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Abstract

Simultaneous wireless information and power transfer (SWIPT) is a promising solution to increase

the lifetime of wireless nodes and hence alleviate the energy bottleneck of energy constrained wireless

networks. As an alternative to conventional energy harvesting techniques, SWIPT relies on the use of

radio frequency signals, and is expected to bring some fundamental changes to the design of wireless

communication networks. This article focuses on the application of advanced smart antenna technologies,

including multiple-input multiple-output and relaying techniques, to SWIPT. These smart antenna tech-

nologies have the potential to significantly improve the energy efficiency and also the spectral efficiency

of SWIPT. Different network topologies with single and multiple users are investigated, along with some

promising solutions to achieve a favorable trade-off between system performance and complexity. A

detailed discussion of future research challenges for the design of SWIPT systems is also provided.
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I. INTRODUCTION

In wireless power transfer, a concept originally conceived by Nikola Tesla in the 1890s, energy

is transmitted from a power source to a destination over the wireless medium. The use of wireless

power transfer can avoid the costly process of planning and installing power cables in buildings and

infrastructure. One of the challenges for implementing wireless power transfer is its low energy transfer

efficiency, as only a small fraction of the emitted energy can be harvested at the receiver due to severe

path loss and the low efficiency of radio frequency (RF) - direct current (DC) conversion. In addition,

early electronic devices, such as first generation mobile phones, were bulky and suffered from high power

consumption. For the aforementioned reasons, wireless power transfer had not received much attention

until recently, although Tesla had already provided a successful demonstration to light electric lamps

wirelessly in 1891.

In recent years, a significant amount of research effort has been dedicated to reviving the old ambition

of wireless power transfer, which is motivated by the following two reasons [1], [2]. The first reason is the

tremendous success of wireless sensor networks (WSNs) which have been widely applied for intelligent

transportation, environmental monitoring, etc. However, WSNs are energy constrained, as each sensor

has to be equipped with a battery which has a limited lifetime in most practical cases. It is often costly to

replace these batteries and the application of conventional energy harvesting (EH) technologies relying on

natural energy sources is problematic due to their intermittent nature. Wireless power transfer can be used

as a promising alternative to increase the lifetime of WSNs. The second reason is the now widespread use

of low-power devices that can be charged wirelessly. For example, Intel has demonstrated the wireless

charging of a temperature and humidity meter as well as a liquid-crystal display using the signals of a

TV station 4 km away [4].

This article considers the combination of wireless power transfer and information transmission, a

recently developed technique termed simultaneous wireless information and power transfer (SWIPT), in

which information carrying signals are also used for energy extraction. Efficient SWIPT requires some

fundamental changes in the design of wireless communication networks. For example, the conventional

criteria for evaluating the performance of a wireless system are the information transfer rates and the

reception reliability. However, if some users in the system perform EH by using RF signals, the trade-off

between the achievable information rates and the amount of harvested energy becomes an important figure

of merit [1]. In this context, an ideal receiver, which has the capability to perform information decoding

(ID) and EH simultaneously, was considered in [1]. In [2], a more practical receiver architecture was
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proposed, in which the receiver has two circuits to perform ID and EH separately.

This article focuses on the application of smart antenna technologies, namely multiple-input multiple-

output (MIMO) and relaying, in SWIPT systems. The use of these smart antenna technologies is motivated

by the fact that they have the potential to improve the energy efficiency of wireless power transfer

significantly. For example, MIMO can be used to increase the lifetime of energy constrained sensor

networks, in which a data fusion center is equipped with multiple antennas with which it can focus its RF

energy on sensors that need to be charged wirelessly, leading to a more energy efficient solution compared

to a single-antenna transmitter. Furthermore, a relay can harvest energy from RF signals from a source

and then use the harvested energy to forward information to the destination, which not only facilitates

the efficient use of RF signals but also provides motivation for information and energy cooperation

among wireless nodes [3]. The application of smart antenna technologies to SWIPT opens up many

new exciting possibilities but also brings some challenges for improving spectral and energy efficiency

in wireless systems. The organization of this article is as follows. Some basic concepts of SWIPT are

introduced first. Then, the separate and joint application of MIMO and relaying in SWIPT is discussed

in detail. Finally some future research challenges for the design of multi-antenna and multi-node SWIPT

systems are provided.

II. SWIPT: BASIC RECEIVER STRUCTURES

In SWIPT systems, ID and EH cannot be performed on the same received signal in general. Further-

more, a receiver with a single antenna typically may not be able to collect enough energy to ensure reliable

power supply. Hence, centralized/distributed antenna array deployments, such as MIMO and relaying,

are required to generate sufficient power for reliable device operation. In the following, we provide an

overview of MIMO SWIPT receiver structures, namely the power splitting, separated, time-switching,

and antenna-switching receivers, as shown in Fig. 1.

A. Separated Receiver

In a separated receiver architecture, an EH circuit and an ID circuit are implemented into two separate

receivers with separated antennas, which are served by a common multiple antenna transmitter [2].

The separated receiver structure can be easily implemented using off-the-shelf components for the two

individual receivers. Moreover, the trade-off between the achievable information rate and the harvested

energy can be optimized based on the channel state information (CSI) and feedback from the two

individual receivers to the transmitter. For instance, the covariance matrix of the transmit signal can
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Fig. 1: Illustration of the described SWIPT receiver structures. αi denotes the time switching factor, βi denotes the power

splitting factor, i denotes the antenna index, and T denotes the transmission block duration.

be optimized for capacity maximization of the ID receiver subject to a minimum required amount of

energy transferred to the EH receiver.

B. Time Switching Receiver

This receiver consists of an information decoder, an RF energy harvester, and a switch at each antenna

[2]. In particular, each receive antenna can switch between the EH circuit and the ID circuit periodically

based on a time switching sequence for EH and ID, respectively. By taking into account the channel

statistics and the quality of service requirements regarding the energy transfer, the time switching sequence

and the transmit signal can be jointly optimized for different system design objectives.

C. Power Splitting Receiver

Employing a passive power splitting unit, this receiver splits the received power at each antenna into

two power streams with a certain power splitting ratio before any active analog/digital signal processing is

performed. Then, the two streams are sent to an energy harvester and an information decoder, respectively,

to facilitate simultaneous EH and ID [2], [5], [6]. The power splitting ratio can be optimized for each

receive antenna. In particular, a balance can be struck between the system achievable information rate and

the harvested energy by varying the value of the power splitting ratios. Further performance improvement

can be achieved by jointly optimizing the signal and the power splitting ratios.
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Fig. 2: The trade-off region of the average total harvested energy (mJ/s) and the average system achievable rate (bit/s/Hz) for

the different receivers. The carrier frequency is 915 MHz and the receiver is located 10 meters from the transmitter. The total

transmit power, noise power, transceiver antenna gain, and RF-to-electrical energy conversion loss are set to 10 Watt, −23 dBm,

10 dBi, and 3 dB, respectively. The multipath fading coefficients are modelled as independent and identically distributed Rician

random variables with a Rician K-factor of 6 dB.

D. Antenna Switching Receiver

With multiple antennas, low-complexity antenna switching between decoding/rectifying can be used

to enable SWIPT [7]. For instance, given NR antennas, a subset of L antennas can be selected for ID,

while the remaining (NR − L) antennas are used for EH. Unlike the time switching protocol which

requires stringent time synchronization and the power splitting protocol where performance may degrade

in case of hardware imperfections, the antenna switching protocol is easy to implement, and attractive

for practical SWIPT designs. From a theoretical point of view, antenna switching may be interpreted as

a special case of power splitting with binary power splitting ratios at each receive antenna.

Fig. 2 illustrates the performance trade-offs of the considered SWIPT receiver structures [2]. In

particular, we show the average total harvested energy versus the average system achievable information

rate in a point-to-point scenario with one transmitter and one receiver. A transmitter equipped with NT = 2

antennas is serving a receiver equipped with NR = 2 receive antennas. Resource allocation is performed
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to achieve the respective optimal system performance in each case [15]. For a fair comparison, for the

separated receiver, the EH receiver and the ID receiver are equipped with a single antenna, respectively,

which results in NR = 2. Besides, we also illustrate the trade-off region for a suboptimal power splitting

receiver with a fixed power splitting ratio of 1
2 at each antenna. It can be observed that the optimized power

splitting receiver achieves the largest trade-off region among the considered receivers at the expense of

incurring the highest hardware complexity and the highest computational burden for resource allocation.

III. MIMO SWIPT NETWORKS

MIMO can be exploited to bring two distinct benefits to SWIPT networks. On the one hand, due to

the broadcast nature of wireless transmission, the use of additional antennas at the receiver can yield

more harvested energy. On the other hand, the extra transmit antennas can be exploited for beamforming,

which could significantly improve the efficiency of information and energy transfer. The impact of MIMO

on point-to-point SWIPT scenarios with one source, one EH receiver, and one ID receiver was studied

in [2], where the trade-off between the MIMO information rate and power transfer was characterized.

The benefits of MIMO are even more obvious for the multiuser MIMO scenario illustrated in Fig. 3(a).

Specifically, a source equipped with multiple antennas serves multiple information receivers, where the

RF signals intended for the ID receivers can also be used to charge EH receivers wirelessly. Since there

are multiple users in the system, co-channel interference (CCI) needs to be taken into account, and

various interference mitigation strategies can be incorporated into SWIPT implementations, e.g. block

diagonalization precoding as in [8], where information is sent to receivers that are interference free, and

energy is transmitted to the remaining receivers. Furthermore, it is beneficial to employ user scheduling,

which allows receivers to switch their roles between an EH receiver and an ID receiver based on the

channel quality in order to further enlarge the trade-off region between the information rate and the

harvested energy.

The multi-source multiuser MIMO scenario illustrated in Fig. 3(b) is another important SWIPT appli-

cation, where multiple source-destination pairs share the same spectrum and the associated interference

control is challenging. Since in interference channels, interference signals and information bearing signals

co-exist, issues such as interference collaboration and coordination bring both new challenges and new

opportunities for the realization of SWIPT, which are very different from those in the single source-

destination pair scenario. For example, with antenna selection and interference alignment as illustrated in

[9], the received signal space can be partitioned into two subspaces, where the subspace containing the

desired signals is used for information transfer, and the other subspace containing the aligned interference
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Fig. 3: Two typical multiuser MIMO scenarios.

is used for power transfer. This design is a win-win strategy since the information transfer is protected

from interference, and the formerly discarded interference can be utilized as an energy source. More

importantly, this approach offers a new look at interference control, since the formerly undesired and

useless interference can be used to enhance the performance of SWIPT systems. On the other hand,

the use of RF EH introduces additional constraints to the design of transmit beamforming. Hence, the

solutions well-known from conventional wireless networks, such as zero forcing and maximum ratio

transmission, need to be suitably modified to be applicable in SWIPT systems, as shown in [10].

IV. RELAY ASSISTED SWIPT SYSTEMS

Centralized MIMO as described in Section III may be difficult to implement due to practical constraints,

such as the size and cost of mobile devices. This motivates the use of relaying in SWIPT networks. In

addition, the use of wireless power transfer will encourage mobile nodes to participate in cooperation,

since relay transmissions can be powered by the energy harvested by the relay from the received RF

signals and hence the battery lifetime of the relays can be increased. The benefits of using EH relays can

be illustrated based on the following example. Consider a relaying network with one source-destination

pair and a single decode-and-forward (DF) relay. SWIPT is performed at the relay by using the power

splitting receiver structure shown in Fig. 1. The performance of the scheme using this EH relay is
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compared to that of direct transmission, i.e., when the relay is not used, in Fig. 4. As can be observed

from the figure, the use of an EH relay can decrease the outage probability from 7× 10−1 to 5× 10−2,

a more than ten-fold improvement in reception reliability, compared to direct transmission.
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Fig. 4: Outage performance of a relaying network with one source, one relay, and one destination. The source is located at

(0, 0), the destination is located at (5 m,0), and the x-y plane shows the location of the relay. The carrier frequency is 915

MHz. The total transmit power, noise power, transceiver antenna gain, and RF-to-electrical energy conversion loss are set to 10

Watt, −17 dBm, 0 dBi, and 3 dB, respectively. We assume that the multipath fading coefficients are modelled as independent

and identically distributed Rayleigh random variables. The targeted data rate is 0.1 bit/Hz/s. The path loss exponent is 3.

The performance of time sharing and power splitting SWIPT systems employing amplify-and-forward

(AF) and DF relays was analyzed in [11], and the impact of power allocation was investigated in [12].

These existing results demonstrate that the behavior of the outage probability in relay assisted SWIPT

systems is different from that in conventional systems with self-powered relays. For example, in the

absence of a direct source-destination link, the outage probability with an EH relay decays with increasing

signal-to-noise ratio (SNR) at a rate of logSNR
SNR , i.e., slower than the rate of 1

SNR in conventional systems.

The reason for this performance loss is that the relay transmission power fluctuates with the source-relay

channel conditions. This performance loss can be mitigated by exploiting user cooperation. For example,

in a network with multiple user pairs and an EH relay, advanced power allocation strategies, such as
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water filling based and auction based approaches, can be used to ensure that the outage probability decays

at the faster rate of 1
SNR [12]. This performance gain is obtained because allowing user pairs to share

power can avoid the situation in which some users are lacking transmission power whereas the others

have more power than needed.

Relay selection is an important means to exploit multiple relays with low system complexity, and the

use of EH also brings fundamental changes to the design of relay selection strategies. In conventional

relay networks, it is well known that the source-relay and relay-destination channels are equally important

for relay selection, which means that the optimal location of the relay is the middle of the line connecting

the source and the destination, i.e., (2.5 m,0) for the scenario considered in Fig. 4. Nevertheless, Fig. 4

shows that an EH relay exhibits different behavior than a conventional relay, i.e., moving the relay from

the source towards the middle point (2.5 m,0) has a detrimental effect on the outage probability. We note

that this observation is also valid for SWIPT systems with AF relays. This phenomenon is due to the

fact that in EH networks, the quality of the source-relay channels is crucial since it determines not only

the transmission reliability from the source to the relays, but also the harvested energy at the relays. In

[13], it was shown that the max-min selection criterion, a strategy optimal for conventional DF relaying

networks, can only achieve a small fraction of the full diversity gain in relaying SWIPT systems.

V. THE COMBINATION OF MIMO AND COOPERATIVE RELAYING IN SWIPT

MIMO and cooperative relaying represent two distinct ways of exploiting spatial diversity, and both

techniques can significantly enhance the system’s energy efficiency, which is of paramount importance

for SWIPT systems. Hence, the combination of these two smart antenna technologies is a natural choice

for SWIPT systems. The benefits of this combination can be illustrated using the following example.

Consider a lecture hall packed with students, in which there are many laptops/smart phones equipped

with multiple antennas as well as some low-cost single-antenna sensors deployed for infrastructure

monitoring. This hall can be viewed as a heterogeneous network consisting of mobile devices with

different capabilities. Inactive devices with MIMO capabilities can be exploited as relays to help the

active users in the network, particularly the low-cost sensors. Since the relays have multiple antennas,

more advanced receiver architectures, such as antenna switching receivers, can be used. In addition, the

use of these MIMO relays opens the possibility to serve multiple source-destination pairs simultaneously.

In this context, it is important to note that the use of SWIPT will encourage the inactive MIMO users

to serve as relays since helping other users will not reduce the lifetime of the relay batteries. Therefore,

the MIMO relays can be exploited as an extra dimension for performance improvement, and can achieve
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an improved trade-off between the information rate and the harvested energy [7].

As discussed in Section III, one unique feature of SWIPT systems is the energy efficient use of CCI,

which is viewed as a detrimental factor that limits performance in conventional wireless systems. In

particular, CCI can be exploited as a potential source of energy in MIMO relay SWIPT systems. To

illustrate this point, let us consider the following example. An AF relay with N antennas is employed

to help a single-antenna source which communicates with a single-antenna destination. The relay first

harvests energy from the received RF signals with the power splitting architecture, and then uses this

energy to forward the source signals. Two separate cases are considered, i.e., without CCI and with CCI.

To exploit the benefits of multiple antennas, linear processing of the information stream is performed

to facilitate ID. Since the optimal linear processing matrix W is difficult to characterize analytically, a

heuristic rank-1 processing matrix W is adopted. As such, in the case without CCI, the processing matrix

is designed based on the principle of maximum ratio transmission, i.e., W = ahg†, where the vectors h

of size N × 1 and g of size 1×N are chosen to match the first and second hop channels, respectively,

and a is a scaling factor to ensure the relay transmit power constraint. On the other hand, in the presence

of CCI, the relay first applies the minimum mean square error criterion to suppress the CCI, and then

forwards the transformed signal to the destination using maximum ratio transmission. Fig. 5 illustrates

the achievable ergodic rate as a function of the average strength of the CCI ρI , with the optimized

power splitting ratio. We observe that increasing the number of relay antennas significantly improves the

achievable rate. For instance, increasing the number of antennas from three to six nearly triples the rate.

Moreover, we see that when the CCI is weak (ρI ≤ −10 dB), the rate difference is negligible compared

to the case without CCI. However, when the CCI is strong, a substantial rate improvement is realized.

In fact, the stronger the CCI, the higher the rate gain. For example, in some applications, the relays will

operate at the cell boundaries and the benefit of exploiting CCI will be significant in such situations.

VI. RESEARCH CHALLENGES

In the following, we discuss some research challenges for future MIMO and relay assisted SWIPT.

1) Energy efficient MIMO SWIPT: Because of severe path loss attenuation, the energy efficiency of

MIMO SWIPT systems may not be satisfactory for long distance power transfer unless advanced

green technologies, such as EH technologies relying on natural energy sources, and MIMO resource

allocation are combined. We now discuss two possible approaches to address this problem.

• EH transmitter: In this case, the transmitter can harvest energy from natural renewable energy

sources such as solar, wind, and geothermal heat. Then, the energy harvested at the trans-
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Fig. 5: Achievable ergodic rate of a SWIPT relay system with a single-antenna source, a single-antenna destination, and a relay

with N antennas. The distances from source to relay, relay and destination, and interferer to relay are set to 2 m, 3 m, and 5 m,

respectively. The path loss exponent is 3. The total transmit power, noise power, transceiver antenna gain, and RF-to-electrical

energy conversion efficiency are set to 10 Watt, 3 dBm, 0 dBi, and 80%, respectively.

mitter can be transferred to the desired receiver over the wireless channel, thereby reducing

substantially the operating costs of the service providers and improving the energy efficiency

of the system, since renewable energy sources can be exploited virtually for free. However,

the time varying availability of the energy generated from renewable energy sources may

introduce energy outages in SWIPT systems and efficient new techniques have to be developed

to overcome them.

• MIMO energy efficiency optimization: Energy efficient MIMO resource allocation can be

formulated as an optimization problem in which the degrees of freedom in the system such as

space, power, frequency, and time are optimized for maximization of the energy efficiency. By

taking into account the circuit power consumption of all nodes, the finite energy storage at the

receivers, the excess spatial degrees of freedom in MIMO systems, and the utilization of the

recycled transmit power and the interference power, the energy efficiency optimization reveals

the operating regimes for energy efficient SWIPT systems. Yet, the non-convexity of the energy
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efficiency objective function [6] is an obstacle in designing algorithms for achieving the optimal

system performance and low-complexity but efficient algorithms are yet to be developed.

2) Energy efficient SWIPT relaying: the concepts of SWIPT and relaying are synergistic since the use

of SWIPT can stimulate node cooperation and relaying is helpful to improve the energy efficiency

of SWIPT. In the following, several research challenges for relay assisted SWIPT are discussed:

• Practical relaying systems suffer from spectral efficiency reduction due to half-duplex operation.

One possible approach to overcome this limitation is to use the idea of successive relaying,

where two relays listen and transmit in succession. When implemented in a SWIPT system,

the inter-relay interference, which is usually regarded as detrimental, can now be exploited as a

source of energy. Another promising solution is to adopt full-duplex transmission. In the ideal

case, full-duplex relaying can double the spectral efficiency, but the loopback interference

corrupts the information signal in practice. Advanced MIMO solutions can be designed to

exploit such loopback interference as an additional source of energy.

• Relay assisted SWIPT is not limited to the case of EH relays, and can be extended to scenarios

in which RF EH is performed at the source and/or the destination based on the signals sent by

the relay. For example, in WSNs, two sensors may communicate with each other with the help

of a self-powered data fusion center. For this type of SWIPT relaying, the relaying protocol

needs to be carefully redesigned, since an extra phase for transmitting energy to the source

and the destination is needed.

• Most existing works on SWIPT relaying have assumed that all the energy harvested at the

relays can be used as relay transmission power. In practice, this assumption is difficult to realize

due to non-negligible circuit power consumption, power amplifier inefficiency, energy storage

losses, and the energy consumed for relay network coordination, which need to be considered

when new SWIPT relaying protocols are designed. In addition, the superior performance of

MIMO/relay SWIPT is often due to the key assumption that perfect CSI knowledge is available

at the transceivers; however, a large amount of signalling overhead will be consumed to realize

such CSI assumptions. Therefore, for fair performance evaluation, future works should take

into account the extra energy cost associated with CSI acquisition [14].

3) Communication security management: Energy transfer from the transmitter to the receivers can be

facilitated by increasing the transmit power of the information carrying signal. However, a higher

transmit power leads to a larger susceptibility for information leakage due to the broadcast nature
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of wireless channels. Therefore, communication security is a critical issue in systems with SWIPT.

• Energy signal: Transmitting an energy signal along with the information signal can be exploited

for expediting EH at the receivers. In general, the energy signal can utilize arbitrary waveforms

such as a deterministic constant tone signal. If the energy signal is a Gaussian pseudo-random

sequence, it can also be used to provide secure communication since it serves as interference

to potential eavesdroppers [5]. On the other hand, if the sequence is known to all legitimate

receivers, the energy signal can be cancellated at the legitimate receivers before ID. However, to

make such cancellation possible, a secure mechanism is needed to share the seed information

for generating the energy signal sequence, to which MIMO precoding/beamforming can be

applied.

• Jamming is an important means to prevent eavesdroppers from intercepting confidential mes-

sages; however, performing jamming also drains the battery of mobile devices. The use of

SWIPT can encourage nodes in a network to act as jammers, since they can be wirelessly

charged by the RF signals sent by the legitimate users. However, the efficiency of this harvest-

and-jam strategy depends on the network topology, where a harvest-and-jam node needs to

be located close to legitimate transmitters to harvest a sufficient amount of energy. Advanced

multiple-antenna technologies are needed to overcome this problem.

VII. CONCLUSIONS

In this article, the basic concepts of SWIPT and corresponding receiver architectures have been

discussed along with some performance trade-offs in SWIPT systems. In particular, the application of

smart antenna technologies, such as MIMO and relaying, in SWIPT systems has been investigated for

different network topologies. In addition, future research challenges for the design of energy efficient

MIMO and relay assisted SWIPT systems have been outlined.
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