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Abstract—In this paper we present the uDirect algorithm as a novel 

approach for mobile phone centric observation of a user’s facing 

direction, through which the device and user orientations relative to 

earth coordinate are estimated. While the device orientation 

estimation is based on accelerometer and magnetometer 

measurements in standing mode, the unique behavior of measured 

acceleration during stance phase of a human’s walking cycle is used 

for detecting user direction. Furthermore, the algorithm is 

independent of initial orientation of the device which gives the user 

higher space of freedom for long term observations. As the 

algorithm only relies on embedded accelerometer and 

magnetometer sensors of the mobile phone, it is not susceptible to 

shadowing effect as GPS. In addition, by performing independent 

estimations during each step of walking the model is robust to error 

accumulation. Evaluating the algorithm with 180 data samples 

from 10 participates has empirically confirmed the assumptions of 

our analytical model about the unique characteristics of the human 

stance phase for direction estimation. Moreover, our initial 

inspection has shown a system based on our algorithm outperforms 

conventional use of GPS and PCA analysis based techniques for 

walking distances more than 2 steps.  

Keywords : direction detection, walking locomotion, acceleration, 

pervasive computing, Mobilephone,  

I. INTRODUCTION: 

Finding a user’s facing direction has been for long a goal for 
researchers in a variety of research fields from localization in 
wireless networks and robotics areas to recent social and 
behavioral analysis with wearable computing technologies and 
smart environments. Past systems for the detection of users’ 
directionality in constraint locations and short periods of time 
made typically use of ambient [1-3] and Body Sensor Networks 
(BSN) [4-6]. 

However, due to the dependency of ambient sensors on 
infrastructures and the intrusiveness of the BSN (which despite of 
the advances in miniaturization of sensors is still the main 
obstacle for their application for long periods of time) there is 
still a remaining need for an observer to collect long term and 
ubiquitous information about user. Consequently, the real world 
applications of these observations techniques are confined to 
limited surveillance e.g. [7] and affective computing (e.g. [2] and 
[8]) when using ambient sensors and in case of wearable sensors 
to analyzing social behavior of a group of participates during a 

study (e.g. [4] and [5]), pilot demonstrations of dead reckoning 
technique (e.g. [9] and [10]) and healthcare studies [11].  

New advances in computing, storage and wireless technology 
along the recent introduction of Micro Electro Mechanical 
System (MEMS) based sensors into mobile phones, has opened 
the door to a new world of application possibilities. The 
indispensible role of the mobile phones in today’s life makes 
mobile phone centric sensing systems ideal candidates for serving 
as ubiquitous observers. The available mobile network 
infrastructure can also facilitate the large scale data collection and 
modeling for variety of applications.  

In this work we present uDirect as a novel approach for 
pervasive observation of user’s facing direction using mobile 
phones. For its estimation, uDirect makes use of built-in 
accelerometer and magnetometer sensors readily available in 
many mobile phones. It assumes that the mobile phone is carried 
in the trouser pockets of a user and exploits unique acceleration 
patters of human walking locomotion. As everyday life usage of 
mobile phones demands, uDirect estimations are independent of 
the mobile phone orientation. Furthermore uDirect does not 
require any previous training samples. During evaluation of a 
proof-of-concept implementation with 10 participants on an 
Android based smart phone we were able to verify our underlying 
theoretic models and show that our algorithm performs more 
accurate than existing GPS based methods or PCA based 
techniques exploiting inertial sensors, while providing several 
advantages compared to those. In summary we make the 
following contributions: 

We present uDirect an approach to determine a user’s facing 
direction with a mobile phone, regardless of the mobile phone’s 
orientation. 

For this we propose a novel method for auto calibration of the 
mobile phone orientation based accelerometer and magnetometer 
sensors of the phone. Auto-calibration is achieved by determining 
the rotation quaternion between the sensed earth co-ordinate 
system and the actual co-ordinate system of the mobile phone. 
The underlying mathematical model using the quaternion 
presentation further simplifies computation of the rotation 
compared to a vector based approach. 

We further propose a novel approach for determining a user’s 
forward direction based on accelerometers, exploiting the 
physiological walking behavior of a human. By analyzing the 
acceleration pattern of the thigh movement during walking 
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locomotion, we are able to identify the optimum moment where 
the captured acceleration signal mainly consist of the forward 
direction, minimizing the noise of unwanted side components. 

We report on the evaluation of uDirect based on 180 data 
samples collected from 10 participants validating our underlying 
theoretical models and comparing the performance to existing 
approaches. 

The remaining paper will first introduce the related works in 
Section II, before describing an overview of the uDirect 
algorithm in section III. In section IV the underlying theories and 
mathematical model are discussed. Section V reports on the 
experimental evaluation of an implemented prototype. 
Concluding remarks are provided in Section VI  

II. RELATED WORK 

The wearable sensors community has produced a variety of 
direction detection techniques which can be implemented with 
minor modifications on mobile devices. A typical solution for 
detecting user direction can be frequent logging of the user’s 
absolute location. However, providing the required absolute 
location depends on the availability of infrastructure such as ultra 
wide band, GSM and Wi-Fi transceivers. Furthermore the 
performance of such systems may be adversely affected by 
shadowing and interference in the environment. Another 
approach based on wearable cameras and the subsequent analysis 
of the taken pictures has been successfully implemented in [12] 
and [13]. But these techniques require significant computational 
and storage resources.  

Inertial sensors such as accelerometers and gyroscopes have 
been also used for direction estimation. For example, in [10] a 
technique is proposed that performs Principal Component 
Analysis (PCA) over horizontal acceleration components during 
walking locomotion. In this approach vertical and horizontal 
components are distinguished through Kalman filtering of 
measured acceleration and angular velocity. The direction of the 
first principal component is then used as an estimation of user 
facing directionality. However, according to [14], the processing 
of gyroscopes signals typically requires a large number of 
sine/cosine and coordinates transform operations, and puts a 
heavy computational burden on the processor, which makes it 
less suited for pervasive computing environments. The respective 
authors concluded to avoid the use of gyros if the detection could 
be carried out only by accelerometers. Recently Kunze et.al [15] 
have developed a direction estimation technique based on mobile 
phone accelerometer readings when the device is placed in user 
trousers pocket. Similarly to [10], PCA analysis is applied over 
horizontal acceleration components during walking locomotion. 
Horizontal and vertical components are distinguished by 
detecting gravity direction form acceleration sample in stationary 
mode. We have used this direction estimation technique that has 
been successfully implemented on a mobile phone for 
comparison with our proposed model.  

Direction detection with magnetometer as an accurate and 
computational efficient approach, has also attracted many 
researchers (e.g. [9][16][17][19]). These approaches require a 
pre-defined device orientation relative to user, which is typically 

achieved by fixing the device position on user body.  In order to 
compensate for magnetic noise in the environment, simple offset 
estimation and filtering techniques (e.g. [12], [20]) are utilized 
accuracies suitable enough for many applications. 

However carrying a device (in our case mobile phone) with a 
fixed position and orientation for a long period of time is clearly 
intrusive and not practical for long-term observations. In this 
study, we introduced the uDirect algorithm which uses 
magnetometer and accelerometer embedded in mobile phone for 
pervasive observation of user direction. Despite providing high 
accuracy, uDirect algorithm detects the user direction without any 
previous knowledge about device orientation relative to users.  

III. UDIRECT ALGORITHM DESIGN 

The uDirect algorithm exploits the acceleration pattern 
measured during walking locomotion to perceive the user facing 
direction. In this section we provide an overview of the algorithm 
by briefly introducing its key technical components. 

The goal of the work is to find the relative orientation of each 
user with respect to a global reference coordinate system. In this 
regard we consider the earth coordinate as our reference 
coordinate system, which is aligned through North, East and 
opposite direction of gravity and through the algorithm process 
we calculate the orientation of user coordinate in earth 
coordinate. The user coordinate system is depicted in fig.1 with 
F, S and V axis, where F stands for forward direction, V is 
vertical direction and S is the side direction along the cross 
product of V and F.  Any rotation of body segments during 
movement can be expressed as a rotation around one of these 
axes. For example, sagittal rotation would be around S and 
transverse rotation would be around V. Body rotational planes 
including sagittal, coronal and transverse planes are shown in 
fig.1. 

The uDirect algorithm performs the estimation of the user 
facing direction in two main steps, as depicted in the flow chart in 
fig.2. The algorithm first starts with determining the device 
orientation relative to earth coordinate when the user is in 
standing mode using mobile phone embedded accelerometer and 
magnetometer. In this stage, the device calibrates its 
measurements by transferring them into earth coordinate system.  

In the second step, the behavior of acceleration generated 
during walking is used to obtain the relative orientation of the 
user to the earth coordinate system. During this stage, the 
component which is aligned towards the user forward direction 
(F) is separated from the sampled acceleration information and 
using the calibration information from the first stage enables us to 
calculate the user direction within in earth coordinate system. 
Note that, here we have implicitly assumed that people are 
normally moving forward. This seems to be a valid assumption 
for most cases, since our field of view is in the forward direction. 
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Figure 1.  User coordinates and body rotation planes 

 
Figure 2.  Flow chart of uDirect algorithm, the caliberation is performed in 

stationary mode and direction is estimated during walking mode. 

Although the processes in both steps are independent from 
device orientation, the analysis in the second step of algorithm 
requires the device position to be known. That is because of high 
dependency between measured acceleration during different 
activities and measuring position on body (for extensive 
discussions refer to [19]). 

In the currently implemented version of the uDirect, we 
assume as in [15] that the mobile phone is placed in the trouser 
pocket of the user. Several studies have emphasized on the 
trouser pocket as one of the primary positions of mobile phones 
in users daily life (e.g. [21]). For example, a study in [22] has 
shown that in average 60 percent of male users put their mobile 
phones in their trousers pocket. In contrast to other common 
positions of the device including chest pocket or bag, trousers 
pocket are the closest to Centre of Gravity (COG) of body, 
where, the applied force in its proximity is claimed to be almost 
deterministic and undisturbed by individual’s physical 
characteristics. Selecting trouser pocket or equivalently the 
Femur (as the related body segment), we also simplify the 
analysis of acceleration by limiting the device movements during 
walking in the sagittal and transverse plane.  

IV. METHODOLOGY 

Following the sequence of operations of the proposed 
algorithm, this section first introduces the technique that is used 

for the calibration of the device orientation, before presenting the 
proposed analytical model for device acceleration during walking 
locomotion. By using empirical data from body movement, we 
show in the last section how measured acceleration at specific 
phases of the walking cycle can provide accurate estimations of 
user direction. 

A. Calibrating the mobile device orientation  

Detecting mobile orientation with respect to the earth 
coordinate system is based on two main features, namely gravity 
acceleration and the earth magnetic field. By observing the 
gravity acceleration and geomagnetic field in any coordinate 
system we are able calculate the vertical (-g) and north axis of the 
earth coordinate system in the observation coordinate system. 

In the case of gravity a similar approach as presented in [23] 
is adopted where the average of signals is taken when the phone 
is in stationary mode (when the user is standing). Here, stationary 
mode is identified as a period of time when the variance of the 
samples over a sampling window is approximately zero. By 
averaging over a sampling window the measured acceleration as 
gravity (g) and magnetic field samples (M) in stationary mode, 
the earth coordination in mobile phone can be calculated as 
follow: 

Considering the inverse of gravity vector (-g) as Z, we can 
compensate the dip angle of measured magnetic field (M) by 
projecting it into the new XY plane, perpendicular to Z. 
Therefore, North direction (X) is calculated as 

  

and Y which stands for the East direction is calculated as cross 

product of the X and Z. 

 ZXY   

Now X, Y and Z are aligned to the earth static coordinate 
system and are corresponding to North, East and the inverse of 
the gravity direction. Having determined the earth coordination 
components with respect to the mobile device coordinate system, 
we can now calculate the rotation matrix that transforms these 
two coordinate systems into each other. 

The most common method of representing the rotation 
difference is by calculating the Euler angles and corresponding 
rotation matrix. However, an alternative method is to use the 
quaternion representation invented by Hamilton in 1866 [24]. 
Because of the more compact encoding, the use of quaternions 
has computational advantages compared to singular 
representation (like Euler equations). While the singular 
representation of these transformations requires nine real 
numbers (as 33 )and operations, quaternion representations 

require only four. 
Quaternions are a single example of more general class of 

hyper-complex numbers and belong to non-commutative division 
algebra.  Analogous to complex numbers, a quaternion (H) can 
also be written as a linear combination of real and imaginary 
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parts by ckjbiawH   while 1k^2j^2i^2  .Using 

this construction the composition of three rotations that forms a 
movement in 3D space, can be written as a simple rotation 
around one axis as follow:  

 *QV̂Q)V̂R(   

Here R is rotation function and Q is a quaternion that 

represents the rotation of 3D vector V̂ by angle of 2Ɵ around 

vector û which can be calculated as               

 sinθûcosθQ   

As previously pointed out in order to map the sensed 
acceleration into the earth’s coordinate system we require the 
rotation component that transforms the mobile device co-ordinate 
system (x, y, z) to the earth coordinate (X, Y, Z). In the following 
lines, we compute this rotation quaternion in three steps: First, the 
quaternion that rotates z to Z,    

 sin(θin(ûcos(θos(Q1   

 )Zz2(Z.z/θ   

 zZû   

Secondly, we calculate Q2, the quaternion that rotates the 

projection of y on the transverse plane, into the direction of 

North(X). It can be represented with same notation as Q1 in (5) 

while u is substituted with Z and  with ʹ. Where 

 )/().((2 ZyZXZyZX   

    Combining Q1 and Q2 to have the resultant rotation 
quaternion, with following the quaternions multiplication rule, 
the succeeding result can be obtained: 

Ẑû)/2)sin(θ2)θcos(û

/2)θn(cos(θos(θ/Ẑ/2)θs(cos(θos(θ/Q1Q2R




 

Once R has been determined, the measured values from an 
arbitrary orientation of the device can be read in the static earth 
coordinate system. This calibration process will be later used to 
transform the measured values for user direction into the earth 
coordination system to provide the absolute direction of a user.  

Re-calculation of the rotation is only required when the user 
changes the position or orientation of the phone. It is worth 
noting that the earth and user coordinate systems share the same 
vertical axis, as shown in fig.1. As will be discussed in the next 

section, this fact helps us to confine our acceleration pattern 
analysis to only components in the transverse (horizontal) plane. 

B. Calculating the dynamic model of device acceleration during 

walking locomotion 

Considering the body segments of a human as a rigid body for 
formulating their dynamics has been long used by researchers 
[25]. In our study, the goal of this modeling is to relate the 
measurements of accelerometers with a user’s movement 
direction. Assuming based on the previous section that the 
measurement coordinate (mobile) is calibrated with a global 
reference (earth) we will be able to estimate the user direction in 
earth coordinate system. However, as was previously stated, in 
reality the vertical direction is the only information that is 
available about a user’s orientation which is assumed to be in 
parallel with gravity.  

Now, considering the fact that by detecting the vertical 
direction and deducing it from total measured acceleration we are 
able calculate the resultant of horizontal components of user 
coordinate, we have proposed the following algorithm to 
overcome these limitations and to achieve our goal. 

1- Assuming that the user coordinate system is known, we 
calculate the device measurements based on its deviations (during 
walking locomotion) from user’s coordinate system. Here, the 
modeled values would show the device measurements as effect of 
user translational and body segment rotational movements in an 
arbiter orientation of device. 

2- The measured components are transferred into user 
coordinate system. From now, we can analyze the behavior of the 
measured components in user coordinates. 

3- We focus on the behavior of the horizontal components of 
measured accelerations to find the characteristics in which the 
resultant acceleration is dominated by forward (F) components. 

In order to develop the mentioned algorithm, we base our 
formulation onto the same assumption as [26] and consider the 
hip joint as ball joint which permits Femur rotation in all 
directions. However, during walking, the major Femur rotations 
only take place in the sagittal (around S) and transverse plane 
(around V).  

In order to explain the dynamics of movement the following 
coordinate systems are introduced and depicted fig.3:  

 

 
Figure 3.  Coordination systems and rotation directions, Og stands for center of 

global coordination , Oh center of local coordination (hip joint) and  Oa for 
center of accelerometer coordination system. Ɵz rotation around Zg and Ɵy 

rotation around Yg 
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Ow-XwYwZw is the world (global) coordinate system where Z 
is pointing towards earth and the X is towards a user’s forward 
movement, Oh-XhYhZh is the local coordinate system at the hip 
joint which is parallel to world coordinate and finally, Oa-XaYaZa 
is the accelerometer coordinate system which is placed on the 
rigid body (Femur). For simplicity, we consider the 
accelerometer coordinate system to be parallel with other 
coordinate systems at time 0 when the longer axis of the femur is 
aligned along gravity vector (or Zw). 

From the relative acceleration principle, the acceleration that 
is measured in the Oa after t seconds from the start of movement 
can be expressed as follow: 


(t)A(t)A(t)A hwahoa   

Where Aoa is the measured acceleration at Oa, Aah is the 
relative acceleration in Oa when the rigid body rotates around Oh 
and Ahw is the acceleration of Oh relative to Ow. Since the 
distance between Oa and Oh, is constant the relative acceleration 
between Oa and Oh can be expressed as: 

















 



v

z

zy

ah

θr

θr

θrθr

r)(ωωrωA







  

The term rω is produced by the angular acceleration of the 

measuring coordinate system and the other term represents the 
centripetal acceleration. 

The relative acceleration of the Oa and Ow consist of the 
gravity and translational acceleration. 

To obtain the resulted acceleration based on rotated 
coordinate of device we have: 

 )) (t A+(G (t)(t)RR=A Ohzθθyhw  

Here Ry and Rz are the Euler rotation matrices around Yw 
and Zw (sagittal and transverse rotations) at time t by the angles 

of y(t) and z(t) respectively. Aoh and G are also translational 
acceleration and acceleration of gravity in the global coordination 
system Ow-XwYwZw. 

With the same methodology as mentioned in the previous 
section the combination of these two rotations can be more 
computationally efficiently represented by one quaternion. Here 
the resultant quaternion is described as:  

(t)/2))θ(t)/2)sin(cos(θ(t)/2),θ(t)/2)sin(cos(θ

(t)/2),θ(t)/2)sin(sin(θ(t)/2),θ(t)/2)cos(((cos(θR(t)

zyyz

yzyz


Therefore the final equation for measured acceleration is  

 *(t))R(t)AR(t)(G(t)A(t)A ohahoa   

Inserting values form (13) and (15) to (16) and considering A 
is equal to  G + Aoh we obtain: 

























yθrzAycosθxAysinθ

zθrzAzsinθysinθycosAxAycosθzsinθ

zθryθrz(t)Ay(t)sinθzcosθy(t)Azsinθx(t)Ay(t)cosθzcosθ

(t)Aoa








Equation (15) represents the measured acceleration in device 
coordinate system. Let’s recall that our goal of modeling was to 
relate the device measurements with user direction. One solution 
is to use rotational information ( )t(R ) to transform the measured 

acceleration in (15) into the directions of user’s coordinate axis. 
But in reality, a user’s mobile phone can be carried with any 
arbitrary orientation relative to user coordinate system and our 
knowledge about user coordinate is limited to its vertical 
direction (which is in parallel with gravity). Therefore, we can 
only determine the sagittal rotation, and transverse rotation 
remains unknown. 1 

Our solution is to find the moments during walking 
locomotion in which the acceleration along the forward direction 
dominates the measured acceleration in transverse plane. More 
precisely, while from the sagittal rotation information the 
transverse plane of user coordinate is known, the user direction in 
the transverse plane can be determined when the main 
acceleration components belong to the forward acceleration (F) 
or equivalently the side acceleration components (S) is in its 
minimum.  

To analyze the measured acceleration behavior in the 
transverse plane, we assume that the device rotation compared to 
the user’s coordinate system is known. We can transfer the 

measured acceleration into user coordinate. (t)A  oa  as the 

measured acceleration in user coordinate can be calculated as : 

R(t)(t))R(t)*)AR(t)(G(t)(t)(A*R)t(A ohroa   

Substituting appropriate values from (13) and (15) into (16) 
the, resultant acceleration vector can be finally expressed as: 

G)(A

(t)A

oh

oa

rz( t))Aycos(θry( t))Az( t))sin(θysin(θrx( t)Az( t))cos(θysin(θ

ry( t))Azcos(θx( t))Azsin(θ

rz( t)Aysin(θry( t))Az( t))sin(θycos(θrx( t))Az( t))cos(θycos(θ





























Equation (17) shows the measured acceleration in the user’s 
coordinate system. As was shown in fig.1 the Y and Z axis of the 

                                                           
1 Calculating the sagittal rotation or equivalently tilt angle is exactly the 
same as calculating the rotation required for aligning the Z axis of the device 

along gravity vector that has been discussed in previous part. 
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local and global coordinate system represent the axis of sagittal 
and transverse rotations which in user coordinate system, are 
called S (side) and V (vertical) respectively. From (17) it can also 
be inferred that compared to measurements in local coordinate 
(Oh), measuring acceleration in device (Oa) results in additions of 
rotational acceleration components along user coordinate axis. 

Now, we need to find the situations in which the (t)Aoa along 

S (Aoay) is minimized. Adding rotational components form (11) 
to (17) the S acceleration is given by: 

yhzzzyz )Ao(Gθ(t))rcos(θ)θrθ(t))(rsin(θAs  


Equation (20) shows that since gravity (G) has no component 
in x and y direction and the user is moving forward, in principal 

once transverse angular deviation ( (t)zθ ) and acceleration ( (t)zθ


) are near zero the magnitude of As is minimized. Through a 
comparison with empirical data in the next subsection, we have 
identified the moments during a walking cycle that meet these 
requirements. 

C. Direction estimation 

As shown in fig. 4 the walking cycle of a human can be 
divided into two main phases, a swing phase and a stance phase. 
The stance phase is usually referred to as the period of a walking 
cycle between each consequent heel strikes and toe off moments 
[25]. As will be shown later the transverse angular deviation and 
acceleration during stance phase meets the characteristics 
required for minimizing As in (18) and estimating user direction. 
Fig.5. shows the average femur transverse rotation for normal 
men based on empirical data from [27] and a polynomial curve 
that is fitted onto the empirical data. This polynomial will be used 
for as approximation in order to obtain the angular acceleration 
pattern. According to [27], the pattern of transverse rotation is 
preserved for different ages and heights and showing only 
variations in their magnitude. Furthermore, the pattern is 
continuously repeated and is almost the same for both feet [27]. 

Using Fourier transformation (FT) theory, this periodic 
pattern can be decomposed into a series of sine waves with 
different frequencies and phases. Since taking the double 
derivative of a sine wave only requires multiplication of it by 
minus of square of frequency regardless of its phase it is easily 
possible to construct the rotational acceleration pattern from the 
rotation pattern data. Constructing acceleration pattern from FT 
enables us to see the continuous form of acceleration during 
walking locomotion, which is not achievable by directly taking 
derivatives from our fitted polynomial.  

We have reconstructed the transverse rotational pattern ( zθ ) 

and its corresponding acceleration pattern )θ( z
 based on data 

taken form a polynomial2 that is fitted on empirical data form 

                                                           
2
 A polynomial of order 8 has been taken while higher orders of polynomial 

didn’t significantly improve the fitness of the curve.  

[27]. The pattern of transverse acceleration during walking is 
depicted in fig.6. 

Form fig.5 and 6 we are able to distinguish the time instances 
in which the transverse deviation and acceleration is minimum. 
Referring to fig.6, transverse acceleration meets its minimum 

magnitude ( 0zθ   ) near the middle of the stance phase (35 % 

of walking cycle), when the primer foot (carrier of phone) is 
placed on the floor and the other foot is swinging. In addition, as 
is shown in fig.5 at this moment the device transverse orientation 

is approximately zero ( 0zθ  ). Another important characteristic 

of this moment is that the orientation of the device is close to the 
device orientation in standing mode.  

Since the transverse plane was determined during the standing 
phase of a user, the mentioned characteristic implies that the 
gravity (G) components in transverse plane would be in its 

minimum ( 0G,G yx  ). Considering the fact that the user’s 

translational acceleration during walking movement is towards 
the forward direction, we can now claim that the acceleration 
towards the side direction of the axis (As) from equation (18) 
would be minimum at this moment. It is worth noting that 
although we have shown that the As is minimum at the middle of 
stance phase, we have no proof that the forward acceleration is 
large enough to detect the forward direction reliably. However 
the empirical evaluation presented in the next section has 
confirmed that the magnitude of forward acceleration at stance 
phase is sufficient for providing accurate direction estimation.  

To summarize, according to the characteristics of acceleration 
samples during walking locomotion we predict that the most 
appropriate moment for interpreting the measured acceleration in 
the transverse plane as user forward direction happens at the 
middle of the stance phase. 

Now the only remaining issue is how to detect the stance 
phase. The toe off and heel strike moments as the start and end 
points of stance phase, can be accurately determined from the 
acceleration of Femur movement. These points are demonstrated 
in fig.6. Aminian et.al. have shown in [28] that during walking 
locomotion the local minima of acceleration samples in the 
vertical axis is corresponding to heel strike and global minima is 
corresponding to toe off moment. Developing a sensing 
application on a mobile phone and using a simple peak detection 
for detecting stance phase we have been able to evaluate our 
algorithms and assumptions. The results show that uDirect 
algorithm is able to detect the user direction with very high 
accuracy. The next section presents the evaluation process and 
results. 

  
Figure 4.  Walking locomotion, including two swing phases and one stance 

phase. The stance phase is started with heel strike and ended with toe off 
moments 

Heel Strike Toe off

Stance PhaseSwing Phase
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Figure 5.  Transverse rotation of femur during walking locomotion. Average of 

data form different age groups form [27] and a polynomial curve fitted on 
average data are shown.  

 
 

Figure 6.  Transverse acceleration pattern, constructed form FFT components of 

transverse rotation, against walking cycle.  

V. EVALUATION 

The primary goal of our evaluation process is practically to 
verify the special characteristics of the stance phase in direction 
estimation that was previously derived with analytical modeling. 
In addition, we have initially examined the performance of an 
implemented prototype in comparison with current widely used 
approaches. During the next subsection the experiment procedure 
and results are presented.  

A. Implementation 

In order to evaluate the proposed algorithm we have 
developed a sensing application on an Android G1 dev phone. 

The android G1 is equipped with a triaxial accelerometer 
combined with a Hall-effect geomagnetic sensor3 in three axes. 
The latter implements a Dynamic Offset Estimation (DOE) 
algorithm to automatically compensate the magnetic offset 
fluctuations thereby making it more resilient to magnetic field 
variation within device [29]. In addition, we have also mitigated 
the effect of high frequency ambient noise by averaging the 
measurements prior to the calibration of the device orientation.. 

Our application is able to simultaneously log accelerometer, 
magnetometer and GPS signals into a database with frequency of 
25Hz for accelerometer and magnetometer and 1Hz for GPS. 10 

                                                           
3
 Asahi Kasei Microdevices  AK8976A 

subjects were selected from PhD students of our EE department 
to perform the experiments during which the data was collected. 
During the data collection procedure the subjects were asked to 
walk on a predefined trajectory. The path was 25.65 meter long 
which has been walked with average of 18 strides (=36 steps). 
Since we only consider the steps of the foot that the mobile is 
attached to (the carrier foot), this gives us 180 data samples in 
different directions and orientations of the phone for examining 
our uDitect algorithm. Walking on the baseline trajectory is 
performed while users were carrying two mobile phones. One of 
the mobile phones had a fixed orientation with user and is placed 
on the middle of user chest for the other one the users were free 
to choose the orientation of the phone to place it in their pocket. 
While the data from device in the pocket is used for direction 
detection in uDirect, the fixed device has been used for verifying 
the ambient magnetic noise. Fig.7 shows the trajectory, which 
consists of 4 sections.  

The stance phase for deterministic model is detected using a 
simple peak detection algorithm. To avoid the confusion of peak 
detection algorithm with random noise in accelerometer samples 
average filtering with a window of 10 samples is performed 
before peak detection. In addition to GPS estimations, the 
collected data is also processed with PCA based algorithm from 
[15] for comparison. In order to minimize the noise due to 
ambient magnetic field and also providing a comparison with 
GPS, the experiment has been performed in an open space area. 
At this stage all the analyses were offline processed with Matlab. 
Results 

According to uDirect algorithm the horizontal acceleration at 
the middle of stance phase can be used as estimation for user 
facing direction. The top part of fig.8 shows the vertical 

accelerations (V ) during walking toward east (+ 90 degree to 

North). The local and global minimas are detected via a simple 
peak detection algorithm. As was mentioned, each subsequent 
local and global minima shows heel strike (H) and toe off (T) 
moments respectively and the stance phase is defined as the 
period of time between each subsequent heel strike and toe off 
moments. The bottom part of the figure shows the relative 

deviation of resultant of horizontal acceleration components ( H  
) from North.  

 

 
Figure 7.   the base line trajectory. Section 1 :11.5 meters west to east, Section 2 

: 3 meters south to north, Section 3: 3 meters east to west and Section 4 : 5 
meters north to south 
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Figure 8.  Walking locomotion toward East  ,Top part: Vertical accelerations( V

)  toe off and heel strike monments (H &T) ,for determining stance phase, are 
detected by a peak detection algorithm. Bottom part: Deviation angle between 

the horizontal acceleration samples ( H ) and North direction during walking.  

The vertical red lines show the middle of stance phases and horizontal red line is 

alignd with 90 degree deviation, As is shown the samples belong to middle of 
stance phase are giving the best estimations of user direction.  

A comparison between these two parts by following the 
direction that the horizontal components at the middle) of stance 
phase (depicted as vertical red lines in fig.8) are making with 
north direction, confirms our assumptions taken in the analytical 
approach in the previous section, that the middle of stance phase 
is the most appropriate time for detecting forward direction. Fig.9 
shows the average estimation of uDirect algorithm for all 
participates for each step (of carrier foot). The proposed model 
has given very good estimation in section 1 and 4 although its 
performance is degraded in section 2 and three. Typically the best 
accuracy is given after the first step and before the last one. 
Consequently, in short sections such as 2 and 3 which are less 
than 3 steps the estimations has been degraded compared to other 
sections.  

The phenomena can be explained as a result of different 
acceleration pattern at the start and end of walking, when the user 
starts to move and tries to stop respectively, compared to the rest 
of walking locomotion. Furthermore, when participants get close 
to the end of each section, they start to gradually turn for the next 
section which can also add undesirable acceleration components. 
As the result of the presence of the mentioned components the 
acceleration pattern is changed which in turn causes confusion of 
the peak detection and direction estimation algorithms.  

Overall, by estimating direction with mean error of 14.2 
degree and standard deviation of 13.3 for all fully captured steps, 
containing 120 data samples excluding the distorted first and the 
last steps, the evaluation confirms our assumptions about unique 
characteristics of the middle of stance phase for determining user 
direction. 

In comparison with other available models a system that uses 
the uDirect algorithm would have some unique characteristics 
which make it more applicable for pervasive observation.  

First, in contrast to contemporary GPS and PCA based 
models, uDirect performs independent direction estimating on 
each stride. Consequently, its predictions are prone to sudden 

changes in user direction and the process can perform almost 
simultaneously with user change of walking direction. However, 
PCA based approaches assume that during each analysis the data 
is captured when user was moving only in one direction. 
Therefore, their applications require an additional algorithm to 
identify the unidirectional walking segments and ideally will give 
a user direction at the end of each section. In case of GPS 
approach, the best accuracy obtained from the mobile phone 
embedded GPS was around 8 meters which limits the its 
acceptable estimations to only where the walking segment was 
more than 8 meters (section 1). In addition, in contrary to 
uDirect, it is well known that GPS based approaches are 
susceptible to shadowing effect of buildings and cannot be used 
for indoor applications.  

Lastly, by developing a basic direction detection system 
based on uDirect algorithm and analyzing our experimental data 
as is shown in fig.10, table.1 and table.2, our initial inspections 
show that our approach has given more accurate and reliable 
results compare to standard GPS headings and a PCA based 
approaches from [15]. The results and representations are 
described below. 

Since PCA based model predictions require all data from a 
walking section to make their estimation we have averaged our 
results per each section for the sake of comparison. For this, we 
have considered all 180 data samples to investigate how accurate 
estimations performed between the first and the last step can 
mitigate the less accurate estimations at these steps. From fig.11 
it can be observed that for the majority of sections (1, 2 and 4) the 
uDirect algorithm outperform the PCA based algorithm. 
However, the accuracy of direction estimations of both 
algorithms along shorter sections, has significantly degraded 
compared to the longer sections and here the PCA based 
approach has shown better performance. The result behind this 
degradation of accuracy lies in the fact that shorter path contains 
only two steps which means the results are mainly generated 
from distorted pattern of first and last steps.  

It worth noting the accuracy of detecting stance phases with 
peak detection algorithm is dependent on the window size of 
averaging filter. For some participants changing the window size 
to 5 samples has significantly improved the overall accuracy. In 
fact, a proper window size seems to be dependent on the 
magnitude of acceleration during walking. However, in this study 
our aim was to demonstrate the feasibility of implementing such 
system and finding the optimum window size has remained an 
open issue for further studies. Keeping the length of window size 
equal to 10 for a deterministic model the mean error of different 
methods for each section are provided for comparison in Table.1. 
Although we have not implemented an optimum window size the 
presented results in table.1 confirm that the uDirect approach is 
still accurate when distances are long enough (typically for more 
than 2 steps).  

Similar to [15], it is also interesting to compare the 
performance of our developed technique with standard GPS 
based model when estimating the user direction on our baseline 
trajectory. Since the best GPS prediction is considered to be for 
distance more than 8 meters, we have focused our comparison 
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only on estimations of section 1. The presented results in table.2 
shows the difference between mean error and standard deviation 
of predictions of GPS headings with the model from [15] and 
uDirect. Here a positive value stands for bigger mean error or 
standard deviation. It can be inferred from this table that uDirect, 
when averaged per step, had the most accurate and reliable 
predictions and although averaging per section has slightly 
reduced the accuracy, it still remains more reliable than GPS and 
outperform the conventional PCA based approach. 

 
Figure 9.   The baseline and uDirect model estimations when is averaged for 

each step. A window of 10 samples is used for average filtering. Despite of the 

first and the last steps of each section by expoliting  acceleration  samples at the  
middel of stance phase, uDirect algorithm  has given  accurate estimation of the 

user direction. 

 
Figure 10.  The base line and estimated directions of the trajectory path from 

model from [15] and uDirect estimations averaged per section. Although , the 
predictions are degraded in shorter sections from 9th  to 13th step, uDirect has 

provided  more accurate predictions for other sections. 

TABLE I.  ALGORITHMS PERFORMANCE 

TABLE II.  PERFORMANCE COMPARISON WITH GPS APPROCH 

Technique 
Mean error 

(Degree) 
Standard deviation 

Model from [15] +7.999 +1.253 

uDirect(averaged per 
section) 

+0.162 -0.603 

uDirect (averaged per step) -10.5 -11.8 

VI.   CONCLUSION AND FUTURE WORK 

As basic requirement of a ubiquitous observer a system has to 
be able to detect the direction of user with minimum user 
involvement and be flexible enough to gracefully handle the 
changes in device orientation to minimize user involvement. As 
the first step towards this goal we have presented uDirect, an 
approach to determine a user’s facing direction with a mobile 
phone, regardless of the mobile phone’s orientation. uDirect 
calibrates the measurements of the arbitrary orientated mobile 
phone and performs direction estimation based on acceleration 
pattern of a human during walking locomotion.  

During development of our direction detection approach we 
have modeled the acceleration resulting from the movement of 
femur bone during walking locomotion. By considering 
physiological characteristics of a human’s walking pattern we 
have shown that the horizontal samples during the middle of the 
stance phase are the most informative samples about a user’s 
forward direction, when the mobile device is placed into user’s 
trouser pocket. 

Our evaluations of the algorithm with a simple proof of 
concept implementation confirmed the assumptions of our 
analytical modeling concerning the special characteristics of 
stance phase for direction estimation. In addition, our initial 
evaluation has shown that the proposed approach outperforms the 
conventional use of GPS and PCA based techniques when 
samples are taken from more than 2 steps of walking. However, 
in shorter sections the performance of the model is degraded due 
to the change in the pattern of walking acceleration. uDirect 
estimations are robust to shadowing effects for indoor 
applications (in contrast to GPS approach) and flexible to 
frequent change of user direction during walking (in contrast to 
PCA based models). We are currently working on adaptive 
adjustments of the filtering window size to improve the peak 
detections. In addition, in order to improve the performance in 
shorter sections and also reducing the power consumption as a 
result of using both magnetometer and accelerometer, we are 
working on an additional magnetic field tracking scheme. During 
such scheme once the user direction is recognized in a section 
with proper length, the further estimations are made by simply 
tracing the variation of magnetometer sample. The scheme should 
be able to repeat the direction estimation procedures whenever 
the device orientation in stationary mode is changed (e.g. the user 
has used the phone).   

The proposed methodology for direction estimation can be 
further extended to cover other positions of the device in 
proximity of other segments of body by considering the 
movement pattern of corresponding body segments. In this 
regard, our initial inspection has shown successful results when a 
modified version of uDirect was implemented for the chest 
pocket position. Other common positions of mobile devices, such 
has handbags, that are commonly used by female users are to be 
further investigated in our work.  

Finally, there are a various different areas to which our 
algorithm can be applied. For example, it is easy to develop dead 
reckoning applications on mobile phones by combining uDirect 

Techniques 
Mean error (Degree) 

Section1 Section 2 Section 3 Section 4 

Model from 

[15] 
26.7 37.6 10.5 37.0 

uDirect(average

d per section) 
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capabilities of facing direction estimation with step recognition 
techniques. The latter ones can take advantage of information 
about subsequent heel strike and toe off moments that our 
algorithm derives during direction estimation. Furthermore, many 
applications would benefit from the awareness of the facing 
direction of a user for the inference of user context, in order to 
adequately render human to computer interaction in distributed 
smart environments. 
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