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Abstract

Because wireless nodes decide their channel accesses inde-
pendently in the IEEE 802.11-based ad hoc networks, and the
channel access of a node has an influence on those of its
neighboring nodes, game theory naturally becomes a useful
and powerful tool to research this kind of network. In this
article a game model is proposed to interpret the IEEE 802.11
distributed coordination function mechanism. In addition, by
designing a simple Nash equilibrium backoff strategy, we pre-
sent a fairness game model. Our simulation results show that
the new backoff strategy can improve TCP performance
almost perfectly.

Introduction

Wireless ad hoc networks consist of a collection of peer wire-
less mobile or stationary nodes that are capable of communi-
cating with each other without any help from fixed
infrastructures. The interconnections among nodes often
change continually and arbitrarily. Nodes within each other’s
radio range (one-hop) communicate directly via wireless links,
while those that are far apart use other nodes as relays in
multihop routing. These networks will play an increasingly
important role in many environments, such as ad hoc net-
working for collaborative and distributed computing, disaster
recovery, crowd control, and search-and-rescue.

Currently, the IEEE 802.11 distributed coordination func-
tion (DCF) [1] has been the de facto access standard, widely
used in almost all of the testbeds and simulations for wireless
ad hoc network research. It provides two access schemes, the
basic scheme and the request to send/clear to send (RTS/CTS)
scheme. In the basic scheme, a pair of source and destination
nodes only exchang data frames and acknowledgment (ACK)
frames, while the RTS/CTS scheme adds an RTS/CTS dialog
preceding the data frame to reduce the probability of colli-
sions on the channel since the collision probability of an RTS
frame (20 octets) is less than that of a data frame (up to 2346
octets). In the RTS/CTS scheme, when a node wants to trans-
mit a data frame, it first transmits an RTS frame to reserve
the channel. The destination replies with a CTS frame if it is
ready to receive. If the source receives the CTS frame success-
fully, it starts to transmit the data frame; then the destination
replies with an ACK frame to the source after receiving the
data frame. If the source does not receive the CTS frame suc-
cessfully, it times out waiting for the CTS frame and adopts
the binary exponential backoff (BEB) algorithm to compute a
new random backoff time with a higher range to retransmit
the RTS frame with lower collision probability.

At each RTS retransmission, the backoff time is uniformly
chosen in the range (0, CW — 1), where CW is the size of the
contention window depending on the number of failed trans-
missions for the RTS frame. At the first retransmission
attempt, CW is equal to the minimum contention window

CW,,in- After each unsuccessful transmission, CW is doubled
up to the maximum value CW,,,, above which CW remains
the same. The RTS frame is dropped after seven failures.

Obviously, according to the IEEE 802.11 DCF, there are
no central nodes (e.g., base stations or access points) in ad
hoc networks to control nodes’ channel access, and all nodes
transmit their data frames competitively. The channel access
of each node has a direct influence on those of its neighboring
nodes. The interactions give us an intuition that game theory
would be a very good tool to model and analyze the IEEE
802.11 DCF. In addition, the BEB algorithm causes the fair-
ness problem among TCP flows in multihop ad hoc networks
because it always favors the latest successful nodes. Game the-
ory is also a powerful tool to resolve this unfairness problem.
In this article we begin with a brief introduction to game theo-
ry and then propose a simple game model to interpret the
IEEE 802.11 DCF mechanism. Finally, by designing a simple
Nash equilibrium backoff strategy, we present a fairness game
model that can greatly improve the fairness of TCP flows in
the multihop ad hoc networks.

Game Theory

Game theory, defined in the broadest sense, is a collection of
mathematical models formulated to study situations of conflict
and cooperation. It is concerned with finding the best actions
for individual decision makers in these situations and recog-
nizing stable outcomes. The object of study in game theory is
the game, defined to be any situation in which:

* There are at least two players. A player may be an individu-
al, a company, a nation, a wireless node, or even a biologi-
cal species.

* Each player has a number of possible strategies, courses of
action he or she may choose to follow.

* The strategies chosen by each player determine the outcome
of the game.

* Associated with each possible outcome of the game is a col-
lection of numerical payoffs, one to each player. These pay-
offs represent the value of the outcome to the different
players.

The pioneering analysis of game theory was the study of a
duopoly by Cournot in 1838; however, game theory was not
established as a field in its own right until the monumental
Theory of Games and Economic Behavior by von Neumann
and Oskar Morgenstern in 1944. In 1950 John Nash demon-
strated that finite games always have a Nash equilibrium (also
called a strategic equilibrium). A Nash equilibrium is a list of
strategies, one for each player, which has the property that no
player can unilaterally change his/her strategy and get a better
payoff. This is the central concept of noncooperative game
theory and has been a focal point of analysis since then.
Game theory received special attention in 1994 with the
awarding of the Nobel prize in economics to John Nash, John
Harsanyi, and Reinhard Selten.
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TABLE 1. Categories of noncooperative games, corresponding equilibria, and the main research areas of the three winners

of the 1995 Nobel prize in economics.

Games may generally be categorized as noncooperative
and cooperative games.

Noncooperative Game Theory

Noncooperative game theory is concerned with the analysis of
strategic choices and explicitly models the process of players’
making choices out of their own interests. Noncooperative
games can be classified into a few categories according to sev-
eral criteria. According to whether the players’ moves are
simultaneous or not, noncooperative games can be divided
into two categories: static and dynamic games. In a static
game, players make their choices of strategies simultaneously,
without knowledge of what the other players are choosing.!
Static games are most often represented diagrammatically
using a game table that is called the normal form or strategic
form of the game. In the dynamic game players involve strate-
gic situations in which there is a strict order of play. Players
take turns to make their moves, and they know what players
who have gone before them have done. Dynamic games are
most easily illustrated using game trees, which are generally
referred to as the extensive form of a game. The trees illustrate
all of the possible actions that can be taken by all of the play-
ers and also indicate all of the possible outcomes from the
game. According to whether the players have full information
of all payoff-relevant characteristics about the opponents or
not, the noncooperative game can be classified into two types:
complete information and incomplete information games. In
the former each player has all the knowledge about others’
characteristics, strategy spaces, payoff functions, and so on,
but this is not so for the latter.

Table 1 shows four kinds of noncooperative games, corre-
sponding equilibrium concepts, and the main research areas
of the three Nobel prize winners.

Cooperative Game Theory

A cooperative game (also called coalitional) is a game in
which the players can make binding commitments, as is not
the case in the noncooperative game. Analysis in cooperative
game theory is centered around coalition formation and distri-
bution of wealth gained through cooperation. Within these
two areas, finding procedures leading to outcomes that are
most likely to occur under reasonable rationality assumptions
in various game situations, and devising solution concepts
showing attractive stability features are primary concerns in
most research endeavors. Cooperative game theory is most
naturally applied to situations arising in political science or
international relations, where concepts like power are most
important.

The definition draws the usual distinction between the two
theories of games, but the real difference lies in the modeling

1 A game is also simultaneous when players choose their actions in isola-
tion, with no information about what other players have done or will do,
even if the choices are made at different points in time.

Klein
Confess Not confess
Confess (5,5) (0,15)
Calvin
Not confess (15,0) (1,1

FIGURE 1. The Prisoners' Dilemma.

approach. While in noncooperative game theory the notion of
the Nash equilibrium is pervasive in capturing most aspects of
stability, in cooperative game theory there is no solution con-
cept dominating the field in such a way. Instead, there is a
multiplicity of solutions, which is not due to the weakness of
the theory, but rather to the inherent diversity of conflict situ-
ations into which it attempts to provide insight. Moreover, the
main focus of the noncooperative game is individual rationali-
ty and individual optimal strategy, but the cooperative game
emphasizes collective rationality, fairness, effectiveness, etc.,
which mean different things to different people. The reader
who would like to learn more about game theory should con-
sider Straffin’s Game Theory and Strategy [2] and Dutta’s
Strategies and Games [3] as the starting points.

An Example: The Prisoners’ Dilemma

To make readers understand the important concepts men-
tioned above, we illustrate them with a famous game
paradigm, the Prisoners’ Dilemma, which was first analyzed in
1950 at the RAND Corporation by Melvin Dresher and Al
Tucker. The story underlying the game goes as follows [3].
Two prisoners, Calvin and Klein, are arrested for a suspected
crime and interrogated in separate rooms. The clever district
attorney talks to each prisoner separately, and tells them that
she more or less has the evidence to convict them but they
could make her a little easier and help themselves if they con-
fess to the crime. She offers each of them the following deal:
“Confess to the crime, turn a witness for the State, and impli-
cate the other guy, you will do no time. Of course, your con-
fession will be worth a lot less if the other guy confesses as
well. In that case, you both go in for five years. If you do not
confess, however, be aware that we will nail you with the
other guy’s confession, and then you will do 15 years. In the
event that I cannot get a confession from either of you, I have
enough evidence to put you both away for a year.”

Obviously, the Prisoners’ Dilemma is a complete informa-
tion static noncooperative game between two players (Calvin
and Klein). Each player has two pure strategies: Confess or
Not confess. Figure 1 shows the strategy form (payoff matrix)
of this game. Calvin chooses a row, and simultaneously Klein
chooses one of the columns. The strategy combination (Con-
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Node 2
Not transmit Transmit
Not transmit (u;,u;) (u;,ug)
Node 1
Transmit (ug,u;) (ug,uy)

FIGURE 2. The DCF game with two nodes.

fess, Confess) has payoff S for each player; and the combina-
tion (Not confess, Not confess) gives each player payoff 1. The
combination (Confess, Not confess) results in payoff 0 for
Calvin and 15 for Klein, and when (Not confess, Confess) is
played, Calvin gets 15 and Klein gets 0. A fundamental
assumption of game theory is that each player is individually
rational; in other words, he always chooses a strategy that
gives the payoff he most prefers, given what he expects his
opponents to do. Another assumption is that the rationality of
all players is common knowledge;? thus, each player knows
other players are also rational. Note that from each player’s
point of view, a smaller payoff is preferred to a bigger one
since the payoff is the number of years a player is imprisoned.
Therefore, Confess is the best strategy for each rational player
whichever strategy is chosen by his partner (in fact, each play-
er is convinced that his partner will choose Confess). The
strategy profile (Confess, Confess) is composed of the best
strategy that each player chooses and thus is a Nash equilibri-
um of the game. At last each player (prisoner) will be impris-
oned for five years; this result is just what the district attorney
expected.

An interesting fact in the Prisoners’ Dilemma is that from
the pair’s point of view, the result of the Nash equilibrium
(Confess, Confess) is obviously inferior to the result of the
strategy profile (Not confess, Not confess), which is (1, 1).
Therefore, the Nash equilibrium of this game is not Pareto
optimal. An outcome is said to be Pareto optimal if it is
impossible to better the payoff of any player without destroy-
ing the payoff of other players. Note that the word “optimal”
here does not mean “best,” just “not obviously inferior to
some other outcome.” The Prisoners’ Dilemma has three
Pareto optimal outcomes: (Confess, Not confess), (Not confess,
Confess) and (Not confess, Not confess). This fact reveals that
individual rationality is often incompatible with collective
rationality (the players form a coalition and cooperatively
choose a strategy to ensure the coalition the best payoff) in
noncooperative games.

Another interesting fact is that if the game is played not
just once, but repeated infinitely, the two players might coop-
eratively choose the strategy Not confess in early plays in
hope of arriving at the mutually beneficial outcome (Not con-
fess, Not confess) rather than the unprofitable result (Confess,
Confess). One Nash equilibrium strategy profile of the infinite-
ly repeated game to ensure cooperation is called grim strate-
gy: each player always chooses the cooperative strategy Not
confess in each subgame (a Prisoners’ Dilemma game) until
his partner chooses the strategy Confess, and then he always
chooses the strategy Confess in the following games to punish
the betrayer. Therefore, a coalition and cooperation form in
the infinitely repeated game because each player is afraid of
the punishment by his partner; thus, individual rationality
becomes consistent with collective rationality.

2 A fact is common knowledge if all players know it, and know that they
all know it, and so on.

FIGURE 3. Two TCP sessions. The first session is between 0 and I, and
the second between 2 and 3.

Application of Game Theory

From the Prisoners’ Dilemma, we can find that as the study of
how players should rationally play games, game theory has the
following salient characteristics:

* Each player would like the game to end in an outcome that
gives him/her as good a payoff as possible.

* Each player has some control over the outcome, since his/
her choice of strategy will influence it.

* The outcome is not determined by one player’s choice
alone, but also depends on the choice of all the other play-
ers; this is where conflict and cooperation enter. There may
be conflict because different players will, in general, value
outcomes differently. There is a chance for cooperation
because several players together may be able to coordinate
their strategies to obtain an outcome with better payoffs for
all of them.

Therefore, game theory is a powerful tool in many areas,
such as war, politics, economics, sociology, psychology, biolo-
gy, communications, networking, and so on, where conflict
and cooperation exist. The application areas of game theory
in communications and networking include flow and conges-
tion control, network routing, load balancing, resource alloca-
tion, quality of service provisioning, and network security. For
example, [4] studied the power control problem in a code-divi-
sion multiple access (CDMA)-like system with game theory.
There, each user is a player whose payoff is increasing signal-
to-interference-and-noise ratio (SINR) and decreasing power
level. Obviously, each user’s action (increasing its transmit
power) has an influence on other users’ payoff and even
results in a chain reaction. For example, if all other users’
power were fixed, increasing one’s power would increase its
SINR. However, raising one’s power would increase the inter-
ference seen by other users, driving their SINRs down, caus-
ing them to increase their own power levels. Game theory is a
good tool for analyzing this situation.

The DCF Game

As mentioned above, when a node has data to transmit, it
autonomously decides when to transmit in IEEE 802.11 DCF-
based ad hoc networks. Because the wireless channel is a
shared channel, the transmission of a node often interferes
with those of other nodes. For example, if there are two
neighboring nodes transmitting their data frames simultane-
ously, both transmissions will fail. Therefore, one node must
compete with its neighboring nodes so that it can transmit as
many packets as possible. In this section we model the IEEE
802.11 DCF with game theory and name the model the DCF
game.

In the DCF game, each player (node) has two strategies:
Transmit or Not transmit (i.e., wait). Figure 2 is the strategy
table of the DCF game with two players (nodes 1 and 2 are
contending for the channel.), where uy is the payoff when a
node transmits successfully, u; is the payoff when a node is
idle, and uy is the payoff when a transmission fails. Even
though we do not care about the real values of u, u; and uy
here, there is a self-evident relation among them as follows:

up < u; < . (1)

This is also a two-player noncooperative game; obviously,
the players in this game would prefer higher payoffs. This
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FIGURE 4. TCP throughput with two different backoff algorithms. The
first TCP session is from node 0 to 1, the second from node 2 to 3.

game has two Nash equilibria in pure strategy: (Transmit,

Not transmit) and (Not transmit, Transmit). The DCF real-

izes the two equilibrium strategies in the following way.

When a node wants to transmit packets, it listens to the

busy/idle state of the medium first. If the channel is idle for

a period of time equal to a distributed interframe space

(DIFS), the node transmits. Otherwise, the node does not

transmit and persists in monitoring the channel until the

medium is determined to be idle without interruption for a

DIFS. Moreover, the DCF game has another Nash equilibri-

um in mixed strategy, in which each node chooses the strat-

egy Transmit with probability (u, — u;)/(uy — us) and chooses
the strategy Not transmit with probability (u; — ug)/(ug — uy).

The DCF realizes this mixed strategy as follows. When the

channel is busy, the node persists in listening to the channel

until it becomes idle for a DIFS; then the node waits a ran-
dom backoff interval. The random backoff interval can be
modeled by the mixed strategy.

If we analyze the values of ug, u; and uy further, we find
that:
¢ u; indicates delay sensitivity of the traffic being transmitted.

The smaller the value of u;, the more delay-sensitive the

traffic.

* u, should be the increasing function of the length of the
data frame. The longer the data packet transmitted success-
fully, the higher the channel utility ratio.

* uyshould be the decreasing function of the length of the
data frame. A transmission failure of a long data frame
does more harm to the network than that of a short frame,
since a wireless node cannot sense the channel while it is
transmitting.

The DCF does not consider how the priorities of different
traffic affect the performance of a network; it does not con-
sider how the lengths of different data frames affect the per-
formance of a network either. However, we can construct
different DCF game models for traffic with different priorities

and different lengths by adjusting the values of u;, u, and uf

accordingly, acquiring different Nash equilibria in mixed strat-
egy and thus different random waiting intervals so that we can
improve the performance of DCF (e.g., the fairness). In addi-
tion, if each node contends for the channel repeatedly and the
network has multiple nodes, we need a very complicated
method to determine the values of u;, uy, and uy. All of these
deserve to be researched further so that we can design better
MAC protocols for ad hoc networks.

FIGURE 5. TCP throughput with two different backoff algorithms. The
first TCP session is from node 0 to 1, the second from node 3 to 2.

The Fairness Game

Fairness is an important issue for the MAC protocol when
multiple nodes contend for a scarce and shared wireless chan-
nel. With fair scheduling, different flows share a wireless
channel’s bandwidth in proportion to their weights to provide
fair and bounded delay channel accesses. The IEEE 802.11
DCF was designed to provide MAC with fairness in a best
effort manner. However, in multihop ad hoc networks, much
research has shown that this MAC protocol is extremely
unfair when it supports TCP flows. The main reason is that
the BEB algorithm always favors the latest successful nodes.
In this section we propose a simple fairness game to design
a new backoff strategy to improve the fairness of the IEEE
802.11 DCF in a multihop ad hoc network as shown in Fig. 3.
Note that in the DCF game above, we focus on interpreting
how the sender starts to transmit the data frame in the basic
scheme or the RTS frame in the RTS/CTS scheme of the
IEEE DCEF, but in the fairness game we focus on how to
design a fair backoff algorithm to make the sender retransmit
its RTS or data frame when it cannot receive the CTS or
ACK from the receiver. In Fig. 3 each node communicates
with an identical half duplex wireless radio modeled after the
commercially available 802.11-based WaveLan wireless radios
with a bandwidth of 2 Mb/s and a nominal transmission radius
of 250 m; the distance between any two neighboring nodes is
equal to 200 m. Therefore, each node can communicate only
with its neighboring nodes. There are two TCP sessions; the
first is between 0 and 1, and the second between 2 and 3.
Since nodes 0 and 1 constitute a TCP session, the unsuc-
cessful transmission of either of them will do harm to the TCP
performance. Therefore, in the fairness game they form a
coalition to contend for the wireless channel with the coalition
formed by nodes 2 and 3. However, as the designers of the
MAC protocol, we expect that not only can the two coalitions
fully utilize the wireless channel, but they can also fairly share
the channel. In other words, we expect the individual rational-
ity of each coalition to be consistent with the collective ratio-
nality of both coalitions. An approach to consistency is that
each coalition broadcasts its local noise-to-signal ratio (NSR),
which is the sum of the NSR of each node in the coalition.
The NSR of a node is defined as the reciprocal of the ratio of
signal to noise and can be acquired at the physical layer when
collisions occur. It is self-evident that the larger the NSR of a
coalition, the smaller the the possibility that the TCP traffic of
the coalition can be transmitted successfully. Being dependent
on the NSR of its local coalition, NSR;,.,;, and the NSR of the
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FIGURE 6. TCP throughput with two different hackoff algorithms. The
first TCP session is from node 1 to 0, the second from node 2 to 3.

neighbor coalition, NSR,¢ignpor» Wwe can modify the backoff
algorithm of the IEEE 802.11 DCF as follows. When a colli-
sion occurs, each node in a coalition will generously and con-
siderately adopt the following backoff strategy:

* If NSRyoca1 < NSRyeighvor, then CW = LCW - Random[3, 4] ;

* Else CW = LCW - Random[O, 3],

where [x] is the largest integer that is not more than x, and
Random|x, y] denotes a random number uniformly distributed
on the close interval [x, y]. An important fact behind this strat-
egy is that two nodes of a coalition have the same NSR;,.4;
and the same NSR,,¢;gnpor; therefore, they make a binding com-
mitment and thus play cooperative games between them. And
nodes of different coalitions play noncooperative games
among them.

Obviously, this is a Nash equilibrium strategy. Because
NSRjpcar £ NSRyeignpor comes into existence for one coalition,
NSRiocar > NSRyeighbor also comes into existence for the other
coalition. Therefore, given that the nodes in one coalition set
a bigger CW, the best strategy for the nodes in the other coali-
tion is to set a smaller CW to make use of the channel effec-
tively. On the contrary, given that the nodes in one coalition
set a smaller CW, the best strategy for the nodes in the other
coalition is to set their CW bigger to decrease collisions. We
name this new backoff algorithm the Nash equilibrium back-
off (NEB) algorithm.

To evaluate the performance of the fair game strategy, we
present three different simulation experiments for the pro-
posed NEB and BEB algorithms. Each simulation has two dif-
ferent TCP connections. These studies are conducted using
the ns2 simulator [5]. All results are based on TCP-Reno,
which is now the most popular TCP version; dynamic source
routing (DSR) is the routing protocol used for each experi-
ment. The TCP packet size is 1460 bytes, and the TCP maxi-
mum window wnd is 1. CW,,;,, and CW,,,, are set to 15 and
2047, respectively. Each simulation runs for 300 s; both TCP

sessions start at 10 s simultaneously. We define TCP through-
put as the packet size in bits received by the TCP receiver per
second.

Figure 4, 5, and 6 show the TCP throughput with two dif-
ferent backoff algorithms. The plotted values of the through-
put are measured over a 10 s interval. From the simulation
results, we can observe that the BEB algorithm is very unfair
to the two TCP flows, but the NEB algorithm can improve the
TCP fairness almost perfectly and even gain a little through-
put advantage (about 12 kb/s) over the BEB algorithm. These
results are what we need indeed.

Conclusions

Game theory, the study of how players should rationally play
games, is a powerful tool in many areas, such as war, politics,
economics, sociology, psychology, biology, communications,
networking, and so on, where conflict and cooperation exist.
In this article we propose a simple game model to interpret
the IEEE 802.11 DCF mechanism and also point out some
directions that deserve study. In addition, by designing a sim-
ple Nash equilibrium backoff strategy, we present a fairness
game model that could improve TCP fairness almost perfect-
ly. Our results show that game theory is an appropriate tool to
research and analyze the performance of wireless ad hoc net-
works. Of course, most networks are enormously complex, it
is usually impossible to delineate all conceivable strategies
and to say what outcomes they lead to, and it is not easy to
assign payoffs to any given outcome. However, by building
and analyzing a simple game that models some important fea-
tures of the complex network, we can gain insight into the
original situation, which is just what we expect in many cases.
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