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Abstract 
This paper presents the first implementation results of a novel 
Unitronics (Unicellular Electronics) architecture based system 
that uses a bio-inspired prokaryotic model. It is a programmable 
cellular FPGA-like system inspired by unicellular bacterial 
organisms, and transposes self-healing and fault tolerant 
properties of nature to electronics systems. An e-puck object 
avoidance robot controller was built to demonstrate all the 
underlying theories of our research, the validity of the bio-
inspired model and the capabilities of the Unitronics architecture 
that it facilitated. The robot successfully demonstrated that it 
was able to cope with multiple, simultaneously occurring faults. 
Integrity of the system is continuously monitored on-line, and if 
a fault is detected its location is automatically identified. 
Detection will trigger a self-repair mechanism and only when it 
is complete will normal system operation resume. 

Introduction 
Bio-inspired system design is a relatively new emerging field 
for the realisation of electronic systems. It attempts to learn 
from processes and characteristics of living things, such as 
self-replication and self-repair properties, adapting them to 
electronic systems. Bio-inspired systems depending on this 
type of motivation can be classified in two categories: 
Eukaryotics (multicellular) or Prokaryotics (unicellular) 
systems. 
 The early 90’s saw the first attempts [1, 2] to construct bio-
inspired electronics systems using a cellular array type 
architecture. They were based on properties and characteristics 
of and used mechanisms found in multi-cellular eukaryotic 
organisms. Here, similar to nature, all the cells of the system, 
in order to configure them for a specific function, contained a 
full or a partial copy of the organism’s DNA (genome). This 
approach has invariably resulted in a large amount of DNA 
memory in each cell. The task of the memory is to store the 
genetic behaviour (DNA) of each cell of the system, in the 
form of configuration bits (genes) for both its functional 
characteristic and for the necessary interconnects. Embryonics 
and the POEtic projects are examples of eukaryotic bio-
inspired systems [3, 4]. CellMatrix offers an alternative 
approach for cellular implementation of systems [5]. 
 Self-healing properties, immunological protection and 
learning abilities are amongst the advantages offered by the 
eukaryotic model. All previously proposed Embrionic systems 
suffer from several disadvantages:             
• Inefficient functionality vs. silicon area requirement due to 

large genome redundancy. 
• Storing large amount of redundant information (each cell 
required a copy the entire DNA of the system or a large part of 
it) increases the probability of hardware faults and information 
mutation in the memory cells. 
• Inefficient self-repair: row or column elimination kills an 
unnecessarily large number of healthy cells in response to the 
occurrence of a single fault. 
• Demanding routing resources, especially for long-distance 
communication. 
We suggest that if a model with at least similar performance 
advantages but based on a simpler form of biological life 
could be developed, then there is a chance that it might 
provide a solution to the above problems. We believe that the 
Unitronic artificial system, which is inspired by primitive 
unicellular beings called prokaryotes, in particular, bacteria, 
with its structure and characteristics does indeed offer the 
answer. It combats the problem of high genome redundancy, 
thus increases system reliability and is in all respect superior 
to all Embrionics based systems. 

The novel artificial prokaryotic model we have proposed [6, 
7] is a solution to build efficient fault tolerant hardware 
systems. It offers: efficient optimisation of genome 
redundancy, smaller silicon area, smaller memory for the 
storage of redundant (back-up) configuration information and 
requiring less logic support [6]. In our prokaryote model, the 
cell is only required to store its own configuration bits and 
some non-configuration bits that support self-repair and not a 
large part or the entire DNA of the system. Self-repair is 
achieved by a simple cell elimination process. A new self-test 
methodology was proposed [8] that offers an acceptable 
overhead compromise between time and hardware redundancy 
and guarantees that not only functionality, but all interconnect 
lines of the cellular system, are also tested. 

Prokaryotic Bio-inspired Model 
The prokaryotic bio-inspired model is described in details in 
[6, 7] with a recommended self-test method given in [8]. This 
section summarises the main features of the model and the 
proposed self-test. 
 The prokaryotic bio-inspired model offers a multi-layer 
architecture of programmable universal cells. Each cell 
consists of a function unit (FU), a communication block and a 
memory block. The latter contains the configuration bits 
(gene) of the cell that define the required behaviour of both the 
function unit and that of the communication block, and non-



configuration bits which assist self-repair if a fault is detected. 
Since the task of the gene in the configuration register (CR) is 
to code the behaviour of a cell so it is termed as a coding gene, 
while the gene in the non-configuration register (non-CR) that 
assists self-repair is a non-coding gene. Thus each cell’s 
genome could be viewed as consisting of one coding and one 
non-coding gene. The non-coding genes are assisting the 
functionality and the recovery of the coding genes both for the 
cell in which they reside and for other cells. 
 In a multi-layered prokaryotic model, cells form clusters, 
which in turn form colonies and on the top level biofilm 
communities are formed by colonies. Although the individual 
bacterial cells' genomes, in a family of species, are the same, 
due to continual evolution that takes place, mutation will 
differentiate them. Disregarding these small amounts of 
differences there will always be a strand in their DNA which 
they all share and is common to them all. Similarly therefore, 
in an artificial system family, clusters could be formed with 
cells that demonstrate similarity in their configuration bits. 
These cells, although they are unique and different in their 
own rights, do display similarity through a shared value (Csv) 
that is common to every cell in a cluster. Characteristics of 
artificial cells are stored in the form of bits in their 
configuration register and form its configuration vector (Ccv). 
Therefore every cells’ configuration vector is made up of a 
value that the cells share (Csv) and is common to them all, 
and by a differential value (∆g) that distinguishes the cells 
from another. The configuration vector of a cell can therefore 
be described by Equation 1. 

Ccv = Csv + ∆g              (1) 
or generally as: 

 Ccv = f(Csv, ∆g) 
where f in refers to the evolutionary function and in the 
simplest form could be considered as XOR or subtraction 
functions. 
 Cluster forms the first community layer. It is a convenient 
collection of cells to aid self-repair. A cluster is a community 
of genetically related entities that need not have any functional 
relationship. In the simplest form, two different types of 
clusters may be defined: as shared value cluster (sv-cluster), 
and gene difference value cluster (∆g-cluster). The first one 
refers to those cells in the colony that have the same shared 
value of their configuration bits and hence originate from the 
same species. The second one refers to those cells that have 
the same genetic difference from their base species. 
Components of cells and clusters are shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A colony made up of inter-related clusters and cells 

 A colony layer is obtained where a correlation between 
different clusters exists. Colonies are groups of correlated cells 
that facilitate self-repair. Similarly to clusters they are 
genetically and not functionally grouped hardware entities. 
Our artificial colonial layer is equivalent with the biological 
mixed bacterial colony and is made up of several sv-clusters 
(species). When a new daughter cell for one of its species is 
created the species shared value is differentiated by ∆g. This 
differentiation process in nature amongst different bacteria 
occurs through the horizontal gene transfer mechanism (HGT). 
Here genes are transferred from one bacterium to another that 
changes their characteristics (e.g. acquire antibiotic 
resistance). HGT, in an artificial system, provides a correlation 
mechanism between different sv-clusters, so that Δg of a cell 
in one sv-cluster can be used to evolve the gene of another cell 
in another sv-cluster. In this case the shared value of the new 
cell is differentiated with the Δg from another cell, Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2, Prokaryotic Bio-Inspired Model. 

T-Space 
Let’s suppose that an artificial system, as shown in Fig. 3a, 
consists of x number of cells, where x = n∙m and the 
configuration vectors of the cells are Ccv1, Ccv2, ..., Ccvx. In 
this case the genome of the system (G) could be described by a 
set of genes of the individual cells as:  
 

GP = {g1, g2, ..., gx} 
 = {Ccv1, Ccv2, .., Ccv(m∙n)}         (2) 

 
where g stands only for the configuration vector (Ccv) part of 
the cell’s memory and excludes the non-configuration bits. In 
system’s_genome GP p also shows how this x set in the 
physical space is defined by TSV and T∆g addresses. 
 If we now also include the non-coding genes (non-
configuration vector) of the cells in their genome G, then the 
HGT (horizontal gene transfer function) function will map the 
coding genes from physical space (equation 2, Fig. 3a) to a 
new set of two dimensional T-Space (Fig. 3b), that is defined 



by TSV and T∆g address tags.             
  

GT = HGT(GP)               (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Example of cells’ placement : a) physical, b) T-Space. 
 
With this HGT function, inspired by bacterial communities 
and differences in its species, artificial cells in clusters can 
also be defined by a common strand and their differences. 
Thus grouping of cells into sv-clusters and Δg-clusters will 
show their similarities and differences, which are also 
identified by the TSV and T∆g address tags. If tag combinations 
are unique, then to refer to any specific and individual cell in 
the array, instead of physical addresses tags could be used. 
The HGT function will transfer the gene of the ith cell of array, 
addressed by i, from the physical space into tag space as: 
 

g(Tsv,TΔg) = HGT(Celli)           (4) 
 
where g is the configuration vector (Ccv), the coding gene of 
the cell. The Tsv shared value tag (Csv) identifies a group of 
similar cells. The TΔg differential parameters tag refers to a 
group of cells that have already been differentiated with the 
same Δg that ith cell needs to be evolved with. Therefore 
equation 4 could be rewritten as: 
 

Ccv(Tsv, TΔg) = f(Csv(Tsv), Δg(TΔg))         (5) 
Tsv = {1, 2, ..., v} 
TΔg = {1, 2, ..., w} 

 
Where v is the number of shared values and w is the number 
of differential parameters (gene differences). v could also be 
considered as the number of different species of cells which 
collectively define the system. Function f in equation 5 could 
be any simple logical or algebraic function such as XOR, 
summation or subtraction of the shared value and the 
differential parameter. This equation precisely describes the 
functionality of every cell during its normal, test and self-
repair modes of operation using a configuration vector (Ccv), a 
shared value (Csv) and a differential parameter (Δg). TSV and 
T∆g tags together assign a unique address to every cell. This 
address is only a ‘soft’ entity and is not used as a sequential 
physical address location of cell placements in the unitronic 
architecture. Instead cells based on their tag addresses are 
grouped to achieve the best possible compression and 
correlation solution for clusters and colonies. The number of 
cells in the array is always x = n∙m, where n and m may have 
different values to v and w. This means that tag addresses do 

not refer to a physical cell because such cells do not actually 
exist in the array. 
 Shared value (Csv) given in equation 4, is a non-existent 
entity and there are no cells in the unitronics array that include 
such value in their memory. It is the result of a compression 
operation and a feature of the bio-inspired prokaryotic model. 
Genome of the cell (G) can be defined as: 
 

G(Tsv,TΔg) = {g(coding), g(non-coding)} 
    ={(Ccv(Tsv,TΔg)),(Tsv,TΔg, Δg)}    (6) 

 
Biofilms are the top layer of bio-inspired prokaryotic model. 
This is another software entity that expands T-space from 2 to 
three dimensions. Here colonies are grouped so that a faulty 
cell in one colony may be correlated to other cells in other 
colonies. In this case, to facilitate the repair of faulty cells, a 
larger search area is available in the T-Space world. 

Self-Repair 
Although each and every cell has its own BIT (Built-in-Self-
test), colony is the lowest level that supports system self-
repair. Functional system operation is synthesised to cell and 
not community level (cluster, colony, and biofilms). Each cell 
in the array, through its individual configuration vector (Ccv), 
is programmed to do a specific task so that the cells 
collectively execute the required functionality and define 
overall system operation. If faulty operation is detected 
community layers will provide system recovery self-repair 
support. 
 For the sake of the foregoing discussion let us consider the 
system’s genome, consisting of Ccv, Δg, TSV and T∆g, as a 
software entity, and all the functional, communication 
elements of the cells and their physical memory requirement 
for genome storage, as hardware entities. Faults may develop 
in both the software and in the hardware part of system. If the 
fault is hardware related then its associated cell will need to be 
killed and operationally eliminated from the system. In this 
case through the process of cell division a new cell, of the 
same species (same Csv) as the faulty one, should be ‘given 
birth’ during which, to recover the system, a repair process 
will take place. 
 Cell division requires a ‘new’ cell which during the repair 
process will be configured the same as the eliminated faulty 
cell. Since, unlike in nature, our current technology does not 
facilitate birth of hardware cells, artificial systems must have 
some redundancy through the availability of spare cells. If a 
system consists of n available cells of which a specific 
application uses m cells, then the number of available spare 
cells is n-m. 
 Consider that cell k (between cells 1 to m) is detected as 
faulty (Fig. 4). In this case all cells located between k+1 to m 
are shifted one cell forward to cells k+2 to m+1, where cell 
m+1 is part of the system’s redundant available cells. Cell k+1 
will act as a ‘spare cell’ and will replace the faulty cell. Cell 
division is a two step process: 

i.  Shifting prepares a spare cell adjacent to the faulty one. 
ii. Calculating and loading the shared value of faulty cell 

into the spare cell. 
 These will be followed by a differentiation process where 
from the shared value the cell’s configuration vector (Ccv) will 



be evolved. 
 Lack of the shifting process is the only difference between 
hardware and software fault repair. If several faulty cells 
simultaneously develop a fault then, following their 
elimination, the same shifting process will take place and the 
number of available redundant cells will be accordingly 
reduced. During shifting, cells are individually checked for 
integrity and simply by-passed if they were previously killed, 
while their neighbours will serve as spare cells and will take 
over the functionality of the faulty ones. 
 An example of a system consisting of n cells is shown in 
Fig. 4b. Here the implementation of a specific application 
requires m number of cells and the remaining ones are 
redundant cells acting as available spare cells. Fig. 4b shows 
the situation when two cells simultaneously develop a fault. 
The faulty cells (shown in black) are killed (Fig. 4c) and all 
cells are shifted to prepare a spare cells next to the faulty ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4, Shifting process of self-repair mechanism. 
 
We mentioned previously that clusters are communities of 
software related cells that have the same shared value, or the 
same differential parameter. The genome (CGen) of a sv-cluster 
is made up as a union () of the genes (g) of its individual 
cells and can be expressed as: 
 

CGen(Tsvi) = g(Tsvi, TΔgj),             (7) 
i  {1, 2, ..., v}, 
j  {1, 2,..., w} 

 
where j refers to the individual cells in the cluster having the 
same shared value addressed by Tsvi and i refers to the ith sv-
cluster, Tsvi. These clusters are shown by the vertical lines in 
the Fig. 5. A similar equation can be formulated for Δg-
clusters that have the same differential parameters: 
 

CGen(TΔgj) = g(Tsvi, TΔgj),          (8) 
   i  {1,2, ..., v}, 
   j  {1, 2, ..., w} 

 
where i refers to the individual cells in the cluster having the 
same differential parameters addressed by TΔgj and j refers to 
the jth Δg-cluster, TΔgj. These clusters are shown by the 
horizontal lines in Fig. 5. It also shows an example of how the 
physical placement of a faulty cell in the array differs from its 
placement in T-Space. 
 Every cell in Fig. 5 has its place both in the sv-cluster and 

in the Δg-cluster. When faults are detected, for as long as one 
healthy cell exists in both CGen(Tsvi) and in CGen(TΔgj), the 
gene of faulty cell can always be recovered with Tsvi and TΔgj. 
Fig. 5 also shows that cells do not need to be physically sorted 
when comparing their locations in T-Space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5, An example of faulty cell, its physical placement in the 
array, and in the T-Space. 

 
 Equation 7 shows that how, in a prokaryotic model based 
system, clusters compress the system’s genome. Every cell in 
the appropriate clusters of CGen (Tsv) (vertically sorted in Fig. 
5) is expressed with a same shared value and some differential 
parameters. The self-repair process uses this shared value 
during cell division by copying that of the faulty cell into the 
spare cell. It is only the differential parameter (Δg) that 
distinguishes the cell now from other cells in the cluster. The 
healthy configuration vector can be recovered by 
differentiating this shared value with the faulty cell’s Δg. It 
can be extracted from the Δg-cluster of CGen(TΔg) by TΔg, 
where the faulty cell belonged. Since all cells in a sv-cluster 
have the same Csv, it is readily available from any of its cells. 
It is a calculable entity and therefore requires no storage. 
Finally, the configuration vector of the faulty cell can be 
calculated as CCVi = CSVi + Δgj (Equation 5). For safety and 
for easy self-repair purposes neither Δg nor TΔg is saved in the 
cell’s own non-configuration register but another cell will host 
them. In this way, every cell in the cluster has a back-up 
memory in the form of a non-configuration register that stores 
information for other cells. 

Self-repair process takes place in three steps:  
i. Cell division.  

ii. Identifying the species of the faulty cell, the sv-cluster 
and the actual shared value.  

iii. Differentiating the shared value with Δg obtained from, 
Δg-cluster. 

 
Steps 2 and 3 can only be executed if the faulty cell’s tags 
remains healthy. Since the bit requirement of the tags is 
considerably less than that of Ccv and Δg, this condition is not 
difficult to meet. However should the tag values still mutate, 
additional safety storage is provided by fault tolerant RAMs in 
an external backup memory. 



Self-Test 
The bio-inspired self-test we are proposing is based on two 
characteristics of biological systems: 

• In nature, the DNA is a double helix, a duplicated 
sequence of complementary genes. It means that both 
sequences define exactly the same organism with exactly 
the same features. Therefore one strand is sufficient for the 
growth and development of an organism [9]. 
• Transposons (formally termed jumping genes) are 
sequences of DNA that can move around to a different 
position within the genome of a single cell. Such mobile 
genetic elements can move within the genome from one 
position to another using a “cut and paste” mechanism [10]. 

These two characteristics found in nature can be used to 
inspire the development of a bio-inspired self-test model for 
artificial systems by observing that: 

i. If we could guarantee that by configuring the processing 
elements of an artificial cell with both its gene and 
complementary gene, their functionality would remain 
the same and 

ii. That using the concept of the jumping genes mechanism 
could offer a solution to switch over and substitute input 
signals of such processing elements and interchange 
their outputs. 

The DNA is a double helix of two complementary genetic 
sequences. Both sequences will configure the cell for exactly 
the same function. Fig. 6 shows the placement of cells for the 
proposed artificial prokaryotic cell when the cell is configured 
by the sequence of the original genome and by its 
complementary (*) one. Because of the nature of the sequences 
it is sufficient to store only one of them in the cell’s memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6, A cell configured in two different modes, normal 
and test modes. 

 
All functional components of the cell, such as FU, SB, CB and 
IO registers, are in pairs (Fig. 6). In normal operation they are 
cascaded to implement a higher order function. For instance, a 
SB is divided to two mini-SBs. Each mini-SB has a simple 
switching function, but joined together they can implement 
more powerful functions.  If the controlling genes of mini-SB 
1 and 2 are switched over, their functionality will also be 
switched over. Applying rules i. and ii. to Fig.6 a new test 
methodology is created. Configuration vector Ccv and its Ccv* 

complement will respectively configure the circuit for a 
normal (Fig. 6a) and a complementary (test) mode (Fig. 6b).
 Cells of the array execute their assigned functions in one 
machine cycle. The cycle however is divided into four discrete 
sequential activities: 
 Update of inputs. 
 Normal mode of operation 
 Switch over genes and switch over inputs and outputs. 
 Test mode: check results  
 Switch back genes, and inputs and outputs 
 update outputs (cell passed) or kill cell (cell failed) 

During a machine cycle both the functionality of the cells’ 
components are switched over and also their external signals 
are swapped round. Only such simultaneous swap and switch 
mechanism can guarantee correct functional set-up and input 
data for self-test. Detailed description of this algorithm is 
given in [8]. 
 In normal mode of operation all cell output results are saved 
but not yet propagated. In the following test mode all cells are 
subjected to input swap and functional change over. These 
results are also saved. If it is found that the two results 
correspond then their outputs are released and normal 
functional operation can continue. If however the outputs 
differ then self-repair is requested. Only once this is complete 
and error free operation is recover, will normal system 
operation resume. 

Unitronics Architecture 
Embryonics, inspired by multi-cellular eukaryotic organisms, 
was the first project that attempted to map biological 
processes to electronic hardware. A newly emerging field that 
uses models of prokaryotic organisms such as bacteria to 
create bio-inspired man-made systems is a related but different 
architecture. Here, we name the artificial electronic systems 
inspired by these unicellular creatures, ‘Unitronics’ [6, 7, 8]. 
The Unitronics system uses two different types of cells; core 
cells (C-cell), surrounded by peripheral cells (P-cell) around 
its perimeter (Fig. 7). The basic architecture of both cell types 
is based on the block diagram of Fig. 6, except that P-cells do 
not have a function unit (FU). 
 Core cells are configured to implement specific functions, 
as defined by the genes in their configuration register. 
Peripheral cells on the other hand only manage the input and 
output information flow, including signal swapping during 
test mode. Unitronics adapts a ‘see-of-gates’ architecture (Fig. 
7) similar to that used by commercial FPGAs but partitions 
the system into prokaryotic islands. Islands are formed by 
groups of C-cells surrounded by P-cells. 
 Peripheral cells (Fig. 8) of the array provide an interface 
between the island of C-cells and the outside world. They 
consist of two flip-flops and a signal controller. They have 
four bi-directional pins, two of which (P1 and P2) provide 
communication with the peripheral bus (P-BUS), and the 
other two (E1 and E2) provide communications with the 
global bus (G-BUS). Signal directions in E and P are defined 
by the appropriate configuration bits for the P-Cell. The flip-
flops receive their data either from the External (E) or from the 
Peripheral (P) bus lines, under the control of two multiplexers. 
External communication can be disabled in order to swap data 



of P1 and P2. This is accomplished by the two flip-flops; 
connected in this case as a circular shift register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7, Schematic diagram of Unitronics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8, Peripheral cell, P-Cell. 
 
During test mode, data from the P-lines are loaded into the 
flip-flops are swapped round, and placed back onto the same 
lines. As a result the lines now have swapped data, as 
compared with what they had before. Fig. 8 shows only those 
components of the peripheral cell that provide data switching 
between P1 and P2 lines. 
 The array has 2 different types of buses: G-BUS, P-BUS 
and P-BUS (Peripheral Bus). G-BUS is used for distant 
communication between C-Cells in different islands via their 
own P-Cells where signal swapping is also possible. 
 P-Cells provide flexible connection between any two lines 
of the G-BUS to any two P-BUS lines. Lines are grouped in 
pairs, so that once a line is selected as input/output from G-
BUS to P-BUS, the second line provides switch over when 
(e.g. in test mode) required. For self-repair there are additional 
redundant spare P-Cells. 
 P-BUS, on entering the array of C-Cells, is divided to C-
BUS (Configurable Bus) and L-BUS (Local Bus). They are 
interconnecting wires, lines and channels, similar to 
commercial FPGAs. C-BUS provides the required cell to cell 

interconnect. It is configured by the core cells according to 
their functional and communicational requirements. Lines of 
the configurable bus can be grouped, cut, joined and swapped. 
The bus also supports cell elimination during self-repair if a 
cell developed a hardware fault. In this case, the faulty cell is 
killed, its functionality is shifted to the next cell along the 
configurable bus and all preceding cells are also shifted until a 
healthy stand-by cell is found. The L-BUS, though can be 
divided to sub-sections, usually passes through the cells and 
only makes connection to those with which long distance data 
communication is required. It is local to the island, and would 
normally connect to the P-BUS only at the first and the last 
cell of the island. 
 C-Cells are the processing and communication elements of 
the system and as such they provide processing Function (F), 
signal Routing (R), information storage as Memory (M), and 
switching as Void (V) tasks. The two slices of the cell can 
work in tandem and undertake any combination of the above 
tasks as for instance FF, FR, MV, RM and etc. The detailed 
architecture of configurable bus is beyond the scope of this 
paper, but its important characteristics are indicated in Fig. 6. 
The cell’s Connection Box (CB) manages how the cell should 
be connected to the network of other cells in the island. Inputs 
to the cell’s Function Unit (FU) are provided either from the 
bus via the CB or from the cell’s neighbours via dedicated 
neighbouring connections lines. 
 FU includes two 2-bit slices. Each slice is supported by the 
cell’s genome, which is essentially an LUT. It can either 
define the precise function the slices should execute, or can 
configure them for signal routing. Slice function can either be 
logical or algebraic. When for example a cell is configured as 
RF then slice 2 will undertake signal routing, while slice 1 
will execute a function on its output. FF set-up enables the cell 
for a more sophisticated function. 
 The cell can be used as a memory to implement registers, 
counters and, in case of a distributed memory, an 8, 16, 24 or 
32-bit RAM. It is called a distributed memory because one 
cell can only provide upto two memory locations. The 
configuration bit (Ccv) register is not an addressable memory. 
To allow such functionality a distributed memory feature has 
been designed. In this case another cell is used as a memory 
controller. When the cell acts as a “Void” it provides a 
connection between C-BUS and L-BUS. If a cell is used for M 
or V the functionality of its slices’ is reduced. 
 In summary the Unitronic architecture, inspired by 
biological colonies and the circulatory system of a Biofilm, is 
a network of colonies supported by adequate routing and 
communication facilities for the cellular array. Both hard and 
‘soft’ entities of the architecture demonstrate biological 
inspiration. Cells, islands and the circulatory system are the 
hardware components, and clusters, colonies and biofilms are 
the ‘software’ components of the Unitronic system (Table 1). 
There is no physical location in the array that can be identified 
as being a cluster, or colony. Both are ‘soft components’ 
providing immune protection for the system for fault detection 
and repair. The architecture in Fig. 7 is a substrate where 
cells, cluster, colonies and biofilms are grown in the islands 
located in the network of voids and circulatory system. 
 

 Software  Hardware 
Cell (C-Cell, P-Cell)_ Yes Yes 



Cluster Yes No 
Colony Yes No 
Biofilms Yes No 
Island No Yes 
Circulatory System Yes Yes 

Table 1. Hard and ‘soft’ entities of Unitronics 

Robot Controller Demonstrator 
In this example, to demonstrate the self-healing and self-repair 
capability of Unitronics, the timer part of a movement 
controller for an e-puck object avoidance robot (Fig. 9a) from 
EPFL [11] is implemented on a Unitronics array. The block 
diagram of the robot control system, operating in normal 
environmental condition,s is shown in Fig. 10. The Unitronic 
timer part is synthesised on a Xilinx XUPV5-LX110T 
development board (Fig. 9b) [12], while the movement part of 
the controller and the interface between the robot and the 
Unitronics system is provided by Matlab.  Using hardware co-
simulation, data from the Unitronics array is transferred to 
Matlab in a 2-bit data. One bit defines whether a right or left 
turn is required from the robot, while the other is a fault 
indicator for the Unitronic system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  a) e-puck,   b) XUPV5-LX110T 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Block diagram of the robot controller system 
 
The timer is a 16-bit up counter the implementation of which 
required eight Unitronic cells. Fig. 11 shows the cells’ 
genomes that implement the timer. The slices of all the cells, 
in this example, are configured as function-function (FF) and 
define a full adder. In reality the circuit offers a 16-bit full 
adder, but with inputs set to ‘0’ and carry-in set to ‘1’, it 
behaves as a 16-bit counter. MSB bit of this counter describes 
whether robot should turn right or left. Combination of turning 

right and left makes the robot to move in a figure 8-like 
manner. Since the genome of every cell is the same, their 
identical CSV translates into one sv-cluster and their Δg 
(equalling to zero) into one Δg-cluster. TΔg, and Tcv tag values 
are chosen arbitrarily as “10” and “11” respectively. 
 Since all cells are located in the same sv-cluster and in the 
same Δg-cluster, fault recovery is always guaranteed for as 
long as there is one healthy cell in the system. This example 
uses the simple algebraic function in Equation 9: 
 

Ccv(Tsv, TΔg) = Csv(Tsv) + Δg(TΔg)        (9) 
 
Since in this example Δg = 0 means that CCV = CSV. Consider 
a situation when seven out of the 8 cells are faulty and only 
one functions correctly. If we assume that all tags are correct 
and cell 5 is the faultless cell then after eliminating the faulty 
cells the next step is a shift process. With this, if the cells are 
sequentially placed along the bus, cell1 will assume the 
position of cell5 and the remaining cells occupy positions cell 
9 to cell 15 of the stand-by cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Unitronic timer implementation (values shown in hex) 
 
The next step is to search in the sv-cluster space and identify 
the faulty cell’s shared value. This is achieved by sending a 
token that will locate the first faulty cell, in this case cell 15. 
In order to find the shared value of this cell its Tsv tag is sent 
to all cells in the cluster. Since only cell 12 is healthy, the tag 
requests the extraction of its shared value using the re-
arranged form (i.e. Csv = Ccv - ∆g) of equation 9. This here 
will coincidentally yield the same as the Ccv value of cell 12 
and be released to the bus. All those cells which need the 
recovery of their shared value and have the same Tsv as cell 
15, will receive it. In this case it will affect all cells of the 
cluster except cell 12. The final step of the repair process is to 
differentiate it with all the faulty cells’ Δg. Since Δg is zero for 
them all, their configuration vector can now be simultaneously 
recovered, using equation 9. 
 In this example cluster identification is trivial due to the 
repetitive nature of the cell functions required. This in larger 
digital systems becomes more difficult. These however are 
typically composed of regular building blocks, i.e., registers, 
counters, multipliers etc; where this regularity can be 
exploited to simplify cluster formation. Our fault recovery 
mechanism is applicable to circuits with any complexity. 
Since motion cannot be demonstrated on paper the actual 



behaviour with run-time fault detection and fault repair is 
shown under the following youtube link http://www.youtube. 
com/watch?v=GO0YfVf0tMw 
 Another example of a PD controller is shown in Fig. 12. 
The waveform illustrates the actual behaviour of the hardware 
(not simulation results!) and the fault recovery process of the 
controller. The PD controller was also implemented, also as an 
interim step before VLSI implementation, on a Xilinx 
XUPV5-LX110T development platform. The controller 
required 40 Unitronic cells and a ‘soft’ fault was injected in 
the genome of cell 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12, Implemented robot controller fault recovery. 
 
During the operation of the robot controller a fault was 
inserted into cell3. Fig. 12 shows the fault recovery process of 
the implemented system: 

1. Fault is injected at fault injected point into the system. 
2. The effect of the fault causes the gene to mutate at 
CodingGenes_ConfigurationVector. 
3. Simultaneously self-test using input data and control 
sequence complementation recognises it, identifies the 
faulty cell and initiates self-repair. 
4. Self-repair requests the mutated faulty cell’s CSV at 
sv_Cluster_Request. For this TSV at Put_Tsv_on_BUS 
identifies the cluster and the cells that share the same 
portion of the configuration vector with the faulty cell. With 
the aid of the cluster’s cells, CSV is calculated at 
Shared_Value_is_availabe. 
5. Recalculation of the faulty cell’s corrupted CCV 
configuration vector also requires its Δg. 
6. Δg’s address TΔg is triggered at Put_dgTag_on_the_BUS 
in order to locate the same Δg. 
7. When Δg is also available, using Equation (9) the faulty 
cell’s CCV can be calculated (dg_Value_is_available=’1’). 
8. With its recovery, on-line repair of the faulty cell is 
complete and the recovered correct response result of the 
cell is now allowed to propagate to its final output. 
9. Normal system operation (at System repaired) in the 
next machine cycle resumes as if fault never occurred. 

Conclusion 
On-line fault detection and fault repair capability of our 
Unitronics architecture, based on the bio-inspired prokaryotic 
model, is demonstrated using an e-puck object avoidance 
mobile robot. Implementation of the robot required 8 
Unitronic cells appropriately interconnected and then mapped 
onto a Xilinx XUPV5-LX110T development board. The fault 

tolerance model of the system guarantees that “if similarities 
and differences between healthy and faulty cells are known 
then, full recovery of any Unitronic implemented system is 
possible”. The system is able to cope with and repair any 
number of simultaneously occurring dynamic (SEU) or static 
(hardware) faults. The amount of fault repair only depends on 
the number of spare cells the system is equipped with. Its fault 
repair uses significantly less memory for gene storage and 
considerably less hardware overall for target system 
implementation than any previously proposed bio-inspired 
architecture. 

In future work we plan to undertake a more detailed 
performance analysis as a function of the number of errors, 
investigate the implementation of more complex digital 
systems, and look at the implications for cluster formation. 
Additionally, we plan to investigate implementing higher level 
fault tolerance techniques using Unitronics as the substrate. 
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