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Abstract

Of major interest to translational genomics is the intervention in gene regulatory networks

(GRNs) to affect cell behavior; in particular, to alter pathological phenotypes. Owing to the

complexity of GRNs, accurate network inference is practically challenging and GRN models

often contain considerable amounts of uncertainty. Considering the cost and time required for

conducting biological experiments, it is desirable to have a systematic method for prioritizing

potential experiments so that an experiment can be chosen to optimally reduce network

uncertainty. Moreover, from a translational perspective it is crucial that GRN uncertainty be

quantified and reduced in a manner that pertains to the operational cost that it induces, such

as the cost of network intervention. In this work, we utilize the concept of mean objective

cost of uncertainty (MOCU) to propose a novel framework for optimal experimental design. In

the proposed framework, potential experiments are prioritized based on the MOCU expected

to remain after conducting the experiment. Based on this prioritization, one can select an

optimal experiment with the largest potential to reduce the pertinent uncertainty present in the

current network model. We demonstrate the effectiveness of the proposed method via extensive

simulations based on synthetic and real regulatory networks.

Index Terms

Mean objective cost of uncertainty (MOCU), experimental design, gene regulatory network

(GRN), network intervention.
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1 INTRODUCTION

Since the earliest days of modern science, it has been recognized that experimental

design is critical for the efficient observation of nature. Today, a salient objective of

translational systems biology is to determine beneficial interventions in gene regulatory

networks (GRNs) for the purpose of identifying potential drug targets. A precondition

for using GRNs to design intervention strategies is network identification. Hence, given

a model possessing uncertainty, the aim of an experiment is to reduce that uncertainty

as it pertains to the intervention objective. Optimal experimental design will depend

on the model, the uncertainty, and the objective. In developing an experimental design

methodology, it is insufficient to depend merely on the uncertainty, without taking into

account the translational objective. Thus, entropy alone is inadequate. One needs a

measure that incorporates both the uncertainty and the objective. To that end, in this

paper we propose a new experimental design procedure for GRN identification based

on the previously introduced mean objective cost of uncertainty (MOCU) [1].

From the earliest days of high-throughput gene-expression measurements, the inter-

vention problem has been addressed from two perspectives: (1) dynamical intervention

by altering one or more regulatory outputs (expressions) over time [2], and (2) structural

intervention via a one-time change of one or more regulatory functions constituting the

network [3]. Dynamical intervention interferes with signaling and does not alter network

wiring, whereas structural intervention constitutes a one-time alteration of the physical
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network. Both approaches have mainly developed in the context of probabilistic Boolean

networks (PBNs) [4]. Structural intervention, which concerns us here, has been studied

from a logical perspective to achieve a desired alteration of the attractor structure of

a PBN [5] and in the framework of Markov Chain perturbation theory to derive an

altered transition probability matrix that optimally reduces undesirable (pathological)

steady-state probability mass [6].

In the vast majority of methods considered for both dynamical and structural inter-

vention, the GRN is assumed to be known, which in the case of Markovian networks

means that the transition probability matrix is known. However, given the complex

regulatory machinery of the cell and the lack of sufficient data for accurate inference,

there is typically significant uncertainty in GRN models. Hence, rather than assume that

the model is fully known, it can be beneficial to assume that the true GRN belongs to

an uncertainty class of networks and the problem is to find a robust intervention strategy

that is optimal across the uncertainty class. In the case of dynamical intervention in

PBNs, robust control policies have been found under two scenarios: (1) no knowledge

is assumed concerning the distribution of the networks in the uncertainty class and

optimality is defined via a minimax criterion – find the control policy that has the

best worst-case performance across the uncertainty class [7]; and (2) there is a prior

distribution governing the networks in the uncertainty class and optimality is defined

via a Bayesian criterion – find the control policy that has the best expected performance

across the uncertainty class [8]. Robust design has also been addressed in structural

intervention, where one searches for the optimal regulatory function alteration relative

to the uncertainty class [1].

It should be recognized that the uncertainty problem is inherent to computational

biology owing to the complexity of biological systems and the ubiquity of samples

that are small relative to the number of variables. This is why many works analyze

gene regulatory networks with uncertainty [9]–[13]. In particular, not only is model

uncertainty an issue that must be addressed for network intervention (optimal therapy),

it is also an issue for biomarker design (optimal diagnosis) and in this context has been

treated in the context of uncertainty classes of feature-label distributions [14], [15].

From an experimental perspective, one would like to reduce model uncertainty and
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thereby improve intervention performance. For smaller uncertainty classes, it is more

likely that the performance of a designed robust intervention strategy is close to the

performance of the optimal intervention for the actual network. This brings up the issue

of experimental design. In the abstract, one would like to obtain accurate estimates of all

uncertain parameters; that is, fill the uncertain gaps within the network model. Unfor-

tunately, a GRN involves a large number of variables and therefore many uncertain pa-

rameters might exist in the network model, which might require an inordinate number

of experiments, where experiments can be expensive, time consuming, and dependent

on unavailable specimens. The issue, then, is to evaluate potential experiments to find

out which ones are most informative relative to the problem at hand. Experimental

design has roots in statistics and machine learning [16]–[18]. In [16], the information

gain of each experiment is measured in terms of reduction in the entropy of the model.

Later, experimental design is utilized in the inference of gene regulatory networks to

reduce the entropy of the network model [19]–[22]. Here we take the viewpoint that,

when designing an intervention strategy we are not so much concerned with reducing

model uncertainty from a general perspective, say, entropy; rather, our goal is to reduce

uncertainty that will retard the effectiveness of our designed strategy.

In this paper, we present an experimental design method based on the concept of

mean objective cost of uncertainty (MOCU), introduced in [1]. MOCU is an uncertainty

quantification for dynamical models that quantifies the increased cost due to uncertainty,

where the cost function depends on ones objective. In the context of controlling GRNs,

MOCU measures uncertainty in terms of the differential cost between applying the

robust and true-model optimal interventions. According to our proposed method, we

conduct experiments to estimate unknown parameters in such a way as to maximize

the expected reduction of MOCU. By computing the expected remaining MOCU after

conducting each experiment, we select the experiment that results in the minimum

expected remaining MOCU. We desire experiments that estimate these uncertain param-

eters and would like to know which experiment should be conducted first. To evaluate

our proposed experimental design method, we perform simulations on both synthetic

and real networks. The simulation results demonstrate the effectiveness of the proposed

method.
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The remainder of the paper is organized as follows. Section 2 provides an overview

of Boolean networks and mean objective cost of uncertainty, and presents our proposed

experimental design method. In Section 3, a comprehensive performance analysis of the

proposed experimental design method for both synthetic and real networks is given.

Finally, we conclude the paper in Section 4.

2 METHODS

Our interest is in designing optimal experiments for improving gene regulatory network

(GRN) models possessing uncertainty. Because the optimization is computationally in-

tensive, we restrict our examples to Boolean networks so that we can perform extensive

simulations; however, the proposed experimental design method is fairly general and

can be applied to different models and applications in a straightforward manner.

2.1 Boolean Networks: A Brief Overview

Boolean networks (BNs) [23] and their probabilistic extension [24] are widely accepted

models for studying GRNs and have been shown to be effective in capturing much

of the complex dynamics of gene regulatory networks [25]–[28]. An n-gene Boolean

network (BN) is a pair (V,F), where V = {X1, X2, ..., Xn} is a set of nodes representing

the binary expression states of genes and F = {f1, f2, ..., fn} is a set of Boolean functions

such that fi : {0, 1}ki → {0, 1} is the Boolean function that determines the expression

state of Xi. It is commonplace to refer to gene i as Xi. The binary values Xi = 0 and

Xi = 1 correspond to the gene being turned ”off” or ”on” respectively. The vector

X(t) = (X1(t), ..., Xn(t)) of gene values at time t is called the gene activity profile (GAP).

It reflects the “state” of the network at time t. The value of gene i at the next time point,

Xi(t+1) = fi

(
Xi1(t), Xi2(t), ..., Xiki

(t)
)
, is determined by the values of ki predictor genes

at time t. In a Boolean network with perturbation (BNp), each gene may randomly flip

its value at a given time with a perturbation probability p, independently from other

genes. Hence, for a BNp, X(t + 1) = F(X(t)) with probability (1 − p)n when there is

no perturbation, but X(t + 1) may take a different value with probability 1 − (1 − p)n,

when there exists one or more random perturbations. In a BNp, the sequence of states

over time can be regarded as a Markov chain where transitions are made according to
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a fixed transition probability matrix (TPM) P. Therefore, classical Markov chain theory

can be applied for analyzing network dynamics. The general formula of a TPM using

Boolean functions and perturbation probability has been derived in [7]. When p > 0, the

resulting Markov chain is ergodic, irreducible, and possesses a steady-state distribution

(SSD) πT = πTP, where the kth element, πk, of the column vector π corresponds to the

steady-state probability of state k and T denotes the transpose operator.

The long-run behavior of a GRN is characterized by its steady-state distribution.

In the context of translational genomics, the state space of a network can typically be

partitioned into undesirable states (U ), corresponding to abnormal (disease) phenotypes,

and desirable states (D), corresponding to normal (healthy) phenotypes. The goal in

controlling GRNs via interventions is to decrease the probability that the network will

enter the undesirable set of states. In other words, intervention aims at minimizing

the overall steady-state probability mass πU =
∑

i∈U πi in undesirable states. Structural

interventions [1], [3], [5], [6] alter the long-run behavior of a network via a one-time

change of the underlying network structure (wiring); dynamical interventions [2], [7],

[8], [29] utilize Markov decision theory to flip (or not flip) the value of a control gene

at each time instant.

In this paper, we focus on the structural intervention method proposed in [6]. In

[6], intervention is performed via a rank-1 function perturbation such that the relation

between the transition probability matrices of the original and perturbed networks is

P̃ = P+abT , where P̃ is the transition probability matrix after perturbation and abT is

the rank-1 perturbation matrix, a and b being two arbitrary vectors, and bTe = 0 for e

(all unity column vector). We use a single-gene perturbation, which is a special case of a

rank-1 function perturbation in which the output state for only one input state changes

and the output states of other states remain unchanged.

2.2 MOCU-based Experimental Design

Let θ = (θ1, θ2, ..., θk) be a vector of parameters that characterizes the gene regulatory

network. We assume that θ is uncertain and belongs to an uncertainty class Θ of

possible networks. We refer to θ as ”uncertainty vector”. For any θ ∈ Θ, let ξθ(ψ) be

the cost of applying the intervention ψ ∈ Ψ, a class of potential interventions, to the
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network defined by the uncertainty vector θ. For instance, ξθ(ψ) might be the steady-

state probability mass in undesirable states after applying the intervention. Let ψ(θ) ∈ Ψ

denote an optimal intervention relative to ξθ, meaning that ξθ(ψ(θ)) ≤ ξθ(ψ) for any

ψ ∈ Ψ. ψ(θ) is an optimal intervention for the network with uncertainty vector θ.

An intrinsically Bayesian robust (IBR) intervention is defined as

ψIBR(Θ) = argmin
ψ∈Ψ

Eθ

[
ξθ(ψ)

]
(1)

[1]. The expectation Eθ is taken over the probability distribution f(θ) of θ.

The mean objective cost of uncertainty (MOCU) relative to an uncertainty class Θ of

networks and a class Ψ of interventions is defined as

MΨ(Θ) = Eθ

[
ξθ
(
ψIBR(Θ)

)
− ξθ

(
ψ(θ)

)]
(2)

[1]. MOCU is the expected cost increase that results from applying a robust intervention

over all networks in Θ instead of the optimal intervention for the true network, which

is unknown.

When it is computationally infeasible to search through the class Ψ to identify an

optimal IBR intervention, we can confine the search to the set of model-specific opti-

mal interventions for networks within Θ. We define a model-constrained Bayesian robust

(MCBR) intervention by

ψMCBR(Θ) = argmin
ψ(ϕ):ϕ∈Θ

Eθ

[
ξθ
(
ψ(ϕ)

)]
. (3)

An MCBR intervention is suboptimal relative to an IBR intervention. Empirical results

in [1] indicate that, at least for binary PBNs with up to ten genes, the MCBR structural

intervention provides an extremely accurate approximation of the IBR structural inter-

vention. Since the large number of MOCU computations required for the simulations

performed in the current study would be computationally prohibitive using IBR inter-

vention, we employ MCBR intervention. Historically, MCBR filtering goes back to binary

filtering [30] and a general theory of IBR filtering has recently been established [31].

MCBR dynamical intervention was presented in [8]. Using the MCBR intervention,

rather than the IBR intervention, we can obtain an approximation of the true MOCU

in (2) by replacing the optimal IBR operator, ψIBR(Θ), by the optimal MCBR operator,
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ψMCBR(Θ). In what follows, we will refer to the approximate MOCU computed based on

MCBR intervention as MOCU. We will denote an optimal MCBR intervention ψMCBR(Θ)

as ψ∗(Θ).

Consider a GRN possessing k uncertain parameters θ1, θ2, ..., θk. Suppose there exists a

corresponding set of k experiments T1, T2, ..., Tk, where performing experiment Ti would

completely determine θi such that we would be sufficiently confident about the value of

θi that we would no longer consider it to be uncertain. In practice, more than one actual

experiment might be needed to be conducted for the true estimation of an uncertain

parameter but we can consider these experiments collectively as one experiment for our

analysis. For simplicity, let us assume that θi is a binary variable and that experiment Ti

can determine whether θi = 0 or θi = 1. Our aim is to decide which experiment Ti among

the k potential experiments should be conducted first in order to optimally reduce

the uncertainty based on a single experiment. Let θ(i)ϕ = θ|(θi = ϕ) be the conditional

uncertainty vector composed of all uncertain parameters other than θi, with θi = ϕ, and

let Θi,ϕ =
{
θ
∣∣θ ∈ Θ, θi = ϕ

}
be the reduced uncertainty class of networks obtained by

assuming that θi = ϕ. Let MΨ(Θi,ϕ) be the remaining MOCU given θi = ϕ:

MΨ(Θi,ϕ) = E
θ
(i)
ϕ

[
ξ
θ
(i)
ϕ

(
ψ∗(Θi,ϕ)

)
− ξ

θ
(i)
ϕ

(
ψ(θ

(i)
ϕ )

)]
, (4)

where the expectation is taken over the conditional probability distribution f(θ
(i)
ϕ ) =

f(θ|θi = ϕ) of the remaining uncertain parameters given θi = ϕ and ψ∗(Θi,ϕ) is the

optimal MCBR intervention for the reduced uncertainty class Θi,ϕ:

ψ∗(Θi,ϕ) = argmin
ψ(τ):τ∈Θi,ϕ

E
θ
(i)
ϕ

[
ξ
θ
(i)
ϕ

(
ψ(τ)

)]
. (5)

We define the cost function by

ξ
θ
(i)
ϕ

(
ψ(τ)

)
= π̃

U,θ
(i)
ϕ

(
ψ(τ)

)
, (6)

where π̃
U,θ

(i)
ϕ

(
ψ(τ)

)
is the steady-state probability mass in undesirable states after apply-

ing intervention ψ(τ) to the network defined by the uncertainty vector θ(i)ϕ in the reduced

uncertainty class Θi,ϕ. We define the expected remaining MOCU after determining the

value of θi via experiment Ti by

MΨ(Θ, i) = Eθi

[
MΨ(Θi,θi)

]
, (7)



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, OCTOBER 2014 9

where the expectation is taken over the marginal probability density function, f(θi), for

the uncertain parameter θi. In order to optimally reduce the uncertainty in the current

uncertainty class Θ, we should select the experiment Ti∗ such that

i∗ = argmin
i∈1,2,...,k

MΨ(Θ, i), (8)

since Ti∗ is expected to minimize the remaining MOCU by determining the value of the

parameter θi∗ .

To calculate MΨ(Θ, i), we need to define the class of interventions. Consider single-

gene perturbations [6] for the class Ψ of structural interventions. Let F̃ = {f̃1, f̃2, ..., f̃n}

be the list of Boolean functions for the perturbed BNp. The structural intervention

for input state j solely changes the output state for input state j and leaves the rest

unaltered: s = F̃(j) ̸= F(j) = r and F̃(i) = F(i) for i ̸= j. The transition probability

matrix P̃ of the perturbed network will be identical to the transitional probability matrix

P of the original network, except for p̃jr = pjr − (1 − p)n and p̃js = pjs + (1 − p)n. The

SSD of the perturbed BNp can be obtained by

π̃i(j, s) = πi +
(1− p)nπj(zsi − zri)

1− (1− p)n(zsj − zrj)
, (9)

where πi is the steady-state probability for the state i, zsi, zri, zsj, zrj are elements of the

fundamental matrix of the BNp, and π̃i(j, s) is the perturbed steady-state probability

for state i after applying the aforementioned intervention [6]. The fundamental matrix

of a BNp can be computed as Z = [I − P + eπππT ]−1, where I is the n × n identity

matrix and e is the all unity column vector. Let π̃i,θ(j, s) be the steady-state probabil-

ity of state i in the network with uncertainty vector θ after intervention (j, s). Then

π̃U,θ(j, s) =
∑

i∈U π̃i,θ(j, s) is the steady-state probability mass in undesirable states after

applying the single-gene perturbation structural intervention. For a BNp defined by a

given uncertainty vector θ, the optimal single-gene perturbation structural intervention(
j(θ), s(θ)

)
is the one that minimizes π̃U,θ(j, s):(

j(θ), s(θ)
)
= argmin

j,s∈{1,2,3,...,2n}
π̃U,θ(j, s) (10)

For each network θ ∈Θ, we find the optimal intervention ψ(θ) =
(
j(θ), s(θ)

)
. The MCBR

intervention ψ∗(Θ) =
(
j∗(Θ), s∗(Θ)

)
is chosen from the set {ψ(θ), θ ∈ Θ} such that it can

minimize the expected error over the uncertainty class as shown in (3).
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2.3 Simulation Set-Up

The simulations involve GRNs with genes regulated according to the commonly used

majority vote rule [32]. Regulations in the network are governed by a regulatory matrix

R, where Rij represents the regulatory relation from gene j to gene i as follows:

Rij =


1 the relation from j to i is activating

−1 the relation from j to i is suppressive

0 there is no relation from j to i

(11)

A given gene takes the value 1 if the majority of its regulator genes up-regulate it and

the value 0 if the majority of the predictor genes down-regulate it; otherwise, it remains

unchanged. Under this rule,

Xi(t+ 1) = fi
(
X(t)

)
=


1 if

∑
j RijXj(t) > 0

0 if
∑

j RijXj(t) < 0

Xi(t) if
∑

j RijXj(t) = 0

(12)

We assume that for certain gene pairs, we are aware of the existence of regulatory

relations based on prior biological knowledge; however, the precise type of regulation

(i.e., activating or suppressive) may not be known. Therefore, the uncertain parameters

in our simulations would be these regulatory relations. Each uncertain parameter θi,

corresponding to an uncertain regulatory relation of an unknown type, can take on

two different values: 1 for activating regulation and −1 for suppressive regulation. For

a network with k uncertain regulations, the uncertainty class Θ contains 2k potential

networks that differ in one or more of these uncertain regulations. The proposed exper-

imental design method is used to decide which uncertain parameter would be better to

determine first, or equivalently, which experiment should be conducted first, in order to

maximally reduce the uncertainty in the current network model and thereby optimally

improve the performance of structural intervention.

After performing the optimal experiment, we are left with a smaller number of

uncertain parameters that lead to a reduced uncertainty class of networks. Suppose we

have performed an experiment to estimate the parameter θi and that the experiment has

identified the true value to be θi = µi. We denote the reduced uncertainty class as Θi,µi

and the robust intervention for this reduced uncertainty class as ψ∗(Θi,µi). An effective
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experiment selection strategy should allow us to find out the best parameter θi∗ to be

determined first, such that on average the optimal robust intervention ψ∗(Θi∗,µi∗ ) for

the reduced uncertainty class Θi∗,µi∗ would outperform other robust interventions on

the true (unknown) network after identifying θj (j ̸= i∗).

To illustrate the proposed experimental design strategy, consider k = 5 uncertain

parameters in the GRN. Suppose the five potential experiments, each identifying one of

the five parameters, θ1, θ2, · · · , θ5, have been ranked to obtain an ordered θ1′ , θ2′ , · · · , θ5′ .

Performing the experiment Ti′ leads to the identification of the unknown parameter θi′

and results in the expected remaining MOCU MΨ(Θ, i
′), such that

MΨ(Θ, 1
′) < MΨ(Θ, 2

′) < · · · < MΨ(Θ, 5
′). (13)

To measure the overall gain for performing the optimal experiment T1′ relative to other

suboptimal experiments, we define

ηi = ξµ

(
ψ∗(Θ(i+1)′,µ(i+1)′

)
)
− ξµ

(
ψ∗(Θ1′,µ1′

)
)
, (14)

where µ is the vector of true parameter values corresponding to θ. For example, η1 de-

notes the difference between the cost ξµ
(
ψ∗(Θ2′,µ2′

)
)

of applying the robust intervention,

derived for the reduced uncertainty class that results from conducting the second best

experiment T2′ , to the true network and the cost ξµ
(
ψ∗(Θ1′,µ1′ )

)
of applying the robust

intervention obtained from conducting the optimal experiment T1′ . ηi (i = 1, 2, ..., k− 1)

quantifies the expected benefit of performing the best experiment predicted by the

proposed strategy compared to other experiments, in terms of the operational cost that

could be further reduced by performing the selected experiment.

3 RESULTS AND DISCUSSION

3.1 Performance Evaluation Based on Synthetic BNp

To evaluate the performance of the proposed experimental design strategy, we have

performed simulations based on synthetic BNps. In our simulations, k = 2, 3, 4, 5 un-

certain parameters are considered, assuming a uniform distribution f(θ) for all potential

networks θ ∈ Θ. The analysis can be easily extended to other distributions. To make the

simulations computationally tractable, we consider networks with six genes, X1, ..., X6,
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TABLE 1: The average gain of conducting the optimal experiment predicted by the

proposed experimental design strategy in comparison to other suboptimal experiments.

Average η1 Average η2 Average η3 Average η4

k = 2 0.0584 N/A N/A N/A

k = 3 0.0544 0.0718 N/A N/A

k = 4 0.0545 0.0750 0.0855 N/A

k = 5 0.0474 0.0696 0.0803 0.0863

where each gene has three predictor genes. To generate a random BNp, we randomly

select three predictor genes for each gene with uniform probability and randomly assign

1 (up-regulation) or −1 (down-regulation) to the corresponding entries in the regulatory

matrix R. The perturbation probability is set to p = 0.001. States for which X1 = 1 are

assumed to be undesirable, so that the set of undesirable states is U = {32, ..., 63}. For

a given k, we generate 1,000 synthetic BNps and randomly select 50 different sets of

k edges (i.e., regulations) for each network. In each case, the regulatory information of

other edges is retained while that of the k selected edges is assumed to be unknown.

From a translational perspective, the salient issue in evaluating an experimental de-

sign scheme using synthetic networks is controllability. Unlike real biological networks,

which are controllable to a certain extent, many randomly generated networks may not

be controllable. In other words, regardless of the intervention applied to the network,

the SSD shift that results from the intervention may be negligible. For such networks,

the difference between optimal and suboptimal experiments may be insignificant. For

this reason, to examine the practical impact of experimental design, we must take

controllability into account. In this work, the percentage decrease of total steady-state

mass in undesirable states after intervention is used as a measure of controllability:

∆ =
πU − π̃U(j

∗, s∗)

πU
× 100%,

where controllable networks have a larger ∆.

Table 1 summarizes the average gain of performing the optimal experiment predicted

by the proposed strategy over other suboptimal experiments. The average is taken over
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TABLE 2: The average gain of conducting the optimal experiment predicted by the pro-

posed experimental design strategy in comparison to a randomly selected experiment.

Average Gain

k = 2 0.0291

k = 3 0.0430

k = 4 0.0533

k = 5 0.0571

different sets of uncertain regulations and different networks with ∆ ⩾ 40%. For k =

2, we calculate η1; for k = 3, we calculate η1 and η2; and so on. As we can see in

Table 1, the average gain is always positive. The results in Table 1 clearly show that

the robust intervention derived from the uncertainty class reduced by conducting the

optimal experiment outperforms the robust intervention that results from any other

suboptimal experiment on average. We can also see that the average ηi gets larger

for a larger i. For example, for k = 4, average η1 = 0.0545 < average η3 = 0.0855,

which shows that, on average, the gain of determining θ1′ over θ4′ is larger than that

of determining θ1′ over θ2′ . This demonstrates that MΨ(Θ, i) can serve as an effective

measure for prioritizing potential experiments. Furthermore, this suggests that we could

expect larger gains when we compare the optimal experiment with an experiment that

has a larger MΨ(Θ, i).

A salient question is how much we can gain by conducting an optimal experiment

predicted by the proposed method over a randomly selected experiment. Since we

would normally have to randomly pick an experiment unless there are reasons to prefer

a specific experiment over the rest, such comparison would be useful in demonstrating

the efficacy of the proposed method in a practical setting. We calculate the average gain

of applying the robust intervention derived from the reduced uncertainty class obtained

by conducting the optimal experiment instead of the intervention that results from a

randomly chosen experiment, for all networks with ∆ ⩾ 40%. The simulation results

are shown in Table 2. It should be noted that the randomly chosen experiment may

be identical to the optimal experiment (in fact, they are identical with probability 1/k),
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which is the main reason that the performance gain shown Table 2 is typically smaller

than the gain shown in Table 1. For example, the average η1 in Table 1 for k = 2 is

almost two times the average gain for k = 2 in Table 2, which is due to the fact that

the randomly picked experiment will be identical to the optimal experiment predicted

by our method about 50% of the time. We can also see in Table 2 that the average gain

increases for a larger k. For example, while the average gain for k = 2 is 0.0291, it is

0.0571 when k = 5. This implies that the performance gap between optimal and random

selection is expected to increase as the uncertainty of the network increases.

As mentioned earlier, previous works for experimental design in gene regulatory

networks are based on entropy reduction of the model. In [19], the information gain

for each experiment is defined as the difference between the model entropy before

experiment and the conditional entropy of conducting the experiment:

I(Θ;Ti) = H(Θ)−H(Θ|Ti)

= H(Θ) +
∑
θ,ϕ

p(θ, θi = ϕ) log2 p(θ|θi = ϕ), i = 1, 2, ..., k, (15)

where H(Θ) is the model entropy and p(.) is the probability operator. The chosen

experiment according to [19] is the one that maximizes (15). In our setting (uniform

distribution and independent uncertain parameters), with k uncertain parameters, H(Θ)

would be k and I(Θ;Ti) would be k − 1 for each potential experiment. Therefore,

this experimental design scheme does not discriminate between potential experiments

and as a result it would perform like a random selection approach. This makes sense

because (15) only takes into account the stochastic properties of the model without

considering the objective. Throughout this section, whenever we compare our method

with the random experiment strategy, in fact, we are also comparing our method with

experimental design methods based on entropy, such as [19].

We have compared ξµ
(
ψ∗(Θ1′,µ1′ )

)
and ξµ

(
ψ∗(Θi′,µi′ )

)
(i ̸= 1) and measured the pro-

portion of “success” (predicted optimal experiment T1′ outperforms the suboptimal

experiment Ti′), “failure” (Ti′ outperforms T1′), and “tie” (T1′ and Ti′ provide identi-

cal intervention performance). These results are summarized in Table 3. In this table,

θ1′ ∼ θi′ denotes the comparison between ξµ
(
ψ∗(Θ1′,µ1′ )

)
and ξµ

(
ψ∗(Θi′,µi′ )

)
. When

comparing θ1′ ∼ θi′ , a “tie” means that conducting either of the two experiments
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TABLE 3: The proportion of success, failure, and tie of the optimal experiment predicted

by the proposed strategy in comparison to other suboptimal experiments.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie

k = 2 38.07% 15.29% 46.64% N/A N/A N/A N/A N/A N/A N/A N/A N/A

k = 3 40.76% 22.32% 36.92% 42.84% 15.30% 41.86% N/A N/A N/A N/A N/A N/A

k = 4 40.97% 25.82% 33.21% 42.98% 19.21% 37.82% 43.75% 15.95% 40.30% N/A N/A N/A

k = 5 43.00% 28.76% 28.24% 45.02% 22.62% 32.36% 45.63% 18.32% 36.05% 46.17% 15.96% 37.87%

TABLE 4: The proportion of overall success, overall failure, and overall tie of the optimal

experiment predicted by the proposed strategy in comparison to all other suboptimal

experiments.

θ1′ ∼ θi′(i ̸= 1)

Success Failure Tie

k = 2 38.07% 15.29% 46.64%

k = 3 44.86% 28.33% 26.81%

k = 4 44.90% 37.10% 18.00%

k = 5 44.71% 43.13% 12.16%

results in the same intervention performance after the uncertainty reduction, a “success”

means that ξµ
(
ψ∗(Θ1′,µ1′

)
)
< ξµ

(
ψ∗(Θi′,µi′

)
)
, and a “failure” means that ξµ

(
ψ∗(Θ1′,µ1′

)
)
>

ξµ
(
ψ∗(Θi′,µi′ )

)
. We can see that the “success” proportion is consistently larger than the

“failure” proportion, which explains why the gain in Table 1 is always positive. For

k > 2, the proportion of “failure” decreases and the proportion of “success” increases

as we compare ψ∗(Θ1′,µ1′
) with ψ∗(Θi′,µi′

), i ̸= 1, for a larger i. Moreover, for k = 2,

the proportion of “tie” is larger than that for k > 2. This is because the size of the

uncertainty class of networks is small for k = 2 and therefore it is more likely that

conducting either experiment yields the same robust intervention.

Table 4 shows the proportions of “overall success”, “overall failure”, and “overall tie”

for the proposed experimental design strategy. Here, an “overall success” means that
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ξµ
(
ψ∗(Θ1′,µ1′ )

)
⩽ ξµ

(
ψ∗(Θi′,µi′ )

)
for all i ̸= 1 (except in the case that ξµ

(
ψ∗(Θ1′,µ1′ )

)
=

ξµ
(
ψ∗(Θi′,µi′ )

)
for all i ̸= 1). An “overall tie” means that ξµ

(
ψ∗(Θ1′,µ1′ )

)
= ξµ

(
ψ∗(Θi′,µi′ )

)
for all i ̸= 1. Finally, an “overall failure” means that ξµ

(
ψ∗(Θ1′,µ1′

)
)
> ξµ

(
ψ∗(Θi′,µi′

)
)

for

at least one i ̸= 1. As this table shows, the proportion of “overall success” is larger than

that of “overall failure” for all k. The proportion of “tie” decreases with increasing k, as

the size of the uncertainty class of networks increases. While the proportion of “overall

tie” decreases with increasing k, the proportion of “overall failure” increases. This is

intuitive, since by increasing the number of uncertain regulations k, it becomes more

difficult to have an “overall success”, since ψ∗(Θ1′,µ1′
) has to outperform all other robust

interventions, whose number increases with k.

Now, let us consider the difference between the expected remaining MOCU of the

optimal experiment and that of a suboptimal experiment:

∆MOCU =MΨ(Θ, i
′)−MΨ(Θ, 1

′)

for i′ ̸= 1′. Figure 1 shows the empirical conditional expectation, E
[
ηi|∆MOCU

]
, of ηi

(i = 1, 2, 3, 4) given ∆MOCU estimated based on all random networks with ∆ ⩾ 40%.

The average gain is positive for all ∆MOCU . This shows that, on average, the ro-

bust interventions obtained by conducting the optimal experiments predicted by our

proposed method outperform the robust interventions obtained from other suboptimal

experiments when applied to the true network. Moreover, as ∆MOCU increases, the

average gain increases in a more or less linearly proportional manner. Another interest-

ing observation is that E
[
ηi|∆MOCU

]
does not significantly differ for different i. This

result is intuitive, since we expect the gain to depend on the estimated ∆MOCU , and

not the predicted rank of the suboptimal experiment.

To see how the controllability ∆ measured in terms of the SSD shift that can be

achieved by optimal intervention, affects the average gain of the proposed experimental

design strategy, we compute the average ηi (i = 1, 2, 3, 4) for random networks whose

controllability (i.e., ∆) exceeds a certain minimum value, where we consider minimum

∆ ranging between 0% and 90%. According to Fig. 2, the average gain of ηi increases

as the minimum ∆ increases, regardless of i and the number of uncertain regulations

k. For example, for k = 5 uncertain regulations in the network, the average gain based
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Fig. 1: The empirical conditional expectation of the gain E
[
ηi|∆MOCU

]
given the

difference in MOCU between the optimal and suboptimal experiments. Synthetic BNps

with five uncertain regulations are considered. (a) θ1′ ∼ θ2′ . (b) θ1′ ∼ θ3′ . (c) θ1′ ∼ θ4′ . (d)

θ1′ ∼ θ5′ .

on comparing θ1′ to θ5′ is slightly below 0.07 for all networks, but it increases to almost

0.1 when we consider only highly controllable networks with ∆ ⩾ 90%.

Figure 3 compares the performance of the proposed experimental design method and

that of the random selection approach based on a sequence of experiments. Assuming

k = 5 uncertain regulations in each network, we perform 5 consecutive experiments

until the network does not contain any uncertainty. First, we consider adopting the

proposed experimental design strategy, where at each step, we select the optimal ex-

periment predicted by our method, conduct the experiment to reduce the uncertainty

class, and repeat this process until the network is fully identified. For comparison, we
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Fig. 2: Effect of the controllability of the synthetic BNp on the average performance gain

of the proposed experimental design method. (a) Networks with 2 uncertain regulations.

(b) Networks with 3 uncertain regulations. (c) Networks with 4 uncertain regulations.

(d) Networks with 5 uncertain regulations.

perform similar simulations by conducting a randomly selected experiment at each

step until there is no uncertainty about the network. In both cases, the network will

be fully identified after conducting 5 experiments. To compare the performance of the

two approaches, after conducting each experiment, we derive the robust intervention

based on the reduced network class, apply it to the true (unknown) network, and

measure the cost of intervention (i.e., total steady-state mass in undesirable states).

The average performance is estimated based on 1,000 synthetic BNps and 50 different

sets of uncertain regulations for each of these networks. Let ψ∗
opt denote the robust

intervention obtained by taking the proposed strategy and let ψ∗
rnd denote the robust
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Fig. 3: Performance comparison based on a sequence of experiments. (a) The average

cost of robust intervention after performing the sequence of experiments predicted

by the proposed strategy and the average cost after performing randomly selected

experiments. (b) The performance difference between the proposed approach and the

random selection approach.

intervention obtained by performing randomly selected experiments. As seen in Fig. 3a,

the curves corresponding to these two methods begin and end at the same average cost,

but the curve that corresponds to the proposed experimental design strategy drops

much more sharply at the beginning compared to the random selection approach. This

clearly demonstrates the effectiveness of the proposed method in reducing the network

uncertainty. Figure 3b plots the difference between the average ξµ(ψ∗
rnd) and the average

ξµ(ψ
∗
opt). In both figures, the performance difference is especially large for the first few

experiments and ξµ(ψ
∗
opt) quickly approaches the minimum cost attained by the optimal

intervention. This fast convergence is important, considering the difficulty of performing

a large number of experiments in real applications.

3.2 Computational Complexity Analysis

The proposed experimental design method is objective-based and in this paper the

objective is network intervention. Therefore, the computational burden of the design

method is mainly based on the associated network intervention strategy. A salient

issue for network intervention methods is their inherent computational complexity [33]–
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TABLE 5: The approximate processing time (seconds) needed for the proposed exper-

imental design for different number of uncertain regulations k and different network

size n.

k = 2 k = 3 k = 4 k = 5 k = 6

n = 5 0.9 1.7 3.4 6.8 13.7

n = 6 5 10 20 39 78

n = 7 34 67 133 268 534

n = 8 260 500 1000 2000 4000

[35]. The complexity of network intervention grows exponentially with network size.

Computational complexity for experimental design is much greater because we need to

find the optimal intervention for every potential network inside the uncertainty class.

Owing to this high computational complexity, our future work will focus on finding

reliable approximations for the expected remaining MOCU and reducing network size in

a way that has minor effect on the decision making process for the optimal experiment.

Suppose a BNp has n genes and k uncertain parameters, where each uncertain pa-

rameter can take m possible values and states from 2n−1 to 2n − 1 are assumed to

be undesirable. Then there are mk networks inside the uncertainty class and for each

network we need to compute equation (9) 2n × 2n × 2n−1 times to find the optimal

structural intervention. Therefore, the complexity of the proposed experimental design

method is O
(
mk × 23n−1

)
. The complexity grows exponentially with n and k, and grows

polynomially with m. The complexity is highly dependent on the network size n. By

adding one gene to the network, the complexity is multiplied by 8. Table 5 compares the

approximate processing time needed to run the proposed experimental design method

under the same setting as Section 3.1 for each set of k uncertain regulations in an n-gene

BNp on a 2.9 GHz Intel Xeon, 4 GB RAM machine with MATLAB implementation.

3.3 Performance Evaluation Based on the Mammalian Cell Cycle Network

In this section, we evaluate the performance of the proposed experimental design strat-

egy based on the mammalian cell cycle network. The cell cycle involves a sequence
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Fig. 4: A gene regulatory network model of the mammalian cell cycle. Normal arrows

represent activating regulations and blunt arrows represent suppressive regulations.

of events resulting in the duplication and division of the cell. It occurs in response to

growth factors and, under normal conditions, it is a tightly controlled process. A regu-

latory model for the mammalian cell cycle is proposed in [36]. This model contains 10

genes: CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB. We represent

this gene regulatory network by a BNp, where the perturbation probability is set to

p = 0.001 and genes are numbered in the previous order. The regulatory model for this

network is shown in Fig. 4. The blunt arrows represent suppressive regulations and the

normal arrows represent activating regulations. The cell cycle in mammals is controlled

via extra-cellular stimuli. Positive stimuli activate Cyclin D (CycD) in the cell leading

to cell division. CycD inactivates Rb protein, a tumor suppressor, via phosphorylation.

When gene p27 and either CycE or CycA are active, the cell cycle stops, because Rb can

be expressed even in the presence of cyclins. States in which the cell cycle continues

even in the absence of stimuli are associated with cancerous phenotypes. For this reason,
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Fig. 5: The steady state distribution of the mammalian cell cycle network modeled by

a BNp with perturbation probability p = 0.001.

we regard states with down-regulated CycD, Rb, and p27 (X1 = X2 = X3 = 0) as

undesirable states, representing cancerous phenotypes. The network SSD is shown in

Fig. 5, where the total undesirable steady-state mass is πU = 0.3461 without intervention.

Suppose we want to reduce the steady-state probability mass of the set of undesirable

states, U = {0, ..., 127}, via structural intervention. The optimal intervention is to change

the transition from the input state 0000000111 to the output state 1110001011 by perturb-

ing the regulatory function such that F̃(0000000111) = 1110001011. For all other states,

their output states remain unchanged after the intervention.

To evaluate the proposed experimental design method based on the given network,

we again assume that k (= 2, 3, 4, 5) regulations are unknown. For each k, we randomly

select 50 different sets of k regulations from the network, for which we assume their

regulatory information is not known, and apply the experimental design strategy to

predict the optimal experiment to be performed. Table 6 summarizes the average gain

of the predicted optimal experiment over other suboptimal experiments for different

values of k. The average gain is positive in all cases, as in our simulations based on

synthetic BNps. Furthermore, the average gain ηi increases with i. For example, when

k = 5,

average η4 > average η3 > average η2 > average η1.

Table 7 shows the proportion of “success”, “failure”, and “tie” for applying the
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TABLE 6: The average gain of conducting the optimal experiment predicted by the

proposed experimental design strategy in comparison to other suboptimal experiments.

The 10-gene mammalian cell cycle network with k unknown regulations are considered.

Average η1 Average η2 Average η3 Average η4

k = 2 0.0208 N/A N/A N/A

k = 3 0.0207 0.0261 N/A N/A

k = 4 0.0217 0.0337 0.0379 N/A

k = 5 0.0365 0.0389 0.0395 0.0425

TABLE 7: The proportion of success, failure, and tie of the optimal experiment predicted

by the proposed strategy in comparison to other suboptimal experiments. The 10-gene

mammalian cell cycle network with k unknown regulations are considered.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie

k = 2 40.00% 24.00% 36.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A

k = 3 52.00% 30.00% 18.00% 54.00% 26.00% 20.00% N/A N/A N/A N/A N/A N/A

k = 4 48.00% 24.00% 28.00% 56.00% 16.00% 28.00% 60.00% 12.00% 28.00% N/A N/A N/A

k = 5 56.00% 26.00% 18.00% 60.00% 20.00% 20.00% 60.00% 14.00% 26.00% 68.00% 10.00% 22.00%

proposed experimental design strategy. The results based on the mammalian cell cycle

network are consistent with the results obtained from the synthetic networks. The

“success” rate is consistently and significantly higher than the “failure” rate in all

cases, thereby demonstrating the effectiveness of the proposed method. The proportion

of “success” increases when we compare the optimal experiment with an experiment

with larger MΨ(Θ, i
′) (i.e., for larger i′), which shows that the MOCU provides a sound

mathematical basis for predicting the effectiveness of potential experiments.

3.4 Performance Evaluation Based on a p53 Network

We now investigate performance of the proposed experimental design method on a

p53 network [37]. p53 is a tumor suppressor gene which plays a major role in DNA
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Fig. 6: A gene regulatory model for the p53 network. Normal arrows represent activating

regulations and blunt arrows represent suppressive regulations.

damage regulation and programmed cell death (apoptosis). It has been observed that

p53 is mutated in 30-50% of commonly occurring human cancers [38]. Under normal

conditions, the expression level of p53 remains low via the control of MDM2, an onco-

gene that is often highly expressed in tumor cells. When DNA damage occurs, p53 is

up-regulated and either activates other genes involved in DNA repair or it initiates

apoptosis. Figure 6 shows key pathways that involve the regulation of p53 (see [39] for

a detailed dynamical analysis of a very similar network). In the model of Fig. 6, when

a DNA double strand break occurs, DNA DSBs becomes 1. The model contains five

genes: MDM2, p53, WIP1, CHK2, and ATM.

Like the mammalian cell cycle network, we model the p53 network as a BNp with

perturbation probability p = 0.001 and 6 nodes: X1 (DNA DSBs), X2 (MDM2), X3 (p53),

X4 (WIP1), X5 (CHK2), and X6 (ATM). The presence of DNA damage (X1 = 1), per-

manently up-regulated MDM2 (X2 = 1) and permanently down-regulated p53 (X3 = 0)
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TABLE 8: The average gain of conducting the optimal experiment predicted by the

proposed experimental design strategy in comparison to other suboptimal experiments.

The 6-gene P53 network with k unknown regulations is considered.

Average η1 Average η2 Average η3 Average η4

k = 2 0.0386 N/A N/A N/A

k = 3 0.0466 0.0434 N/A N/A

k = 4 0.0343 0.0489 0.0657 N/A

k = 5 0.0387 0.0597 0.0622 0.0632

would result in an abundance of cancerous cells. For example, TCGA studies on 138

patients with glioblastoma (a kind of brain tumor) have shown that 32% and 12% of

them had mutated p53 and MDM2 genes, respectively. Therefore, states with X1 = 1,

X2 = 1, and X3 = 0 are considered as the undesirable states; i.e., U = {48, ..., 55}. The

steady-state probability mass of undesirable states before and after optimal structural

intervention is 0.3478 and 0.0289, respectively. Our simulations use the same settings as

for the mammalian cell cycle network analysis.

Table 8 shows the average gain of conducting optimal experiments instead of other

suboptimal experiments. The average gain is always positive and in most cases average

ηi increases with i. However, there is an anomaly for k = 3, where average η1 is larger

than average η2. Because the average results are obtained based on a single network and

50 different selections of uncertain parameters, we should expect such occurrences since

we are not averaging over a large set of simulations as with the synthetic networks.

Table 9 evaluates the performance of the predicted optimal experiments in terms of

percentages of “success”, “failure”, and “tie”. The “success” percentage is always larger

than the “failure” percentage and it becomes larger when we compare the optimal

experiment with an experiment corresponding to a larger i′. Again, there are a few

anomalies, such as the decrease of “success” percentage for k = 3 and k = 4 when the

optimal experiment is compared against the second and third optimal experiments –

again not surprising given the small number of observations.
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TABLE 9: The proportion of success, failure, and tie of the optimal experiment predicted

by the proposed strategy in comparison to other suboptimal experiments. The 6-gene

P53 network with k unknown regulations is considered.

θ1′ ∼ θ2′ θ1′ ∼ θ3′ θ1′ ∼ θ4′ θ1′ ∼ θ5′

Success Failure Tie Success Failure Tie Success Failure Tie Success Failure Tie

k = 2 26.00% 8.00% 66.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A

k = 3 34.00% 6.00% 60.00% 30.00% 4.00% 66.00% N/A N/A N/A N/A N/A N/A

k = 4 46.00% 24.00% 30.00% 44.00% 16.00% 40.00% 52.00% 14.00% 34.00% N/A N/A N/A

k = 5 62.00% 18.00% 20.00% 62.00% 8.00% 30.00% 64.00% 8.00% 28.00% 66.00% 4.00% 30.00%

4 CONCLUSION

Prioritization of potential experiments is of great practical import in systems biology

and translational medicine. In this work, we have proposed a novel framework for

evaluating the expected impact of a potential experiment in reducing the amount of

uncertainty present in a dynamic network model. We estimate the mean objective cost

of uncertainty expected to remain after conducting a specific experiment and select

the one expected to optimally reduce network uncertainty. Extensive simulations based

on both synthetic and actual networks show that the proposed experimental design

strategy significantly outperforms random selection. Since computational complexity

is an impediment for large uncertainty classes, we are currently investigating two

approaches to complexity reduction. One is to discover heuristics that can be used

to efficiently compute an approximate MOCU that preserves the ranking of potential

experiments. A second approach is network reduction. Here the situation is analogous

to the reduction of GRNs to facilitate design of optimal controllers [33]–[35], except that

reduction must be accomplished in such a way as to preserve (to the extent possible)

the MOCU calculations.

Finally, it is worth noting that the problem considered in this work bears conceptual

similarity to the online learning problems that have been gaining broad interest in

recent years. In online learning, sequential measurements are made, one at a time,

to improve an uncertain model. The online knowledge gradient (KG) algorithm is an
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interesting example that deals with a general class of such online learning problems [40].

It is assumed that one of M alternatives can be measured at each time step, which

yields a random reward with an unknown mean and known variance (corresponding

to measurement error). The main goal is to make sequential measurements that will

maximize the expected total reward to be collected over a time period. To achieve

this goal, in every time step, one tries to identify the optimal KG policy that will

allow one to choose the single best measurement (among the M available alternatives)

that is expected to bring forth the largest improvement. The alternative measurements

(or rewards) are typically assumed to be independent Gaussian random variables, but

one can incorporate prior beliefs about the measurements and their correlations into

the problem via their joint distribution. Although the online learning problem and

the aforementioned KG algorithm bear some conceptual similarities to the sequential

experimental design problem considered in this paper and our MOCU-based strategy,

there are critical differences. For example, our approach does not require direct modeling

of the distribution of the reward (or cost). Instead, we focus on the uncertainty regarding

the underlying network as it pertains to the cost of the operation of interest. Even though

our ultimate goal is minimizing the cost, it is indirectly attained by optimally improving

our knowledge regarding the network in a way that is pertinent to the operation (and

its cost) to be performed based on the network.
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