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Abstract

To support paediatric cardiologists in prognostic assessment and treatment planning, a

decision-theoretic network for congenital heart disease is being constructed. The network

is built in collaboration with a domain expert, using modelling methods commonly advo-

cated in the literature. Although these methods prove to be useful in many cases, it was

found that in some situations their applicability falls short. These situations and their

associated problems are described. Techniques that have been developed to e�ectively

deal with the problems are presented.

1 Introduction

Recent work in the �elds of arti�cial intelligence and statistical decision theory has yielded the
framework of decision-theoretic networks [15]. The framework combines explicit, declarative
domain models known from arti�cial intelligence with normative theories of decision making
under uncertainty. In contrast with the classical decision-theoretic and knowledge-based
approaches employed in the past two decades to decision making under uncertainty, the
framework of decision-theoretic networks couples expressiveness to mathematical correctness.
The framework is therefore especially suited as a basis for decision-theoretic expert systems.

In building a decision-theoretic network, the origins of the framework are re
ected [13].
As with any expert system, knowledge has to be acquired from domain experts, literature
and databases. As such, the knowledge-acquisition process accords with the methodologies for
knowledge engineering proposed in recent years (cf. [16]). These knowledge-engineering meth-
ods have to be supplemented with modelling techniques from decision analysis and statistics.
However, due to the often large size and complex dependence structure of network models,
application of the latter techniques is not straightforward in the context of decision-theoretic
networks [4]. It is also not apparent how knowledge-engineering techniques and statistical
methods must be combined. Although considerable e�ort is being spent on developing and
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maintaining network models (e.g., [1, 5, 6, 8, 9]), detailed methodologies for building decision-
theoretic networks are currently lacking.

The Tetrade project aims at the development of methods and tools for knowledge acquisi-
tion for decision-theoretic network-based systems, tailored to the problem class of prognostic
assessment and treatment planning in medicine. The �eld of paediatric cardiology was chosen
as a test bed for gaining experience in building decision-theoretic networks. Ventricular septal
defect is the most common disorder that the paediatric cardiologist is confronted with. It is
therefore relatively well-understood, and comparatively large amounts of data on the disorder
are available. As these circumstances render good opportunities for network construction and
validation, ventricular septal defect was chosen as the �rst problem domain to be examined.

In this paper, we describe the building of the qualitative part of a network model for
ventricular septal defects. In the next section, we brie
y review the theory of decision-
theoretic networks. Section 3 addresses the aspects of ventricular septal defects that are
relevant for the examples given in Sect. 4, in which the development of the network model
is discussed. We describe how methods commonly advocated for network construction may
fail in some situations. Techniques that have been developed to e�ectively deal with these
problems. The paper is rounded o� with some conclusions and a description of our future
work in Sect. 5.

2 Decision-Theoretic Networks

A decision-theoretic network, or in
uence diagram, is a concise representation of a decision
problem. It comprises a qualitative and a quantitative part. The qualitative part of a decision-
theoretic network encodes in a directed acyclic graph all variables that are relevant to the
decision problem at hand. In the graph, three types of node are distinguished. A decision

node represents viable decisions or actions that can be taken by the decision maker, a prob-

abilistic variable represents an uncertain entity, the outcome of which cannot be selected by
the decision maker, and the value node models the desirability of the various decisions and
their consequences. The arcs in the digraph bear di�erent meanings, depending on the types
of their incident vertices. For example, the set of all arcs between probabilistic vertices cap-
tures the (conditional) independency relation between these variables; informally speaking,
these arcs may be interpreted as directed `in
uential' or `causal' relationships between the
linked variables. Associated with the qualitative part of the network is a quantitative part.
This part consists of a numerical assessment of the strengths of the represented probabilistic
relationships and of the desirabilities of the various decisions and their consequences. For the
purpose of computing best decisions from a decision-theoretic network, several algorithms
have been developed (e.g. [17]). Belief networks may be taken as decision-theoretic networks
without decision and value nodes. In the design of a decision-theoretic network, a belief net-
work can act as a convenient basis. In this paper, we restrict ourselves to the construction of
belief networks.

Decision-theoretic networks may be abstracted to qualitative networks by replacing their
numerical assessments with signs (`+', `�' or `?'), expressing qualitative in
uences and syn-
ergies [20]. Although qualitative networks are not as expressive as fully quanti�ed networks,
they bring several advantages. Qualitative networks may replace decision-theoretic networks
where numerical assessments are either not available or not necessary for solving the deci-
sion problem at hand, or they may be used in addition to quanti�ed networks for explaining
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reasoning in qualitative terms [10]. Also, qualitative networks may serve as an intermediate
representation in the knowledge-acquisition process [3]. In this paper, we address this last
application of qualitative probabilistic networks.

3 The Problem Domain: Ventricular Septal Defects

A signi�cant problem for the paediatric cardiologist in the management of patients with a
cardiac anomaly is to decide if and when a patient has to be submitted to surgical treatment.
In the management of these patients, there is always a trade-o� between the bene�ts gained
by waiting before surgical intervention in the hope that the patient's condition will improve,
and the risks caused by the poor natural history of these disorders [14]. The number of factors
involved in this decision-making process is large and their interplay is subtle. Therefore, it is
extremely di�cult for the clinician to determine which timing of medical and surgical treat-
ment will be optimal for a given patient. In general terms, this problem may be characterised
as planning under uncertainty with time constraints. Although the need for decision support
in this problem domain is recognised by paediatric cardiologists, no system currently exists
to support this decision-making process.

Ventricular septum defect (VSD) is a relatively well-understood disorder with many clin-
ical features that are characteristic for congenital heart disease in general. It was therefore
chosen as the �rst problem domain to be examined in the Tetrade project. VSD is a de-
fect in the ventricular septum, the �bromuscular wall that separates the left and the right
ventricle. An immediate consequence of this defect is blood 
ow (\shunt") from the left to
the right ventricle due to ventricular pressure di�erences. The shunt size, i.e., the amount of
blood 
owing through the defect, depends primarily on the size of the defect and the rela-
tion of pulmonary and systemic vascular resistances. During the foetal stage, the muscular
pulmonary arteries are small in diameter with a thick smooth muscular wall, thus preventing
massive shunting by their high resistance. Following birth, the arteries change to thin-walled
structures with increased internal diameter. These changes are accompanied by a decline in
pulmonary vascular resistance, resulting in an increased shunt size.

Left-to-right shunting causes oxygenous blood to be pumped into the lungs again. As a
result, the pulmonary pressure will rise, and systemic cardiac output will decrease. The latter
e�ect usually causes the patient to be pale and easily sweating. With large defects, the high
pulmonary pressure (pulmonary hypertension) may lead to left heart failure, and also, in the
long run, to right heart failure. Left heart failure is typically accompanied by shortness of
breath, feeding problems, and a complex of symptoms that is usually termed `failure to thrive'.
Furthermore, abnormal breath sounds can be heard on auscultation (pulmonary crepitations).
Signs of right heart failure are cardiomegaly (enlarged heart), hepatomegaly (enlarged liver),
and oedema.

With small defects, the clinical course is favourable throughout infancy and childhood [11].
About 75 to 80% of the defects close spontaneously, with the majority closing in the �rst two
years of life. Patients with moderate-sized defects may develop large left-to-right shunts and
associated complications in infancy, but the majority of this group can be managed medi-
cally without surgical intervention. Patients with large defects are more di�cult to manage,
because of the risks of mortality in the �rst year of life due to heart failure and associated pul-
monary infections. Elevated pulmonary vascular resistance may also develop as a response to
continuous pulmonary over
ow and hypertension [7]; this is termed Eisenmenger's complex.
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It may result in severe, irreversible damage to the pulmonary arteries (arteriopathy). Early
surgical intervention is therefore strongly recommended for these patients. The majority of
patients with repair of uncomplicated VSD in infancy or early childhood have an excellent
result with no clinical signs or symptoms and apparently normal long-term survival.

4 Building the Network Model

Building a decision-theoretic network for a domain of application involves various tasks. The
�rst of these is to identify the variables that are of importance in the domain at hand, along
with their possible values. Once the important variables have been identi�ed, the construction
of the qualitative part of the network can start: the second task is to identify the probabilistic
relationships among the variables discerned and to express these relationships in an acyclic
digraph. The last task in building a decision-theoretic network is to estimate the (conditional)
probabilities that are required to constitute its quantitative part.

Here, we focus on the second task in the building of a network model: the construction
of the qualitative part of the network, i.e., the topology of the digraph. Formally, this task
comprises identi�cation of the independence relation of the joint probability distribution on
the variables discerned. In practice, however, the digraph typically is constructed directly
without explicitly identifying the independence relation. For most application domains, the
qualitative part of a network model has to be hand-crafted with the help of one or more
domain experts. For eliciting the topology of the digraph of the network, often the concept
of causality is used as a heuristic guiding rule during the interview with a domain expert;
typical questions asked are \What could cause this e�ect?", \What manifestations could
this cause have?" [9]. The thus elicited causal relations among the variables discerned are
easily expressed in graphical terms by taking the direction of causality for directing the arcs
between related variables; this graphical representation can then be taken as a basis for
feedback to the domain expert for further re�nement. Building on the concept of causality
has the advantage that domain experts are allowed to express their knowledge in either the
causal or diagnostic direction. Since they are allowed to express their knowledge in a form
they feel comfortable with, the experts' statements tend to be quite robust. This especially
holds in medical domains, where the various factors involved in the clinical description of a
disorder are often characterised in terms of cause-e�ect relations.

Yet, not every in
uential relationship among variables can be interpreted causally. If a
non-causal in
uential relationship comes to the fore, a more elaborate analysis of the inde-
pendences involved is required before it can be expressed in graphical terms. In the sequel,
we discuss three situations where using causality as a principle modelling guideline may be
confusing or even lead to incorrect results. For each of these situations, we provide a method
to circumvent or solve the problem.

First, causality is not a well-understood concept and therefore may leave room for multiple
interpretations. In particular, there may be substantial di�erences in the amount of time it
takes for `causes' to render their `e�ects'. Sometimes the relations described by directed graph
found in medical textbooks are better understood in terms of state transitions over time than
in terms of causality. This was one of the reasons that we decided to make a separate
description of the clinical course of VSD in terms of major pathophysiological development
stages. This description complements the static description provided by the network model; a
full account is given in Subsect. 4.1. A second situation in which causality may hamper instead
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of help the construction of the digraph is the presence of feedback loops. To avoid directed
cycles in the topology of the digraph, alternative modelling techniques are then required. In
Subsect. 4.2, we discuss two example feedback loops in the VSD domain, and the way we
decided to model them. Finally, it is not uncommon to �nd many qualitative abstractions
in the vocabulary of a clinician. Such abstractions cannot be understood in terms of cause-
e�ect relations, and therefore have to dealt with di�erently. The modelling of abstractions is
discussed in Subsect. 4.3.

4.1 Modelling Development Stages of a Disorder

One of the problems we encountered during model building was the fact that there are several
stages in the pathophysiological development of a VSD, and each stage has its own charac-
teristics. Although it was possible to construct a single, static model that accounted for each
of the stages and its characteristics, the resulting model did not seem to suit the clinician's
intuition very well. For instance, this model (to which we will refer as the general network

model) includes a variable shunt, taking a value from the domain fno shunting, small left-to-
right shunt, large left-to-right shunt, right-to-left shuntg. Among the successors in the digraph
of this variable are included both typical signs of left-to-right shunting, such as paleness and
sweating, as typical signs of right-to-left shunting, such as cyanosis. Simultaneous occurrence
of these signs, however, is excluded. As the domain expert pointed out, it is therefore not
very natural to see these signs co-occurring in a single network model.

Our solution to this problem consisted of the following steps. First, the pathophysiological
stages of the disease development were identi�ed. Then, we explored which reductions to the
general network model were possible in each stage. The models resulting from applying these
reductions are called stage models. They are reduced versions of the general model, and
contain only the parts that are relevant for the associated pathophysiological development
stage. Reductions of the model consist of (possibly partial) value assignments to variables
and removing variables and relations where possible.

The stages in the pathophysiological development of a VSD were distinguished by the do-
main expert. First, there is an initial stage (six to thirteen weeks after birth) during which the
pulmonary vascular resistance decreases and the left-to-right shunt increases. In the second
stage the left-to-right shunt has reached its maximum, causing heart failure with its associ-
ated signs. Subsequently, in the third stage, (a) either the defect size gradually decreases or
(b) the Eisenmenger's complex may follow. In both cases left-to-right shunting will dimin-
ish, rendering a signi�cant improvement in the condition of the patient. However, whereas
decreasing defect size will lead to defect closure and vanishing clinical signs (fourth stage, a),
increased pulmonary vascular resistance due to Eisenmenger's complex will eventually cause
shunt reversal and cyanosis (fourth stage, b).

Central to model reduction was the variable shunt. Recall that right-to-left shunting
is excluded in the �rst three stages of development. We can therefore remove the value
right-to-left shunt from the variable's domain in the associated stage models. Consequently, a
number of variables representing characteristic e�ects of right-to-left shunting (e.g., cyanosis)
can be removed from the stage models. On the other hand, left-to-right shunting cannot
occur in the fourth stage. So, the values small left-to-right shunt and large left-to-right shunt

can be excluded from the shunt domain in the stage model for stage IV. In this case, the
variables representing characteristic e�ects of left-to-right shunting (e.g. heart failure and
pulmonary flow-hypertension) can be removed.
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Figure 1: Stages in the pathophysiological development of a VSD.

Node removal is valid in these cases because some of the relations between the variable
shunt and its successors are not probabilistic but deterministic in nature. Deterministic
relations can often be detected in the vocabulary and reasoning of the clinician. In the present
example, it was detected that the domain expert often equated `right-to-left shunting' and
`cyanosis' in his explanations. Detecting deterministic relations is useful in several respects: it
reduces the number of probabilities that have to be assessed, and can be used to infer strong
conditional independency statements that facilitate e�cient computations [19].

4.2 Coping With Feedback Loops

The main physiological component in the domain of congenital heart disease is a closed-loop
haemodynamic system. It is not very surprising, then, that one of the problems we were
confronted with during model development was the occurrence of feedback loops. In the case
of a VSD, the size of the left-to-right shunt depends on the interventricular pressure gradient,
which in turn depends on the relative pulmonary pressure (compared to systemic pressure).
On the other hand, the relative pulmonary pressure is increased by the shunting of blood
through the defect. When we try to model these dependences in causal fashion, a (directed)
cycle occurs in the network (see Fig. 2a).

Another example feedback process is Eisenmenger's complex. Continued left-to-right
shunting through the VSD will increase the pulmonary arterial pressure. In time, this re-
sults in damage to the pulmonary arterioles, and increasing pulmonary vascular resistance.
Although the pulmonary pressure will remain high, the pulmonary blood volume (i.e., the
shunt size) will decrease. This is depicted in Fig. 2b.

We note that a cyclic digraph representing a feedback process can be viewed as a compact
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Figure 2: (a) haemodynamic feedback loop, and (b) Eisenmenger's complex.

representation of an in�nite acyclic digraph containing each variable indexed by time [18]. A
possible solution to the problem of directed cycles is therefore to reject the compact represen-
tation and to explicitly model the feedback process in a dynamic network model [2]. Dynamic
network models extend the belief-network formalism by allowing temporal reasoning over a
series of (structurally identical) static networks (\slices") indexed by time.

Although dynamic network models provide an elegant and mathematically sound way to
represent feedback processes, their usefulness in practical circumstances is limited. Not only
the size of the network model and computational complexity increase drastically, dynamic
representation of the feedback process is also very �ne-grained, and a regression model of the
feedback process is needed. Therefore, we think that dynamic network models only should
be used when the time spanned by the feedback process is large and multiple observations on
the variables involved may be performed within that time span. This applies to the feedback
process due to Eisenmenger's complex: this process may take several years, and usually
many observations on the clinical state of patient are made during this period. The dynamic
part of the network model for Eisenmenger's complex is shown in Fig. 3b (see below for an
explanation of the variable pressure ratios).

For short-term feedback processes, a solution within the static domain model is favourable.
Then, an alternative representation without directed cycle has to be found, for which various
options exist. These include adding and removing arcs, reversing one or more arcs, adding
one or more variables to the digraph, and clustering multiple variables in a single network
node. We do not believe there is a single, best option; the solution that is chosen should,
however, yield a satisfactory model and be supported by domain-speci�c arguments. An
example of solution of `cutting' cycles by adding and removing arcs supported by domain-
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speci�c arguments can be found in [12]. We have chosen to cluster the variables relative
pulmonary pressure and interventricular pressure gradient into one super node
pressure ratios. The argument is that in under normal circumstances, the values of the two
aforementioned variables are equal; the clinician considers both variables to be known with
certainty once either of both has been observed. Subsequently, a topology for the network
containing the super node was designed in collaboration with the domain expert. The relevant
part of the resulting network is shown in Fig. 3a.
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t t+1

REL PULMON
  VASC RES

REL PULMON
  VASC RES

+

+
ARTERIOPATHY

+

PRESSURE
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Figure 3: Solutions: (a) using a super node, and (b) dynamic network model.

4.3 Modelling Qualitative Abstractions

In many medical domains, the vocabulary that is used by clinicians contains qualitative
abstractions of biochemical and physiological states or processes involved. Typically, a speci�c
term is introduced to indicate that some quantity has reached some (critical) value, or that
a typical combination of values is at stake. For instance, in the domain of cardiac anomalies,
when the oxygen saturation of the systemic blood drops below 92%, this is classi�ed as
cyanosis. Similarly, when the systolic pulmonary pressure exceeds 1=4 of the systolic systemic
pressure due to large left-to-right shunting, one speaks of pulmonary 
ow-hypertension (see
Fig. 4.3).

It is useful to recognise such abstractions during the model building for several reasons.
First, there is usually a \hard" condition involved in the classi�cation step; We have indicated
this in Fig. 4.3 by the label `c: > 1=4' on the arc between relative pulmonary pressure

and pulmonary flow-hypertension. As was noted in Subsect. 4.1, recognition of such
deterministic relations reduces the number of probabilities to be assessed. Second, if an
abstraction variable has successors in the digraph, this will usually indicate an undesired loss
of precision. It will be favourable to re-evaluate the relation between these nodes and the
predecessors of the abstraction variable; In many circumstances, a direct, in
uential relation
can then be found. Returning to the aformentioned example, our domain expert initially
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stated that pulmonary 
ow-hypertension causes arteriopathy in the long run. While this is
not untrue, it is more precise to state that continuous elevated pulmonary vascular pressure
causes arteriopathy. As the pulmonary vascular pressure is modelled in quantitative terms,
modelling the latter relation instead of the former yields more precision. We remark that the
introduction of an abstraction variable has no e�ect on the complexity of the network model
if the classi�cation variable has no successors in the digraph. This is due to the fact that the
variable itself will not be instantiated. Therefore, no dependencies between its predecessors
in the graph are introduced.

Figure 5 shows the network model for VSD in stage III. We have made a distinction
between primary and secondary determinants of the patient's clinical state, and variables
whose values only result from this state, but do not have e�ect on others. In the case of VSD,
the clinical state of the patient depends primarily on the size of the defect and the relative
pulmonary vascular resistance. These variables are grouped by the dashed box with label
A in the �gure; They determine the state of variables like the relative pulmonary pressure,
ventricular pressure gradient, direction and size of the shunt and the degree of heart failure.
Dashed box B contains these secondary determinants. These variables in turn a�ect the state
of many observable variables representing signs and symptoms. Finally, we have distinguished
to variables that represent critical developments in the clinical state of the disorder. These
are spontaneous closure of the defect, and Eisenmenger's complex; They are contained in
dashed boxes with label C.

5 Conclusions and Future Work

The framework of decision-theoretic networks is becoming increasingly popular as a basis
for medical decision-theoretic expert systems. The framework has proven its usefulness in
a number of real-world applications. However, detailed methodologies for building decision-
theoretic networks are still lacking.

In this paper, we have described the manual construction of network model for ventricular
septal defect with the help of a paediatric cardiologist. We followed the often advocated
heuristic of using `causality' as a guideline in the modelling process. Although this heuristic
proved to be useful in large part, it was found that in some situations its applicability falls
short, or even may hamper e�cient model construction. These include the situation that
several stages of development are discerned in the clinical state of the patient, that feedback
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processes may exist in the domain, and that qualitative abstractions are used. To deal with
each of these situations, speci�c techniques have been developed.

We have described a simpli�ed version of the VSD model that will be used as a basis
for a decision-theoretic expert system. We are currently implementing the model, which
counts up to 38 nodes and 52 arcs, as a qualitative probabilistic network. The resulting
preliminary system will be used as feedback to the domain expert for possible re�nement.
Subsequently, the numerical probabilities forming the quantitative part of the network model
will be assessed. For this task, the framework described in [3] will be used to combine
numerical information from various sources. Finally, the model will be embedded in a decision-
support architecture.
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