storage of redundant (back-up) configuration information and
requiring less logic support [6]. In our prokaryote model, the
cell is only required to store its own configuration bits and
some non-configuration bits that support self-repair and not a
large part or the entire DNA of the system. Self-repair is
achieved by a simple cell elimination process. A new self-test
methodology was proposed [8] that offers an acceptable
overhead compromise between time and hardware redundancy
and guarantees that not only functionality, but all interconnect
lines of the cellular system, are also tested.

Prokaryotic Bio-inspired Model
The prokaryotic bio-inspired model is described in details in
[6, 7] with a recommended self-test method given in [8]. This
section summarises the main features of the model and the
proposed self-test.
 The prokaryotic bio-inspired model offers a multi-layer
architecture of programmable universal cells. Each cell
consists of a function unit (FU), a communication block and a
memory block. The latter contains the configuration bits
(gene) of the cell that define the required behaviour of both the
function unit and that of the communication block, and non-

configuration bits which assist self-repair if a fault is detected.
Since the task of the gene in the configuration register (CR) is
to code the behaviour of a cell so it is termed as a coding gene,
while the gene in the non-configuration register (non-CR) that
assists self-repair is a non-coding gene. Thus each cell’s
genome could be viewed as consisting of one coding and one
non-coding gene. The non-coding genes are assisting the
functionality and the recovery of the coding genes both for the
cell in which they reside and for other cells.
 In a multi-layered prokaryotic model, cells form clusters,
which in turn form colonies and on the top level biofilm
communities are formed by colonies. Although the individual
bacterial cells' genomes, in a family of species, are the same,
due to continual evolution that takes place, mutation will
differentiate them. Disregarding these small amounts of
differences there will always be a strand in their DNA which
they all share and is common to them all. Similarly therefore,
in an artificial system family, clusters could be formed with
cells that demonstrate similarity in their configuration bits.
These cells, although they are unique and different in their
own rights, do display similarity through a shared value (Csv)
that is common to every cell in a cluster. Characteristics of
artificial cells are stored in the form of bits in their
configuration register and form its configuration vector (Ccv).
Therefore every cells’ configuration vector is made up of a
value that the cells share (Csv) and is common to them all,
and by a differential value (∆g) that distinguishes the cells
from another. The configuration vector of a cell can therefore
be described by Equation 1.

Ccv = Csv + ∆g (1)
or generally as:

 Ccv = f(Csv, ∆g)
where f in refers to the evolutionary function and in the
simplest form could be considered as XOR or subtraction
functions.
 Cluster forms the first community layer. It is a convenient
collection of cells to aid self-repair. A cluster is a community
of genetically related entities that need not have any functional
relationship. In the simplest form, two different types of
clusters may be defined: as shared value cluster (sv-cluster),
and gene difference value cluster (∆g-cluster). The first one
refers to those cells in the colony that have the same shared
value of their configuration bits and hence originate from the
same species. The second one refers to those cells that have
the same genetic difference from their base species.
Components of cells and clusters are shown in Fig. 1.

Fig. 1. A colony made up of inter-related clusters and cells

 A colony layer is obtained where a correlation between
different clusters exists. Colonies are groups of correlated cells
that facilitate self-repair. Similarly to clusters they are
genetically and not functionally grouped hardware entities.
Our artificial colonial layer is equivalent with the biological
mixed bacterial colony and is made up of several sv-clusters
(species). When a new daughter cell for one of its species is
created the species shared value is differentiated by ∆g. This
differentiation process in nature amongst different bacteria
occurs through the horizontal gene transfer mechanism (HGT).
Here genes are transferred from one bacterium to another that
changes their characteristics (e.g. acquire antibiotic
resistance). HGT, in an artificial system, provides a correlation
mechanism between different sv-clusters, so that Δg of a cell
in one sv-cluster can be used to evolve the gene of another cell
in another sv-cluster. In this case the shared value of the new
cell is differentiated with the Δg from another cell, Fig. 2.

Fig. 2, Prokaryotic Bio-Inspired Model.

T-Space
Let’s suppose that an artificial system, as shown in Fig. 3a,
consists of x number of cells, where x = n∙m and the
configuration vectors of the cells are Ccv1, Ccv2, ..., Ccvx. In
this case the genome of the system (G) could be described by a
set of genes of the individual cells as:

GP = {g1, g2, ..., gx}
 = {Ccv1, Ccv2, .., Ccv(m∙n)} (2)

where g stands only for the configuration vector (Ccv) part of
the cell’s memory and excludes the non-configuration bits. In
system’s_genome GP p also shows how this x set in the
physical space is defined by TSV and T∆g addresses.
 If we now also include the non-coding genes (non-
configuration vector) of the cells in their genome G, then the
HGT (horizontal gene transfer function) function will map the
coding genes from physical space (equation 2, Fig. 3a) to a
new set of two dimensional T-Space (Fig. 3b), that is defined

by TSV and T∆g address tags.

GT = HGT(GP) (3)

Fig. 3. Example of cells’ placement : a) physical, b) T-Space.

With this HGT function, inspired by bacterial communities
and differences in its species, artificial cells in clusters can
also be defined by a common strand and their differences.
Thus grouping of cells into sv-clusters and Δg-clusters will
show their similarities and differences, which are also
identified by the TSV and T∆g address tags. If tag combinations
are unique, then to refer to any specific and individual cell in
the array, instead of physical addresses tags could be used.
The HGT function will transfer the gene of the ith cell of array,
addressed by i, from the physical space into tag space as:

g(Tsv,TΔg) = HGT(Celli) (4)

where g is the configuration vector (Ccv), the coding gene of
the cell. The Tsv shared value tag (Csv) identifies a group of
similar cells. The TΔg differential parameters tag refers to a
group of cells that have already been differentiated with the
same Δg that ith cell needs to be evolved with. Therefore
equation 4 could be rewritten as:

Ccv(Tsv, TΔg) = f(Csv(Tsv), Δg(TΔg)) (5)
Tsv = {1, 2, ..., v}
TΔg = {1, 2, ..., w}

Where v is the number of shared values and w is the number
of differential parameters (gene differences). v could also be
considered as the number of different species of cells which
collectively define the system. Function f in equation 5 could
be any simple logical or algebraic function such as XOR,
summation or subtraction of the shared value and the
differential parameter. This equation precisely describes the
functionality of every cell during its normal, test and self-
repair modes of operation using a configuration vector (Ccv), a
shared value (Csv) and a differential parameter (Δg). TSV and
T∆g tags together assign a unique address to every cell. This
address is only a ‘soft’ entity and is not used as a sequential
physical address location of cell placements in the unitronic
architecture. Instead cells based on their tag addresses are
grouped to achieve the best possible compression and
correlation solution for clusters and colonies. The number of
cells in the array is always x = n∙m, where n and m may have
different values to v and w. This means that tag addresses do

not refer to a physical cell because such cells do not actually
exist in the array.
 Shared value (Csv) given in equation 4, is a non-existent
entity and there are no cells in the unitronics array that include
such value in their memory. It is the result of a compression
operation and a feature of the bio-inspired prokaryotic model.
Genome of the cell (G) can be defined as:

G(Tsv,TΔg) = {g(coding), g(non-coding)}
 ={(Ccv(Tsv,TΔg)),(Tsv,TΔg, Δg)} (6)

Biofilms are the top layer of bio-inspired prokaryotic model.
This is another software entity that expands T-space from 2 to
three dimensions. Here colonies are grouped so that a faulty
cell in one colony may be correlated to other cells in other
colonies. In this case, to facilitate the repair of faulty cells, a
larger search area is available in the T-Space world.

Self-Repair
Although each and every cell has its own BIT (Built-in-Self-
test), colony is the lowest level that supports system self-
repair. Functional system operation is synthesised to cell and
not community level (cluster, colony, and biofilms). Each cell
in the array, through its individual configuration vector (Ccv),
is programmed to do a specific task so that the cells
collectively execute the required functionality and define
overall system operation. If faulty operation is detected
community layers will provide system recovery self-repair
support.
 For the sake of the foregoing discussion let us consider the
system’s genome, consisting of Ccv, Δg, TSV and T∆g, as a
software entity, and all the functional, communication
elements of the cells and their physical memory requirement
for genome storage, as hardware entities. Faults may develop
in both the software and in the hardware part of system. If the
fault is hardware related then its associated cell will need to be
killed and operationally eliminated from the system. In this
case through the process of cell division a new cell, of the
same species (same Csv) as the faulty one, should be ‘given
birth’ during which, to recover the system, a repair process
will take place.
 Cell division requires a ‘new’ cell which during the repair
process will be configured the same as the eliminated faulty
cell. Since, unlike in nature, our current technology does not
facilitate birth of hardware cells, artificial systems must have
some redundancy through the availability of spare cells. If a
system consists of n available cells of which a specific
application uses m cells, then the number of available spare
cells is n-m.
 Consider that cell k (between cells 1 to m) is detected as
faulty (Fig. 4). In this case all cells located between k+1 to m
are shifted one cell forward to cells k+2 to m+1, where cell
m+1 is part of the system’s redundant available cells. Cell k+1
will act as a ‘spare cell’ and will replace the faulty cell. Cell
division is a two step process:

i. Shifting prepares a spare cell adjacent to the faulty one.
ii. Calculating and loading the shared value of faulty cell

into the spare cell.
 These will be followed by a differentiation process where
from the shared value the cell’s configuration vector (Ccv) will

be evolved.
 Lack of the shifting process is the only difference between
hardware and software fault repair. If several faulty cells
simultaneously develop a fault then, following their
elimination, the same shifting process will take place and the
number of available redundant cells will be accordingly
reduced. During shifting, cells are individually checked for
integrity and simply by-passed if they were previously killed,
while their neighbours will serve as spare cells and will take
over the functionality of the faulty ones.
 An example of a system consisting of n cells is shown in
Fig. 4b. Here the implementation of a specific application
requires m number of cells and the remaining ones are
redundant cells acting as available spare cells. Fig. 4b shows
the situation when two cells simultaneously develop a fault.
The faulty cells (shown in black) are killed (Fig. 4c) and all
cells are shifted to prepare a spare cells next to the faulty ones.

Fig. 4, Shifting process of self-repair mechanism.

We mentioned previously that clusters are communities of
software related cells that have the same shared value, or the
same differential parameter. The genome (CGen) of a sv-cluster
is made up as a union () of the genes (g) of its individual
cells and can be expressed as:

CGen(Tsvi) = g(Tsvi, TΔgj), (7)
i {1, 2, ..., v},
j {1, 2,..., w}

where j refers to the individual cells in the cluster having the
same shared value addressed by Tsvi and i refers to the ith sv-
cluster, Tsvi. These clusters are shown by the vertical lines in
the Fig. 5. A similar equation can be formulated for Δg-
clusters that have the same differential parameters:

CGen(TΔgj) = g(Tsvi, TΔgj), (8)
 i {1,2, ..., v},
 j {1, 2, ..., w}

where i refers to the individual cells in the cluster having the
same differential parameters addressed by TΔgj and j refers to
the jth Δg-cluster, TΔgj. These clusters are shown by the
horizontal lines in Fig. 5. It also shows an example of how the
physical placement of a faulty cell in the array differs from its
placement in T-Space.
 Every cell in Fig. 5 has its place both in the sv-cluster and

in the Δg-cluster. When faults are detected, for as long as one
healthy cell exists in both CGen(Tsvi) and in CGen(TΔgj), the
gene of faulty cell can always be recovered with Tsvi and TΔgj.
Fig. 5 also shows that cells do not need to be physically sorted
when comparing their locations in T-Space.

Fig. 5, An example of faulty cell, its physical placement in the
array, and in the T-Space.

 Equation 7 shows that how, in a prokaryotic model based
system, clusters compress the system’s genome. Every cell in
the appropriate clusters of CGen (Tsv) (vertically sorted in Fig.
5) is expressed with a same shared value and some differential
parameters. The self-repair process uses this shared value
during cell division by copying that of the faulty cell into the
spare cell. It is only the differential parameter (Δg) that
distinguishes the cell now from other cells in the cluster. The
healthy configuration vector can be recovered by
differentiating this shared value with the faulty cell’s Δg. It
can be extracted from the Δg-cluster of CGen(TΔg) by TΔg,
where the faulty cell belonged. Since all cells in a sv-cluster
have the same Csv, it is readily available from any of its cells.
It is a calculable entity and therefore requires no storage.
Finally, the configuration vector of the faulty cell can be
calculated as CCVi = CSVi + Δgj (Equation 5). For safety and
for easy self-repair purposes neither Δg nor TΔg is saved in the
cell’s own non-configuration register but another cell will host
them. In this way, every cell in the cluster has a back-up
memory in the form of a non-configuration register that stores
information for other cells.

Self-repair process takes place in three steps:
i. Cell division.

ii. Identifying the species of the faulty cell, the sv-cluster
and the actual shared value.

iii. Differentiating the shared value with Δg obtained from,
Δg-cluster.

Steps 2 and 3 can only be executed if the faulty cell’s tags
remains healthy. Since the bit requirement of the tags is
considerably less than that of Ccv and Δg, this condition is not
difficult to meet. However should the tag values still mutate,
additional safety storage is provided by fault tolerant RAMs in
an external backup memory.

Self-Test
The bio-inspired self-test we are proposing is based on two
characteristics of biological systems:

• In nature, the DNA is a double helix, a duplicated
sequence of complementary genes. It means that both
sequences define exactly the same organism with exactly
the same features. Therefore one strand is sufficient for the
growth and development of an organism [9].
• Transposons (formally termed jumping genes) are
sequences of DNA that can move around to a different
position within the genome of a single cell. Such mobile
genetic elements can move within the genome from one
position to another using a “cut and paste” mechanism [10].

These two characteristics found in nature can be used to
inspire the development of a bio-inspired self-test model for
artificial systems by observing that:

i. If we could guarantee that by configuring the processing
elements of an artificial cell with both its gene and
complementary gene, their functionality would remain
the same and

ii. That using the concept of the jumping genes mechanism
could offer a solution to switch over and substitute input
signals of such processing elements and interchange
their outputs.

The DNA is a double helix of two complementary genetic
sequences. Both sequences will configure the cell for exactly
the same function. Fig. 6 shows the placement of cells for the
proposed artificial prokaryotic cell when the cell is configured
by the sequence of the original genome and by its
complementary (*) one. Because of the nature of the sequences
it is sufficient to store only one of them in the cell’s memory.

Fig. 6, A cell configured in two different modes, normal
and test modes.

All functional components of the cell, such as FU, SB, CB and
IO registers, are in pairs (Fig. 6). In normal operation they are
cascaded to implement a higher order function. For instance, a
SB is divided to two mini-SBs. Each mini-SB has a simple
switching function, but joined together they can implement
more powerful functions. If the controlling genes of mini-SB
1 and 2 are switched over, their functionality will also be
switched over. Applying rules i. and ii. to Fig.6 a new test
methodology is created. Configuration vector Ccv and its Ccv*

complement will respectively configure the circuit for a
normal (Fig. 6a) and a complementary (test) mode (Fig. 6b).
 Cells of the array execute their assigned functions in one
machine cycle. The cycle however is divided into four discrete
sequential activities:
 Update of inputs.
 Normal mode of operation
 Switch over genes and switch over inputs and outputs.
 Test mode: check results
 Switch back genes, and inputs and outputs
 update outputs (cell passed) or kill cell (cell failed)

During a machine cycle both the functionality of the cells’
components are switched over and also their external signals
are swapped round. Only such simultaneous swap and switch
mechanism can guarantee correct functional set-up and input
data for self-test. Detailed description of this algorithm is
given in [8].
 In normal mode of operation all cell output results are saved
but not yet propagated. In the following test mode all cells are
subjected to input swap and functional change over. These
results are also saved. If it is found that the two results
correspond then their outputs are released and normal
functional operation can continue. If however the outputs
differ then self-repair is requested. Only once this is complete
and error free operation is recover, will normal system
operation resume.

Unitronics Architecture
Embryonics, inspired by multi-cellular eukaryotic organisms,
was the first project that attempted to map biological
processes to electronic hardware. A newly emerging field that
uses models of prokaryotic organisms such as bacteria to
create bio-inspired man-made systems is a related but different
architecture. Here, we name the artificial electronic systems
inspired by these unicellular creatures, ‘Unitronics’ [6, 7, 8].
The Unitronics system uses two different types of cells; core
cells (C-cell), surrounded by peripheral cells (P-cell) around
its perimeter (Fig. 7). The basic architecture of both cell types
is based on the block diagram of Fig. 6, except that P-cells do
not have a function unit (FU).
 Core cells are configured to implement specific functions,
as defined by the genes in their configuration register.
Peripheral cells on the other hand only manage the input and
output information flow, including signal swapping during
test mode. Unitronics adapts a ‘see-of-gates’ architecture (Fig.
7) similar to that used by commercial FPGAs but partitions
the system into prokaryotic islands. Islands are formed by
groups of C-cells surrounded by P-cells.
 Peripheral cells (Fig. 8) of the array provide an interface
between the island of C-cells and the outside world. They
consist of two flip-flops and a signal controller. They have
four bi-directional pins, two of which (P1 and P2) provide
communication with the peripheral bus (P-BUS), and the
other two (E1 and E2) provide communications with the
global bus (G-BUS). Signal directions in E and P are defined
by the appropriate configuration bits for the P-Cell. The flip-
flops receive their data either from the External (E) or from the
Peripheral (P) bus lines, under the control of two multiplexers.
External communication can be disabled in order to swap data

of P1 and P2. This is accomplished by the two flip-flops;
connected in this case as a circular shift register.

Fig. 7, Schematic diagram of Unitronics.

Fig. 8, Peripheral cell, P-Cell.

During test mode, data from the P-lines are loaded into the
flip-flops are swapped round, and placed back onto the same
lines. As a result the lines now have swapped data, as
compared with what they had before. Fig. 8 shows only those
components of the peripheral cell that provide data switching
between P1 and P2 lines.
 The array has 2 different types of buses: G-BUS, P-BUS
and P-BUS (Peripheral Bus). G-BUS is used for distant
communication between C-Cells in different islands via their
own P-Cells where signal swapping is also possible.
 P-Cells provide flexible connection between any two lines
of the G-BUS to any two P-BUS lines. Lines are grouped in
pairs, so that once a line is selected as input/output from G-
BUS to P-BUS, the second line provides switch over when
(e.g. in test mode) required. For self-repair there are additional
redundant spare P-Cells.
 P-BUS, on entering the array of C-Cells, is divided to C-
BUS (Configurable Bus) and L-BUS (Local Bus). They are
interconnecting wires, lines and channels, similar to
commercial FPGAs. C-BUS provides the required cell to cell

interconnect. It is configured by the core cells according to
their functional and communicational requirements. Lines of
the configurable bus can be grouped, cut, joined and swapped.
The bus also supports cell elimination during self-repair if a
cell developed a hardware fault. In this case, the faulty cell is
killed, its functionality is shifted to the next cell along the
configurable bus and all preceding cells are also shifted until a
healthy stand-by cell is found. The L-BUS, though can be
divided to sub-sections, usually passes through the cells and
only makes connection to those with which long distance data
communication is required. It is local to the island, and would
normally connect to the P-BUS only at the first and the last
cell of the island.
 C-Cells are the processing and communication elements of
the system and as such they provide processing Function (F),
signal Routing (R), information storage as Memory (M), and
switching as Void (V) tasks. The two slices of the cell can
work in tandem and undertake any combination of the above
tasks as for instance FF, FR, MV, RM and etc. The detailed
architecture of configurable bus is beyond the scope of this
paper, but its important characteristics are indicated in Fig. 6.
The cell’s Connection Box (CB) manages how the cell should
be connected to the network of other cells in the island. Inputs
to the cell’s Function Unit (FU) are provided either from the
bus via the CB or from the cell’s neighbours via dedicated
neighbouring connections lines.
 FU includes two 2-bit slices. Each slice is supported by the
cell’s genome, which is essentially an LUT. It can either
define the precise function the slices should execute, or can
configure them for signal routing. Slice function can either be
logical or algebraic. When for example a cell is configured as
RF then slice 2 will undertake signal routing, while slice 1
will execute a function on its output. FF set-up enables the cell
for a more sophisticated function.
 The cell can be used as a memory to implement registers,
counters and, in case of a distributed memory, an 8, 16, 24 or
32-bit RAM. It is called a distributed memory because one
cell can only provide upto two memory locations. The
configuration bit (Ccv) register is not an addressable memory.
To allow such functionality a distributed memory feature has
been designed. In this case another cell is used as a memory
controller. When the cell acts as a “Void” it provides a
connection between C-BUS and L-BUS. If a cell is used for M
or V the functionality of its slices’ is reduced.
 In summary the Unitronic architecture, inspired by
biological colonies and the circulatory system of a Biofilm, is
a network of colonies supported by adequate routing and
communication facilities for the cellular array. Both hard and
‘soft’ entities of the architecture demonstrate biological
inspiration. Cells, islands and the circulatory system are the
hardware components, and clusters, colonies and biofilms are
the ‘software’ components of the Unitronic system (Table 1).
There is no physical location in the array that can be identified
as being a cluster, or colony. Both are ‘soft components’
providing immune protection for the system for fault detection
and repair. The architecture in Fig. 7 is a substrate where
cells, cluster, colonies and biofilms are grown in the islands
located in the network of voids and circulatory system.

 Software Hardware
Cell (C-Cell, P-Cell)_ Yes Yes

Cluster Yes No
Colony Yes No
Biofilms Yes No
Island No Yes
Circulatory System Yes Yes

Table 1. Hard and ‘soft’ entities of Unitronics

Robot Controller Demonstrator
In this example, to demonstrate the self-healing and self-repair
capability of Unitronics, the timer part of a movement
controller for an e-puck object avoidance robot (Fig. 9a) from
EPFL [11] is implemented on a Unitronics array. The block
diagram of the robot control system, operating in normal
environmental condition,s is shown in Fig. 10. The Unitronic
timer part is synthesised on a Xilinx XUPV5-LX110T
development board (Fig. 9b) [12], while the movement part of
the controller and the interface between the robot and the
Unitronics system is provided by Matlab. Using hardware co-
simulation, data from the Unitronics array is transferred to
Matlab in a 2-bit data. One bit defines whether a right or left
turn is required from the robot, while the other is a fault
indicator for the Unitronic system.

Fig. 9. a) e-puck, b) XUPV5-LX110T

Fig. 10. Block diagram of the robot controller system

The timer is a 16-bit up counter the implementation of which
required eight Unitronic cells. Fig. 11 shows the cells’
genomes that implement the timer. The slices of all the cells,
in this example, are configured as function-function (FF) and
define a full adder. In reality the circuit offers a 16-bit full
adder, but with inputs set to ‘0’ and carry-in set to ‘1’, it
behaves as a 16-bit counter. MSB bit of this counter describes
whether robot should turn right or left. Combination of turning

right and left makes the robot to move in a figure 8-like
manner. Since the genome of every cell is the same, their
identical CSV translates into one sv-cluster and their Δg
(equalling to zero) into one Δg-cluster. TΔg, and Tcv tag values
are chosen arbitrarily as “10” and “11” respectively.
 Since all cells are located in the same sv-cluster and in the
same Δg-cluster, fault recovery is always guaranteed for as
long as there is one healthy cell in the system. This example
uses the simple algebraic function in Equation 9:

Ccv(Tsv, TΔg) = Csv(Tsv) + Δg(TΔg) (9)

Since in this example Δg = 0 means that CCV = CSV. Consider
a situation when seven out of the 8 cells are faulty and only
one functions correctly. If we assume that all tags are correct
and cell 5 is the faultless cell then after eliminating the faulty
cells the next step is a shift process. With this, if the cells are
sequentially placed along the bus, cell1 will assume the
position of cell5 and the remaining cells occupy positions cell
9 to cell 15 of the stand-by cells.

Fig. 11. Unitronic timer implementation (values shown in hex)

The next step is to search in the sv-cluster space and identify
the faulty cell’s shared value. This is achieved by sending a
token that will locate the first faulty cell, in this case cell 15.
In order to find the shared value of this cell its Tsv tag is sent
to all cells in the cluster. Since only cell 12 is healthy, the tag
requests the extraction of its shared value using the re-
arranged form (i.e. Csv = Ccv - ∆g) of equation 9. This here
will coincidentally yield the same as the Ccv value of cell 12
and be released to the bus. All those cells which need the
recovery of their shared value and have the same Tsv as cell
15, will receive it. In this case it will affect all cells of the
cluster except cell 12. The final step of the repair process is to
differentiate it with all the faulty cells’ Δg. Since Δg is zero for
them all, their configuration vector can now be simultaneously
recovered, using equation 9.
 In this example cluster identification is trivial due to the
repetitive nature of the cell functions required. This in larger
digital systems becomes more difficult. These however are
typically composed of regular building blocks, i.e., registers,
counters, multipliers etc; where this regularity can be
exploited to simplify cluster formation. Our fault recovery
mechanism is applicable to circuits with any complexity.
Since motion cannot be demonstrated on paper the actual

behaviour with run-time fault detection and fault repair is
shown under the following youtube link http://www.youtube.
com/watch?v=GO0YfVf0tMw
 Another example of a PD controller is shown in Fig. 12.
The waveform illustrates the actual behaviour of the hardware
(not simulation results!) and the fault recovery process of the
controller. The PD controller was also implemented, also as an
interim step before VLSI implementation, on a Xilinx
XUPV5-LX110T development platform. The controller
required 40 Unitronic cells and a ‘soft’ fault was injected in
the genome of cell 3.

Fig. 12, Implemented robot controller fault recovery.

During the operation of the robot controller a fault was
inserted into cell3. Fig. 12 shows the fault recovery process of
the implemented system:

1. Fault is injected at fault injected point into the system.
2. The effect of the fault causes the gene to mutate at
CodingGenes_ConfigurationVector.
3. Simultaneously self-test using input data and control
sequence complementation recognises it, identifies the
faulty cell and initiates self-repair.
4. Self-repair requests the mutated faulty cell’s CSV at
sv_Cluster_Request. For this TSV at Put_Tsv_on_BUS
identifies the cluster and the cells that share the same
portion of the configuration vector with the faulty cell. With
the aid of the cluster’s cells, CSV is calculated at
Shared_Value_is_availabe.
5. Recalculation of the faulty cell’s corrupted CCV
configuration vector also requires its Δg.
6. Δg’s address TΔg is triggered at Put_dgTag_on_the_BUS
in order to locate the same Δg.
7. When Δg is also available, using Equation (9) the faulty
cell’s CCV can be calculated (dg_Value_is_available=’1’).
8. With its recovery, on-line repair of the faulty cell is
complete and the recovered correct response result of the
cell is now allowed to propagate to its final output.
9. Normal system operation (at System repaired) in the
next machine cycle resumes as if fault never occurred.

Conclusion
On-line fault detection and fault repair capability of our
Unitronics architecture, based on the bio-inspired prokaryotic
model, is demonstrated using an e-puck object avoidance
mobile robot. Implementation of the robot required 8
Unitronic cells appropriately interconnected and then mapped
onto a Xilinx XUPV5-LX110T development board. The fault

tolerance model of the system guarantees that “if similarities
and differences between healthy and faulty cells are known
then, full recovery of any Unitronic implemented system is
possible”. The system is able to cope with and repair any
number of simultaneously occurring dynamic (SEU) or static
(hardware) faults. The amount of fault repair only depends on
the number of spare cells the system is equipped with. Its fault
repair uses significantly less memory for gene storage and
considerably less hardware overall for target system
implementation than any previously proposed bio-inspired
architecture.

In future work we plan to undertake a more detailed
performance analysis as a function of the number of errors,
investigate the implementation of more complex digital
systems, and look at the implications for cluster formation.
Additionally, we plan to investigate implementing higher level
fault tolerance techniques using Unitronics as the substrate.

Acknowledgement
This research work is supported by the Engineering and

Physical Sciences Research Council of the United Kingdom
under Grant Number EP/F062192/1.

References
[1] Garis, H. de. (1993). Evolvable Hardware. The Genetic Programming of

Darwin Machines [C].In Proceeding of Artificial Neural Nets and
Genetic Algorithms, pages 441-449.

[2] Mange, D. (1996). Embryonics: a new family of coarse-grained FPGA
with self-repair and self-reproducing properties. Towards Evolvable
Hardware: An evolutionary approach. Springer Verlag. Pages 197-
220.

[3] Mange, D. and Sipper, M. and et al. (2000). Towards Robust Integrated
Circuits: The Embrynics Approach. Proceedings of the IEEE, vol.88,
no.4, pages 516-541.

[4] Barker, W., Halliday. D. M., Thoma. Y., and et al (2007). Fault
Tolerance using Dynamic Reconfiguration on the POEtic Tissue,
IEEE Transactions on Evolutionary Computation, Vol. 11, No. 5,
pages 666-684.

[5] Macias, N. Durbeck, L. Prokopenko, M. (2008). Advances in Applied
Self-organizing Systems. Springer.

[6] Samie, M., Dragffy, G. Pipe, T. and et. Al (2009). Prokaryotic Bio-
Inspired Model for Embryonics. AHS’09 - NASA/ESA Conference on
Adaptive Hardware and Systems, pages 163-170.

[7] Samie, M. Dragffy, G., Pipe, T. and et al (2009). Prokaryotic Bio-
Inspired System. AHS’09 - NASA/ESA Conference on Adaptive
Hardware and Systems, pages 171-178.

[8] Samie, M., Dragffy, G., Pipe, T. (2010). Bio-Inspired Self-Test for
Evolvable Fault Tolerant Hardware Systems. AHS2010 - NASA/ESA
Conference on Adaptive Hardware and Systems. pages 325 – 332.

[9] Jacob, F., Brenner, S., Cuzin, F. (1963). The Regulation of DNA
Replication in Bacteria. Cold Spring Harbor Symposia Quantitative
Biology. pages 329–348.

[10] Kidwell, M. G. (2005). Transposable elements. In ed. T.R. Gregory.
The Evolution of the Genome. San Diego: Elsevier. Pages 165–221.
ISBN 0-12-301463-8

[11] Mondada, F., Bonani, M., Raemy, X. and et al. (2009). The e-puck, a
Robot Designed for Education in Engineering. Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, vol. 1,
num. 1, pages 59-65.

[12] XUPV5 - LX110T User manumal, http:// www.xilinx.com/ univ/
xupv5-lx110T-manual.htm

