
Science in China Series F: Information Sciences

© 2008 SCIENCE IN CHINA PRESS

 Springer

Received June 3, 2008; accepted August 21, 2008
doi: 10.1007/s11432-008-0153-7
†Corresponding author (email: wzl@cernet.edu.cn)
Supported by the National Basic Research Program of China (973 Program) (Grant No. 2003CB314801), and the National Natural Science Foun-
dation of China (Grant No. 60572082)

Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

www.scichina.com
info.scichina.com

www.springerlink.com

A formal method to real-time protocol
interoperability testing

WANG ZhiLiang1,3†, YIN Xia2,3 & JING ChuanMing2,3

1 Network Research Center, Tsinghua University, Beijing 100084, China;
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
3 Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China

Interoperability testing is an important technique to ensure the quality of imple-
mentations of network communication protocol. In the next generation Internet
protocol, real-time applications should be supported effectively. However, time
constraints were not considered in the related studies of protocol interoperability
testing, so existing interoperability testing methods are difficult to be applied in
real-time protocol interoperability testing. In this paper, a formal method to real-
time protocol interoperability testing is proposed. Firstly, a formal model CMpTIOA
(communicating multi-port timed input output automata) is defined to specify the
system under test (SUT) in real-time protocol interoperability testing; based on this
model, timed interoperability relation is then defined. In order to check this relation,
a test generation method is presented to generate a parameterized test behavior
tree from SUT model; a mechanism of executability pre-determination is also inte-
grated in the test generation method to alleviate state space explosion problem to
some extent. The proposed theory and method are then applied in interoperability
testing of IPv6 neighbor discovery protocol to show the feasibility of this method.

protocol testing, interoperability testing, real-time testing, test generation, timed input output automata
(TIOA)

1 Introduction

Recently, as the emergence of new techniques such as P2P and media steaming, more real-time
requirements should be satisfied in Internet applications. Compared with the current Internet, in
the next generation Internet, network protocols supporting real-time applications should require
stricter timing control capability. In such network protocols with real-time requirements, not only
input and output actions, but also time constraints of I/O behaviors, should be carefully consid-
ered.

1724 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

In order to ensure the quality of network protocol implementation, protocol testing techniques
are widely used. Conformance testing is a basic method of protocol testing, which can be used to
test whether an implementation conforms to its protocol specification. In the field of confor-
mance testing, many literatures have been published, such as international standard ISO/IEC
9646[1], which has shown the mature protocol conformance testing theory and methodology. As
the complement of conformance testing, interoperability testing is often used to test whether two
or more protocol implementations can communicate with each other correctly and inter-operate
as a whole system to perform functions specified in protocol specifications. Interoperability test-
ing is necessary because 1) it is difficult to perform exhaustive conformance testing, that is, a
conformance test suite can hardly ensure 100% test coverage; 2) many optional features may be
contained in network protocols, and moreover, network devices vendors perhaps have their own
extensions, so if two implementations implement different options, problems on interoperability
may occur. As the network scale grows, the version of network protocols will be updated con-
tinuously and devices vendors will also release their newer network devices continuously. Be-
cause of more differences of various implementations for the same protocol in network, protocol
interoperability testing will become more important. Interoperability testing is being performed
by many international standardization organizations, e.g., IETF (Internet Engineering Task Force)
and ETSI (European Telecommunications Standards Institute) in their process of protocol design.

A lot of work has been done in the area of formal interoperability testing[2―14], and a series of
interoperability testing framework and test generation method have been proposed. In most of
real-life network protocols, not only the behaviors of input and output, but also their time of oc-
currence should be considered. In order to test such real-time protocols, we should check if the
I/O behaviors act under the specified time constraints. Unfortunately, in the previous studies, no
timing factors have been considered in interoperability testing. So these methods are difficult to
be applied in interoperability testing of real-life network protocols. In the field of real-time sys-
tem testing, many methods of conformance testing have been proposed[15―21]. Ref. [22] studied
interoperability test generation of time dependent protocols; however, no theoretical framework
of real-time protocol interoperability testing was established.

In this paper, we intend to propose a formal framework of real-time protocol interoperability
testing. Firstly, a formal model CMpTIOA (communicating multi-port timed input output auto-
mata) is defined to specify the system under test (SUT) in real-time protocol interoperability
testing; timed interoperability relation is then defined based on this model. After that, a test gen-
eration method guided by timed interoperability relation is presented to generate a parameterized
test behavior tree, in which parameters are used to represent the relative time intervals between
I/O behaviors. At last, the proposed theory and method are then applied in interoperability testing
of IPv6 neighbor discovery protocol, which has complex time constraints, to show the feasibility
of our method.

The rest of the paper is structured as follows. Section 2 introduces related work. Section 3 de-
scribes the whole process of protocol interoperability testing. In section 4, the formal models
used in real-time protocol interoperability testing are defined. Section 5 defines the timed inter-
operability relation based on the formal model. In section 6, a test generation method is then pre-
sented. Section 7 applies the proposed theory and method in real-life network protocol testing.
Conclusions and future work are given in section 8.

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1725

2 Related work

In the research field of formal interoperability testing, the commonly used formal models can be
classified into two categories: FSM (finite state machine)[23] and IOTS (input output transition
system)[24]. In the aspect of formal framework of protocol interoperability testing, ref. [2] pro-
posed a TTCN2-based framework for interoperability testing; ref. [3] presented a formal frame-
work based on IOTS model and defined several test architectures and interoperability relations to
guide test generation.

Interoperability test generation, whose purpose is to generate test sequences from formal
model of system under test, is an important issue in this field. The basic idea of test generation
method based on FSM is to model each protocol entity as an FSM and the interoperability system
under test as a CFSM (communicating FSMs), and then generate test sequences using global state
reachability analysis techniques[4]. Based on this idea, a series of test generation techniques have
been proposed[5―10]: ref. [5] presented a systematic test suite derivation method for protocol con-
trol portion interoperability testing based on single stimulus principle; ref. [6] analyzed the fault
coverage of interoperability test suite generated with the method of ref. [5] and proposed an en-
hanced test generation method to improve fault coverage; ref. [7] developed an automatic test
generation method considering both control and data portion of protocols; ref. [8] extended the
method in ref. [5] based on multiple stimuli principle to improve test coverage, but this method
suffers from state space explosion problem; ref. [9] studied test generation method based on mul-
tiple stimuli model more deeply and presented two methods to generate tests of checking
live-locks and interoperability; ref. [10] presented an interoperability test generation method
based on communicating multi-port FSMs (CMpFSM) model and generated distributed test se-
quences on distributed test architecture. Different from the above literatures, ref. [11] focused on
interoperability testing of VoIP protocol system and proposed an efficient method that only con-
sidered the specification of one protocol entity. With this method, there is no need to generate
global state reachability graph so that state space explosion problem can be alleviated. But this
method, without considering the composition of all protocol entities in interoperability system, is
essentially still a conformance testing method. Another category of test generation methods is
based on IOTS[12―14], basically following the ideas of ref. [3]. Ref. [12] added “quiescence man-
agement” in IOTS model, and used suspensive IOTS as system model. Refs. [13,14] proposed an
interoperability test generation method based on test purpose, which avoids state space explosion
problem. However, in all these studies of interoperability testing, time constraints in protocols are
not considered, so existing theory and methods are difficult to be applied in real-time protocol
interoperability testing.

In the field of real-time system testing, many methods of conformance testing have been pro-
posed. In most of these methods, Timed Automaton[25] or its variants have been used to specify
real-time system. Refs. [15,16] converted timed automaton to grid automaton, and applied exist-
ing test generation methods for FSM to it. But this method suffers from state space explosion
problem. Ref. [17] presented a test generation method based on executability decision. Refs.
[18―21] defined timed conformance relations, and proposed corresponding test generation meth-
ods. But existing work only considered conformance testing of real-time system, and real-time
protocol interoperability testing has not been studied.

Compared with the existing work, this paper considers time constraints in protocol interopera-

1726 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

bility testing, applies real-time system model to specify protocol behaviors and presents a formal
method to real-time protocol interoperability testing.

3 Basic process of interoperability testing

As one kind of protocol testing, the basic process of interoperability testing is similar with con-
formance testing[1]. Figure 1 shows the whole process of interoperability testing. There are m
protocol entities in an interoperability system under test. The left branch represents the imple-
mentation (development) process of protocol entities. After this process, a set of possible protocol
implementations correspond to each protocol specification. Fetching out one implementation
from each set, we get a system under test which is composed of m implementation under test
(IMP1, IMP2, …, IMPm). The right branch represents the testing implementation process. In the
process of test generation, abstract interoperability test suite can be generated from system speci-
fication composed of several protocol specifications. Then, in the process of test implementation,
abstract interoperability test suite can be converted into executable test suite. Test execution is
just the process that test system interacts with system under test based on test suite. At last, test
verdict will be obtained from the results of test execution. As the testing basis, interoperability
relation between implementations and specifications is the guideline in the whole process. In the
process of test generation, the abstract test suite should be generated according to interoperability
relation. Corresponding to the above process, section 4 of this paper defines a formal model to
specify system under test; section 5 defines timed interoperability relation based on the formal
model; section 6 studies interoperability test generation.

Figure 1 Progress of protocol interoperability testing.

4 Formal model

This section presents the formal models used in real-time interoperability testing. We specify the

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1727

interoperability system under test as a system of CMpTIOA (communicating multi-port timed
input output automata). A simple real-time communication protocol is then given and specified
using CMpTIOA model as the example in the whole paper.

4.1 Multi-port TIOA

Timed automaton[25] is a widely-used model of real-time system. TIOA (timed input output
automata)[15] is a variant of timed automaton, which distinguishes whether an action is input or
output. To specify an entity interacting with one or more other entities, we extend TIOA to
multi-port TIOA as follows.

Definition 1. Multi-port timed input output automaton (MpTIOA)
A timed input output automaton with n ports (denoted as np-TIOA) M has n ports communi-

cating with environment, which are denoted as P1, P2, …, Pn respectively. M is a 5-tuple (L, Act,
l0, C, T), where,

● L is a finite set of locations; l0 ∈ L is the initial location;
● Act=I∪O: I=I1∪I2 …∪ ∪In is the set of input action symbols, where Ik (k=1,2,…,n) is the

set of input action symbols on port Pk. An input action symbol occurring on port Pk can be de-
noted as Pk?a (a∈Ik). O=O1∪O2 …∪ ∪On is the set of output action symbols, where Ok

(k=1,2,…,n) is the set of output action symbols on port Pk. An output action symbol occurring on
port Pk can be denoted as Pk!b (b∈Ok).

● C is a finite set of clocks {t1, t2, …, t|C|}, where, |C| is the number of clocks; vi∈R+

(non-negative real numbers) is the clock value of ti; 1 2 | |(, , ,)Cv v v=v denotes a clock valua-

tion.
● T is the set of transitions: (, , , ,)l a P R l T′ ∈ , where, ,l l L′∈ are the source and destination

locations; a∈Act is an input or output action symbol; P is the time constraint, which is a Boolean
conjunction over linear inequalities P(v). The subset R ⊆ C specifies the clocks to be reset to 0.

The transition (, , , ,)l a P R l T′ ∈ can be also denoted as []/ .a P Rl l′⎯⎯⎯→

In the model, we assume that time constraints of transitions are all in the format of (),iv ~ d∧

where, ~∈{<, >, ≤, ≥, =}, and d∈R+. We distinguish two urgency types[26] of transitions im-
plicitly: 1) Lazy, for transitions with input actions, means that input actions may not be taken be-
cause they are controlled by environment (such a property is also called “Unforced Inputs”); and
2) Delayable, for transitions with output actions, means that the corresponding output action must
be taken during such transitions’ enabling time.

The semantics of MpTIOA M=(L, Act, l0, C, T) can be defined as a TIOTS (timed input output
transition system) 0(, , ,),S s Act → where S is the set of states, state (,) ,s l S= ∈v where l L∈

is a location, 1 2 | |(, , ,)Cv v v=v is a clock valuation; 0 0 0(,)s l= v is the initial state;

()S Act S+→⊆ × ×∪R is the set of transitions. There are two types of transitions: Timed transi-

tions and Discrete transitions. Timed transitions (,) (,)dl l ′⎯⎯→v v model time progress, where

d +∈ R is the delaying time, (, , ,),d d d′ = + = +v v d v i.e., in this period, no input or output

transitions occur and the location is unchanged. Discrete transitions (,) (,)al l′ ′⎯⎯→v v corre-
spond to execution of the transition (, , , ,),l a P R l′ where P is satisfied by v(P(v)=true) and ′v

1728 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

is obtained by updating v according to R. We define the clock valuation updating function
()RUpdate v as follows.

Definition 2. Clock valuation updating function
R ⊆ C specifies the clocks to be reset to 0. For 1 2 | |(, , ,),Cv v v=v 1 2 | |(, , ,),Cv v v′ ′ ′ ′=v the

clock valuation updating function is defined as

def
(),

()
0().

i i
R i

i

v t R
Update v

t R
∉⎧

′ ′= = = ⎨ ∈⎩
v v

In MpTIOA model, timed traces are used to describe the external observable behaviors of the
model. We now define some related operators about timed traces.

Definition 3. Timed traces in MpTIOA1)
Assume the semantics model of a MpTIOA M is TIOTS A= 0(, , ,),S s Act → let

,i Actμ +∈ R∪ , , ,is s s S′ ∈ *() ,Actσ +∈ R∪

(1) 1 1 2
def 0 1 0 1, , , .n n

n ns s s s s s s s s sμ μ μμ μ′ ′⎯⎯⎯→ = ∃ = ⎯⎯→ ⎯⎯→ ⎯⎯→ =

(2) 1 2
def 0 1 0 1 1 2, , , , .n

n n ns s s s s s s s s sμμ μσ σ μ μ μ′ ′⎯⎯→ = ∃ = ⎯⎯→ ⎯⎯→ ⎯⎯→ = =

(3) def , .s s s sσ σ′ ′⎯⎯→ = ∃ ⎯⎯→ σ is a timed trace.

(4) def after { | }s s s sσσ ′ ′= ⎯⎯→ is the set of states which can be reached from s after the
sequence of actions σ.

(5) def 0 after after A sσ σ= is the set of all states reachable from the initial state s0 of A.

(6) def() { | , }out s O s s sαα + ′ ′= ∈ ∃ ⎯⎯→R∪ is the set of all possible outputs from the state s.

(7) def() ()
s S

out S out s
∈

= ∪ is the set of all possible outputs from the state set S.

(8) *
def() { () | , }ttraces s Act s s sσσ + ′ ′= ∈ ∃ ⎯⎯→R∪ is the set of possible observable timed

traces from s.
In a timed trace, two consecutive delaying actions can be combined, that is, if 1 2

1 2 ,d ds s⎯⎯⎯→

then 1 2()
1 2.d ds s+⎯⎯⎯⎯→ Such property is called “time additivity”. So a timed trace can be reduced

to the format of 0 0 1 1 (,).n n i id d d Act dσ α α α α += ∈ ∈ R In fact, di is just the relative time

interval between observable actions 1iα − and iα . In the rest of this paper, we only consider
such timed traces.

To test interoperability, we make an assumption that both specifications and implementations
are input-complete, that is, they can accept any inputs at any locations, formally, ,s S∀ ∈

, .ii I s∀ ∈ ⎯⎯→ To make an MpTIOA model input-complete, some transitions of self-loop can be
added to it, which indicates that the specification ignores the unspecified input actions.

Projection of timed traces is defined as follows.
Definition 4. Projection of timed traces

1) In this paper, we do not intend to consider unobservable internal actions in models. To consider the unobservable internal

actions, some of these definitions can be only simply modified by replacing “ → ” with “ ⇒ ”.

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1729

For a TIOTS, let a timed trace *() ,Actσ +∈ ∪ R ,Actα ∈ ,d +∈ R an I/O action symbols
set X.

(1) The projection of σ on X is denoted as σ/X. σ/X is defined as follows recursively (where ε
represents null).

(),
(/)(),

/
(/)(and),
/ (and).

d X d
X

X X
X X

ε σ ε
σ σ σ

σ
α σ σ α σ α
σ σ α σ α

=⎧
⎪ ′ ′⋅ = ⋅⎪= ⎨ ′ ′⋅ = ⋅ ∈⎪
⎪ ′ ′= ⋅ ∉⎩

(2) def() { | (), / },Xttraces S ttraces S Xσ σ σ σ′ ′= ∀ ∈ =

(3) def() ()Xout S out S X= ∩ is the projection of out(S) on X.
In the above definition, intuitively, the projection of a timed trace on an I/O action symbols set

is just to retain action symbol elements in the set and get rid of the other elements not in the set.

4.2 Communicating multi-port TIOA

To specify an interoperability system under test including two or more entities, we introduce a
formal model communicating multi-port timed input output automata (CMpTIOA). In the model,
MpTIOA can model the single entity, and these entities can communicate with each other via
channels between different MpTIOAs.

Definition 5. Communicating multi-port timed input output automata (CMpTIOA)
A Communicating multi-port timed input output automata is a 2-tuple (M, Ch), where,
(1) M={M1, M2, …, Mm} is a finite set of m MpTIOAs;
(2) Ch = {Cij |i, j = 1,2,…, m ∧ i ≠ j} is a finite set of channels between MpTIOAs: Cij∈Ch

represents the communicating channel from MpTIOA Mi to Mj.
In the definition of CMpTIOA, channels are all unidirectional. Intuitively, the semantic of

channels is that the output of MpTIOA Mi can be transferred via channel Cij to be the input of Mj.
To explicitly specify how the entities in CMpTIOA are connected to each other, i.e., the abstract
network topology of system under test, we further define port connection relations as follows.

Definition 6. Port connection relations of CMpTIOA
Port connection relation R of CMpTIOA (M, Ch) is an m-tuple: R=(R1, R2,…, Rm), where, Rk

(k=1,2,…,m) is the set of port connection relations for all ports of MpTIOA Mk: Rk={r1, r2,…, rn},
n is the port number of Mk, and ri (i=1,2,…, n) can be in the format of 1) Pi -> Mj:Ph(j≠k), which
means that the port Pi of Mk is connected to the port Ph of Mj via the channel Ckj; 2) Pi -> env,
which means that the port Pi of Mk is connected to external environment of the system.

We further denote the ports communicating with external environment as “external ports”; and
others as “internal ports”. Inputs/outputs on external/internal ports are “external/internal inputs/
outputs”.

Definition 7. Related functions
1. Port(IO_symbol, i): returns the port index of IO_symbol in the protocol entity Mi;
2. ΜI(i, j): returns the connected entity index of the other side for the port Pj of the entity Mi;
3. ΡI(i, j): returns the connected port index of the other side for the port Pj of the entity Mi.

4.3 A simple real-time communication protocol

We specify a simple real-time communication protocol using MpTIOA as an example in this pa-

1730 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

per. Figure 2(a) shows the MpTIOA specification of such a protocol, which is a 2p-TIOA with
two ports (U and l) and two clocks (t1 and t2). IU = {A}, OU = {B, C}, Il = Ol = {a,b,c}. The initial
location is ‘0’. The protocol can be specified informally as follows:

Figure 2 A simple real-time protocol specified by using MpTIOA. (a) Specification of a MpTIOA; (b) a timed trace σ; (c) an
input-complete specification.

(1) Initiate a connection to a remote entity actively. If an input ‘A’ is received from port U in
the initial location 0, the protocol entity should initiate a connection to a remote entity actively; In
this transition (0,U?A, true,{t1, t2},1), the two local clocks t1 and t2 should be reset to 0. Within 2
time units, an output ‘a’ should be sent from port l to remote entity, and the clock t1 should be
reset to 0 (transition (1,l!a,[t1<2],{t1},2)). After that, in location 2, three cases should be consid-
ered:

a) Receiving an input ‘b’ from port l in time, i.e., transition (2,l?b,[t1≥1, t2<2],{},3), indicates
that the connection can be established.

b) Receiving an input ‘b’ from port l too late (long delay), i.e., transition (2,l?b,[t2≥2],{t1},4),
indicates that the connection cannot be established.

c) Receiving an input ‘c’ from port l, i.e., transition (2,l?c,true,{t1},4), indicates that the con-
nection cannot be established.

If the connection can be established (i.e., the current location is 3), an output ‘B’ should be sent
to port U, i.e., transition (3,U!B,[2<t2<3],{t1,t2},0); else, if the connection cannot be established
(i.e., the current location is 4), an output ‘C’ should be sent to port U, i.e., transition (4,U!C,
[t1<1],{t1,t2},0).

(2) Respond a connection request from a remote entity passively. If an input ‘a’ is received
from port l in the initial location 0, i.e., transition (0,l?a,true,{t1},5), the protocol entity should
respond to the connection request from a remote entity passively. Two cases should be consid-
ered:

a) Sending an output ‘b’ to port l, i.e., transition (5,l!b,[1<t1<3],{t1,t2},0).
b) Sending an output ‘c’ to port l, i.e., transition (5,l!c,[t1<3],{t1,t2},0).
Considering a timed trace 0.3 1.5 ,A a bσ = ⋅ ⋅ ⋅ ⋅ its corresponding transition sequence in

TIOTS is shown in Figure 2(b). We also have s0 after σ = {(3,(1.5,1.8))}, out(s0 after σ)=(0.2,1.2)
and 0(after 0.2) { } (0,1). out s Bσ ⋅ = ∪ Figure 2(c) shows an input-complete specification after

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1731

adding self-loops to Figure 2(a).
Figure 3 shows an example of a system under test specified by CMpTIOA, which is a real-

time communication system containing two real-time protocol entities. M={M1, M2}, Ch={C12,
C21}. The specifications of M1 and M2 are both the MpTIOA of Figure 2(c). We use subscript 1, 2
on ports and actions to distinguish them. Port connection relations are (R1, R2), where
R1={U1->env, l1->M2:l2}, R2={U2->env, l2->M1:l1}.

Figure 3 An example of CMpTIOA.

5 Timed interoperability relation

Before discussing interoperability relation, at first, we assume that all channels between protocol
entities are reliable, i.e., lossless and non-delayed, and FIFO (first in first out) queues. In interop-
erability testing studied in this paper, system under test should be isolated and tested in a “clean”
and separate environment. Thus, in this situation, if transfer time of I/O symbols in communicat-
ing channels can be neglected compared with time constraints in protocols, it is reasonable to
assume that channels are lossless and non-delayed. For example, when the lower layer network of
protocol entities is Ethernet, in the same LAN (local area network), transfer time of I/O symbols
between protocol entities is in the level of milliseconds (ms); thus, if time constraints in protocols
are in the level of seconds (s), the above test assumption can be considered reasonable.

Under this assumption, the transfer time of I/O symbols in channels can be approximatively set
to 0. When an output symbol occurs on one protocol entity, it will be transferred to the other side
immediately via the channel and become an input symbol of the other entity. So communication
between the two protocol entities can be considered as synchronous communication. Based on
the TIOTS semantics of MpTIOA, the synchronous composition of CMpTIOA is defined as fol-
lows.

Definition 8. The synchronous composition of CMpTIOA
In a system of CMpTIOA (M, Ch), the corresponding TIOTS of each MpTIOA is Ai=

0(, , ,)i i i iS s Act → (Acti=Ii∪Oi). The synchronous composition of CMpTIOA (M,Ch) is a TIOTS

0(, , ,),S s Act → where,

(1) The set of states is 1 2 .mS S S S⊆ × × × The initial state is 1 2
0 0 0 0(, , ,).ms s s s=

(2) The set of actions is Act=Act1∪Act2∪…∪Actm.
(3) The set of transition → is defined as follows:
Rule 1. External actions: a is an external action of Mi

(, ,)
(, (, (,))),

(, ,) , (/)

i
ii i

i i

s a s
a Act i Port a i env

s a s s s s s
ΜΙ

′ ∈→
∈ =

′ ′ ′∈→ =

1732 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

where, (/)i is s s′ represents that in the global state s, the local state si is changed to is′ , and other
local states keep unchanged.

Rule 2. Internal actions: a is the output action of Mi, and a is also the input action of Mj at
the same time, that is, a is in the channel Cij

(, ,) (, ,)
(, , (, (,))),

(, ,) , (/ , /)

ji
i i j j i j

i i j j

s a s s a s
a O a I i Port a i j

s a s s s s s s s
ΜΙ

′ ′∈→ ∧ ∈→
∈ ∈ =

′ ′ ′ ′∈→ =

where, (/ , /)i i j js s s s s′ ′ represents that in the global state s, the local state si is changed to is′ ,

the local state sj is changed to js′ , and other local states keep unchanged.

Rule 3. Time delay:

1 2

(, ,) (1,2, ,)
(, ,) , (, , ,)

i
i i

m

s d s i m
s d s s s s s

′ ∈→ =
′ ′ ′ ′ ′∈→ =

(d∈R+).

The interoperability relation describes the conditions to be satisfied by the implementations
that constitute the system under test. If the interoperability relation is satisfied, we consider that
components of the system can be interoperable with each other. We define timed interoperability
relations based on CMpTIOA model as follows. In this paper, similar to ref. [3], only specifica-
tion-based interoperability relations will be considered. Firstly, we give the definition of unilat-
eral timed interoperability relation. Intuitively, unilateral timed interoperability relation indicates
that in the process of interactions between protocol entities of system under test, projection of the
observable behaviors on one protocol entity is foreseen by the specification of this protocol entity.
According to the intuitive meaning, we use the semantics of timed traces to define such an inter-
operability relation. Let the specifications of protocol entities in a system of CMpTIOA be S1,
S2,…,Sm respectively, and their corresponding implementations be I1, I2,…,Im. We denote the syn-
chronous composition of I1, I2,…,Im as Com(I1,I2,…,Im).

Definition 9. Unilateral timed interoperability relation (for Ii)

1 2 1 1 def 1 2(, (, , , , , ,)) (), ((, , ,)),i i i m i i mI I I I I I ttraces S ttraces Com I I Iσ σ− + = ∀ ∈ ∀ ∈R

1 2/ ((, , ,) after) (after),i
Ii

I
i m i iAct

Act out Com I I I out Sσ σ σ σ= ⇒ ⊆

where iIAct represents the set of I/O action symbols of protocol implementation Ii. This relation
means that during the interactions of implementations in system, after any corresponding traces
in Si, the observable output behaviors of implementation Ii must be foreseen by its specification Si.
If this relation is satisfied, we say that the implementation Ii can be interoperable with other im-
plementations.

To consider the outputs of each port in Ii, this relation can also be denoted as follows.
Definition 10. Unilateral timed interoperability relation (for Ii)―considering ports

1 2 1 1 def 1 2(, (, , , , , ,)) (), ((, , ,)),i i i m i i mI I I I I I ttraces S ttraces Com I I Iσ σ− + = ∀ ∈ ∀ ∈R

1 2
1

/ (((, , ,) after) (after)),i
I Si i
j j

n
I

i m i iO O
j

Act out Com I I I out Sσ σ σ σ
=

= ⇒ ⊆∧

In this definition, n is the port number of Si, iI
jO (iS

jO) is the output set of Ii(Si)’s port Pj. This

means that the possible outputs on each port must be foreseen by its specification. In some test
architecture, some ports are possible to be inaccessible. For such test architecture, we can only

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1733

check the observable behaviors on the accessible ports for judging interoperability.
For a system under test, all implementations should be interoperable with others. So a full

timed interoperability relation can be defined as follows. This relation means that in the process
of interactions, each implementation’s behaviors must satisfy its corresponding unilateral timed
interoperability relation.

Definition 11. Timed interoperability relation tinterop

1 2 def 1 2 1 1
1

(, , ,) (, (, , , , , ,)).
m

m i i i m
i

I I I I I I I I I− +
=

= ∧tinterop R

6 Test generation

Borrowing the ideas of conformance testing generation method based on region graph[25] (a
widely-used technique to analyze real-time systems), real-time interoperability test generation
method based on region graph can be proposed. However, this method will lead to state space
explosion problem. To solve this problem, this paper proposes an interoperability test generation
method based on timed interoperability relation. The starting point of interoperability test genera-
tion is the specifications of system under test. According to the definition of timed interoperabil-
ity relation, the purpose of test generation is to find all possible timed traces on system under test
to check whether protocol implementations satisfy the conditions of timed interoperability rela-
tion. But due to the continuous model of time, the number of possible timed traces is uncountable.
In this paper, our strategy is to represent a subclass of equivalent timed traces as a typical param-
eterized timed trace. In addition, in order to prevent the unnecessary constructions of inexecu-
table test cases, we also introduce a mechanism called Executability Pre-Determination: after
calculating timing conditions of parameterized timed traces, prune the must-inexecutable
branches in advance. With these methods, state space explosion problem can be alleviated to
some extent.

6.1 Algorithm

A test case of real-time protocol interoperability testing is a parameterized test behavior tree. To
generate interoperability testing, we start from the initial global state of system GS0=

1 2
0 0 0(, ,...,)ms s s to construct the test behavior tree. Leaf nodes of a test behavior tree are the ver-

dict “pass” or “fail”. For “fail” verdict, it is also necessary to indicate in which implementation
the fault is located. Other nodes represent the tester’s knowledge of the SUT’s current global
states. We define parameterized timed test behavior tree as follows.

Definition 12. Parameterized timed test behavior tree
A parameterized timed test behavior tree can be described as a behavior notation:

B =def pass | fail | (α,d)[T(d)];B | B+B | ∑Β.
In a parameterized timed test behavior tree, each edge is labeled as a test event (α,d)[T(d)], in

which, α is an input/output action symbol, d is a parameter, which means the relative time inter-
val between this event and its last test event, T(d) is time constraints of parameters.

Figure 4 shows a typical procedure of constructing a test behavior tree, which extends tests
from a global state GS (the reachable global state from GS0 after a timed trace σ). From it, be-
haviors of the tester can be 1) observing outputs; 2) applying an external input to SUT; 3) termi-
nating the tests and setting a verdict.

1734 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

Figure 4 Procedure of constructing a parameterized timed test behavior tree.

The test generation algorithm is shown as follows.
Algorithm 1. Timed interoperability test generation
Input: a system specification described by a CMpTIOA {S1, S2,…, Sm}, Si=(Li, Acti, l0

i, Ci, Ti)
(i=1,2,…,m), where, Acti=Ii∪Oi.

Output: Parameterized timed test behavior trees
0
.GSt

Initial values: current global state GS=GS0= 1
0 0 0(,..., ,...,).i ms s s Trace time constraints

Cond(GS0) = true.
For current global state GS=(s1,...,si,...,sm), where (,)i i is l= v (i =1,2,…,m), apply the follow-

ing three rules recursively (k is the recursive level):
1. Observing outputs
Consider the implementation Ii, for :i iOα∀ ∈

(1)

{ : (,)[()]; | (, , , , ') , (, (,)) ;

 ' (), () () ()}

 : { : (,)[()]; | (, , , , ') }

i i i i i i i i i i
i k k GS

i i
i k

i i i i i i i i i
GS i k k

I d P true t l P R l T i Port i env

GS UpdateS GS Cond GS Cond GS P

t I d P false fail l P R l T

α α ΜΙ α

α α

′+ = ∃ ∈ =

′= = ∧ +

= + = ∃ ∈

∑

∑

v d

v d

v d

 { : (,); | (, , , , ') }

 { : (,)[()]; : (,0)[()]; |

 (, , , , ') , (, (,)) and ,

i i i i i i i
i k

i i i i j j
i k k j k GS

i i i i i i i i j

I d fail l P R l T

I d P true I P true t

l P R l T j i Port i env I

α α

α α

α α α

′

+ ¬∃ ∈

+ + = + =

∃ ∈ = ΜΙ ≠ ∈

∑
∑ v d v d

(2)
, (, , , , ') ; ' (),

 () () () ()}.

j i j j j j
i j

i i j j
k k

l P R l T GS UpdateS GS

Cond GS Cond GS P P

α∃ ∈ =

′ = ∧ + ∧ +v d v d

Here, dk is uncontrollable parameters, and k is the recursive level.
2. Applying an external input to SUT.

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1735

Consider the implementation Ii, for i iIβ∀ ∈ and iβ is an external input:

(1)

: { : (,)[()]; | (, , , , ') , (, (,)) ;

 ' (), () () ()}.

i i i i i i i i i i
GS i k k GS

i i
i k

t I d P true t l P R l T i Port i env

GS UpdateS GS Cond GS Cond GS P

β β ΜΙ β′= + = ∃ ∈ =

′= = ∧ +

∑ v d

v d

Here, dk is controllable parameters.
In the cases 1 and 2, if Cond(GS′) is evaluated to be false, the corresponding branch should be

pruned from the test behavior tree immediately.
3. Stop testing at any time and set pass verdict.
tGS := pass
In the above three rules, the global state after extending GS is GS′. We denote GS′ as
1(,..., ,...,).i ms s s′ ′ ′ The global state updating functions are defined as follows:

 (1)
def

(, ()),
' ()

(,) ().

i
i i i

k
i h h h

k

s l Update
GS UpdateS GS

s l h i

⎧ ′ ′= +⎪= = ⎨
′ = + ≠⎪⎩

R v d

v d
 (1)

 (2)
, def

(, ()),

' () (, ()),

(,) (,).

i

j

i i i
k

j j j
i j k

h h h
k

s l Update

GS UpdateS GS s l Update

s l h i j

⎧ ′ ′= +
⎪⎪ ′ ′= = = +⎨
⎪

′ = + ≠⎪⎩

R

R

v d

v d

v d

 (2)

We illustrate Algorithm 1 in detail. Consider the three cases as follows:
Case 1. Observing outputs. We consider the implementation Ii. When an output action iα

is observed after dk time units, we label the corresponding branch from GS as (,iα dk).

Theorem 1. From global state GS=(s1, s2,…,sm)((,)i i is l= v), an output action iα is ob-

served after dk time units ((,iα dk)). Then,

1) If (, , , , ')i i i i i il P R l Tα∃ ∈ (i.e., Si has a transition with the output action iα from location

li) and ()i i
kP +v d = true, then the observation (,iα dk) will not violate tinterop relation defined

in Definition 11, that is, (,iα dk) is a valid output.

2) Else, tinterop relation will be violated, that is, (,iα dk) is an invalid output.
Proof. See Appendix A.
According to Theorem 1, a set of equivalent timed traces can be represented as a typical pa-

rameterized timed trace (,iα dk). Whether timed traces are equivalent depends on whether timed
traces satisfy timed interoperability relation. So we can extend the test behavior tree from GS ac-
cording to the specification Si(i=1,2,…,m) as shown in Figure 4: For each transition from li:
(, , , ,) ,i i i i i il P R l Tα ′ ∈ from GS, add a branch of the valid output Ii: (,iα dk)[()i i

kP +v d = true];

and for all transitions with the same output iα , add a branch of the invalid output Ii: (,iα

dk)[()i i
j kj

P∧ +v d =false], where ()i i
j kj

P∧ +v d =false means that time constraints of all transi-

tions with the output iα are false. Moreover, a branch of the invalid output “other” should also
be added. For branches of not violating tinterop relation, ending nodes GS′ can be calculated by

1736 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

function (1)
iUpdateS . For branches of violating tinterop relation, ending nodes are labeled as ver-

dict “fail(i)”.
After adding branches of satisfying tinterop, a further step should be taken: if the output action

iα is an internal output ((, (,))ij i Port i envΜΙ α= ≠), it will be transferred to be the input of
another entity Ij. Since we have made an assumption of lossless and non-delayed channels, the
transferring time can be set to 0. For each transition with the input action iα from location jl

of Sj: (, , , ,) ,j i j j j jl P R l Tα ′ ∈ we add a branch labeled as Ij: (iα , 0)[()j j
kP true+ =v d].

Ending node GS′ of such a branch can be calculated by function (2)
, .i jUpdateS The above calcu-

lating procedure corresponds to the rule 2 of Definition 8.
From these ending nodes, we can continue to extend the test behavior tree recursively.
In Case 1, dk are decided by implementations under test, which are so-called uncontrollable

parameters. These parameters represent the relative time interval between one internal or external
output action and its last I/O action. Their values will be measured in the process of test execution
and they can be used to give a verdict or choose a proper branch of the test behavior tree.

Case 2. Applying an external input to SUT. When we extend the test behavior tree from GS,
if there is a transition with an external input action β i from Ii: (, , , , ') ,i i i i i il P R l Tβ∃ ∈ tester can

decide to apply β i to SUT after dk time units. We add a branch labeled as Ii: (β i, dk) [()i i
kP +v d

= true] in the test behavior tree. Here dk must be satisfied with ()i i
kP +v d =true. After execution

of this branch, the ending node representing global state can be calculated by function
(1) .iUpdateS

From these ending nodes, we can continue to extend the test behavior tree recursively.
In Case 2, the values of dk are decided by tester, so dk are called controllable parameters. These

parameters represent the relative time interval between one external input action and its last I/O
action. The values of these parameters can be randomly chosen by tester or decided by users. In
each test execution, tester can choose different values of dk.

Case 3. Terminating the tests and setting a verdict. Tester must terminate the tests at any
nodes labeled with “fail” verdict. At any other nodes, tester also can terminate the tests and set a
verdict “pass”.

Until now, we can generate a timed test behavior tree with uncontrollable and controllable pa-
rameters. To prevent the unnecessary constructions of inexecutable branches in the test behavior
tree, we also introduce the mechanism of executability pre-determination. The basic idea is that:
after extending a global state node, for each branch starting from it, we calculate timing condi-
tions of the path from root node to the branch; if the time constraints have no solutions in any
cases (the trace is must-inexecutable), then prune the branch from the test behavior tree immedi-
ately. Such a mechanism prevents the unnecessary generation of must-inexecutable traces.

To achieve executability pre-determination, Algorithm 1 records the timing conditions of the
path σ from root node GS0 to the reachable global state node GS: Cond(GS). In Algorithm 1, after
extending GS, the update function of timing conditions for a reached global state node GS′ can be
denoted as follows:
 () () (),i i

kCond GS Cond GS P′ = ∧ +v d (3)
or

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1737

 () () () ().i i j j
k kCond GS Cond GS P P′ = ∧ + ∧ +v d v d (4)

Theorem 2. Let 1 2
0 0 1 1 (,);mSS S

n n i id d d Act Act Act dσ α α α α += ∈ ∈∪ ∪ ∪ R GS0 =
1 2
0 0 0(, ,...,) ,ms s s 0 0 0(,),i i is l= v 0 10 20 | |0(, , ,)i

i i i i
Cv v v=v (i=1,2,…,m); GS=(s1,s2,…,sm), (,),i i is l= v

1 2 | |(, , ,)i
i i i i

Cv v v=v (i=1,2,…,m); GS is the global state reached from GS0 after σ. Then

1) The clock value (1,2,..., , 1,2,...,| |)i i
jv i m j C= = can be represented by a linear combina-

tion of 0
i
jv and dk(k=0,1,2,…,n);

2) Cond(GS) can be represented by a conjunction over a set of linear inequalities of

0 (1,2,..., , 1,2,...,| |)i i
jv i m j C= = and dk(k=0,1,2,…,n).

Proof. See Appendix B.
Here, dk(k=0,1,2,…,n) are just uncontrollable or controllable parameters in the generated test

behavior tree. In the process of test generation, we use the mechanism of executability
pre-determination to check whether timing conditions ()Cond GS ′ have a solution, which can
be reduced to a linear programming problem with solution of polynomial timing according to
Theorem 2. In the case of no solution, the corresponding branch should be pruned from the test
behavior tree.

6.2 Example

This section applies Algorithm 1 to the system under test in Figure 3. We start from the initial
global state GS0=((0,(0,0)), (0,(0,0))) to construct test behavior tree. A part of result is shown in
Figure 5. d0 is a controllable parameter, and d1, d2, d3 are uncontrollable parameters.

Figure 5 A part of result of test generation for the system under test in Figure 2.

1738 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

For example, we consider a test sequence from the root node to node GS=((2,(0,d1)),(5,(0,-))):
I1:(U1?A1,d0); I1:(l1!a,d1); I2:(l2?a). Here, d0 is a controllable parameter, which can be chosen by
tester, for example, 1 time unit; and d1 is an uncontrollable parameter, which will be decided in
the process of test execution. The reachable timing conditions of GS is Cond(GS)={d1<2}. The
corresponding timed trace is 0 1 1 1 1 1 1 2 2(: ?) (: !) (: ?).d I U A d I l a I l aσ = ⋅ ⋅ ⋅ ⋅ After σ, possible outputs
of I2 can be I2:(l2!b,d2)[1<d2<3] or I2:(l2!c,d2)[d2<3]. All the other behaviors will lead to a verdict
fail(2), which indicates that an error occurs in I2.

The branch from GS to GS′=((2,(d2,d1+d2)),(0,(d2,-)) is {I2:(l2!b,d2)[1<d2<3]; I1:(l1?b,0)[d2<1
and d1+d2<2]}.So

2 2 1 2

1 2 2 1 2

() () (1 3) (1) (2)
{(2) (1 3) (1) (2)}.

Cond GS Cond GS d d d d
d d d d d

′ = ∧ < < ∧ < ∧ + <
= < ∧ < < ∧ < ∧ + <

In the process of executability pre-determination, ()Cond GS ′ has no solutions. So this
branch will be pruned from the test behavior tree in the test generation process.

6.3 Discussions and comparisons

Region graph[25] is a widely-used technique to analyze real-time systems. In refs. [15, 16], con-
formance test generation methods have been presented based on region graph. In this section,
firstly we give an intuitive interoperability test generation method based on region graph and then
compare it with the method based on timed interoperability relation described in Algorithm 1. We
describe the intuitive method informally as follows1):

Step 1. Sample the region graph of each MpTIOA in the CMpTIOA system using suitable
granularities to construct its grid automaton based on the method in ref. [15].

Step 2. Apply the existing non-timed interoperability testing generation method on the com-
municating grid automata system (the result of step 1) to generate real-time interoperability test
cases.

Now we discuss the state space scale generated by this method. Considering the case of more
than one clock, for an MpTIOA (see Definition 1) containing |C|(|C|>1) clocks, the clock sam-
pling granularity is 1/(|C|+2)[15]. Let the maximal clock value of clock ti is Di(i=1, 2,…,|C|), then
the total number of clock sampling granularity values is Di*(|C|+2)+2 (including 0 and +∞). Thus,

the maximal number of clock valuations of the |C| clocks is | |
1
(* (| | 2) 2),C

ii
D C

=
+ +∏ and the

maximal number of states of the grid automaton is |L|* | |
1
(* (| | 2) 2),C

ii
D C

=
+ +∏ i.e.,

O(|L|*|C||C|), where, |L| is the number of locations in the MpTIOA (see Definition 1). For a
CMpTIOA system (see Definition 5) containing m MpTIOA, let the number of locations of
MpTIOA Mj be |Lj|(j=1,2,…,m), and the number of its clocks be |Cj|, then the maximal state space

of CMpTIOA system can be reached to O(
1

* jCm
j jj

L C
=∏). If the system contains more

MpTIOA and MpTIOAs contain more locations and clocks, state space explosion problem will
be more critical. While in Algorithm 1, via parameterized test behavior tree and parameterized
global state nodes in the tree, state space of system can be compressed to some extent. For exam-
ple, in the test generation result in Figure 5, for global state node GS=((2,(0, d1)),(5,(0,-))), its
time constraint is Cond(GS)={d1<2}. The clock sampling granularity is 1/4 because the MpTIOA

1) Due to the limitation of space, only outline of the method is given in this paper, and details can be found in ref. [27].

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1739

contains 2 clocks, so according to Cond(GS), the global state GS contains 8 states in the corre-
sponding communicating grid automata.

We apply the above method based on region graph (steps 1 and 2) to the system under test of
Figure 3. In step 1, granularity 1/4 is used to sample each MpTIOA (because the automaton has
two clocks). After reduction by combining some equivalent states, the resulting grid automaton
has about 191 states. In step 2, as a comparison, we generate a part of test behavior tree that is
equivalent to the parameterized test behavior tree in the dashed circle of Figure 5. The resulting
test behavior tree contains about 155 nodes (representing global states) and 378 edges (repre-
senting test events, containing 225 I/O actions and 153 delay events). As a comparison, the
equivalent parameterized timed test behavior tree generated by using Algorithm 1 contains only
21 nodes (including verdict nodes) and 20 edges. From the comparison, we can conclude that the
intuitive method based on region graph given in this section suffers from state space explosion
problem and Algorithm 1 can alleviate this problem to some extent. In fact, compared with the
region graph based method, the test generation method based on timed interoperability relation is
a coarse granularity analyzing method, so it can compress the global state space to some extent.

7 Applications

IPv6 protocol is one of the basic protocols of next generation Internet. This section applies the
models and methods presented in this paper to interoperability testing of IPv6 neighbor discovery
protocol.

7.1 Neighbor discovery protocol

Neighbor discovery (for short, ND) protocol[28] is one of IPv6 core protocols, which corresponds
to a combination of ARP protocol, ICMP router discovery and ICMP redirect function in IPv4. In
addition, neighbor unreachability detection mechanism is supplied to enhance the robustness of
packet transmission. In ND protocol, two types of nodes exist in a link: router and host. Router is
the node that forwards IP packets not explicitly addressed to itself, which is the relay node in the
link; while host is any node that is not a router, which is the end node. The two types of nodes
have different functions in ND protocol.

In this paper, router discovery function in ND protocol is used to illustrate our method. In such
function, router nodes and host nodes play different roles: 1) for router node: it sends unsolicited
router advertisements (for short, uS_RA) periodically in its interfaces; on the other hand, a router
sends solicited router advertisements (for short, S_RA) in response to valid router solicitations
(for short, RS) received on an advertising interface; 2) for host node: to obtain router advertise-
ments quickly, when an interface becomes enabled, a host should transmit up to 3 router solicita-
tion periodically. If the host receives a valid router advertisement, it must stop sending additional
RS on that interface. Compared with the corresponding function in IPv4, the above function has
some real-time requirements, and time constraints are more complicated. In ND protocol, re-
quirements of time constraints are specified in detail[28]: 1) time intervals between periodic packet
transmissions; and 2) delay before sending a packet.

7.2 Protocol model

Figure 6 shows the CMpTIOA model of router discovery function in ND protocol. In this model,
two nodes, router and host, are modeled by an MpTIOA respectively; the channels between the

1740 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

two nodes are CRH and CHR.
The MpTIOA model of the router node contains two clocks t11 and t12, and its initial location is

0. MinT and MaxT represent the minimal and maximal time intervals of sending uS_RA for
router nodes respectively, i.e., parameters MinRtrAdvInterval and MaxRtrAdvInterval specified
in protocol. The two parameters are configurable for router nodes and MinRtrAdvInterval should
be no less than 3 s (i.e., 3≤MinT<MaxT). The MpTIOA model of the host node contains two
clocks t21 and t22, and its initial location is 0, which represents that the host interface is not at-
tached to the link.

Figure 6 CMpTIOA model of router discovery function in neighbor discovery protocol.

7.3 Test generation

We apply Algorithm 1 to the CMpTIOA model of Figure 6. The generated parameterized test be-
havior tree is shown in Figure 7: All fail verdict nodes are omitted and gray leaf nodes represent
pass verdict. Test architecture shown in Figure 8 can be used in testing: a point of observation PO
is used to observe the protocol behavior on the channel CRH and CHR; and PCO1 is used to control
the host node, e.g., sending interface enabling command.

In Figure 7, d1 is controllable parameter, which can be set to an arbitrary value from 0 to posi-
tive infinity. In the testing, this value can be assigned in the test case or can be decided by test
system randomly in the process of execution. Considering the need of practical testing, this value
should have an upper limit. Now we analyze the value of this parameter furthermore. The solu-
tions of set of inequalities {(0<d2≤1) ∧ (d1+d2≥3)} and {((0<d2≤1) ∧ (0<d1+d2<3))} are d1

≥2 and d1<3 respectively. Thus the time axis of d1 can be divided into three areas: 1) d1<2, in
which case only the right branch of Figure 7 can be executable; 2) 2≤d1<3, in which case both
the left and right branches are executable; 3) d1≥3, in which case only the left branch can be ex-
ecutable. So in practical testing, different representative d1 values in these three areas can be se-
lected to improve test coverage.

8 Conclusions

In this paper, we have proposed a formal method to real-time protocol interoperability testing.
Firstly, a formal model CMpTIOA is defined to model SUT of real-time protocol interoperability
testing. Based on the model, we define the timed interoperability relation as the testing basis. A

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1741

Figure 7 Test generation result: test behavior tree. Figure 8 Test architecture.

test generation method based on timed interoperability relation is then proposed. This method
starts from the CMpTIOA model of SUT to construct parameterized timed test behavior tree, in
which parameters are used to represent the relative time intervals between I/O behaviors and a
subclass of equivalent timed traces is represented as a typical parameterized timed trace. A
mechanism of executability pre-determination is also integrated in the test generation method to
prevent the unnecessary constructions of inexecutable branches in the test behavior tree. Thus,
this method can alleviate the state space explosion problems to some extent compared with the
method based on region graph. At last, the proposed theory and method are then applied in inter-
operability testing of IPv6 neighbor discovery protocol, which shows the feasibility of this
method.

Test notation is also an important issue in the area of formal testing. Its main purpose is to
solve the problem of how to specify test cases by using abstract test suite notations. TTCN-3 (the
Testing and Test Control Notation)[29] is a test description language proposed by ETSI (European
Telecommunications Standards Institute), and TIMEDTTCN-3[30] is a real-time extension of
TTCN-3. The parameterized test behavior tree can be converted to TIMEDTTCN-3 test cases eas-
ily using the method in ref. [31]. Based on the theory and method proposed in this paper, we have
implemented a protocol testing system based on TIMEDTTCN-3.

The possible future work is to extend the test framework to consider the data portion of proto-
col and the unreliable communicating channels. The other directions are to study how to select
proper values of controllable parameters and to apply distributed test architecture to real-time
protocol interoperability testing. We will also plan to apply this method to protocol testing of
real-life network protocols furthermore.

Appendix A Proof of Theorem 1

Proof. Let GS be the reachable global state from GS0 after a timed trace σ, i.e.,

1 2((, , ,)),mttraces Com I I Iσ ∈ and GS∈GS0 after σ. If an output action iα is observed after
dk time units, then

1742 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

()
,

(after)
k
i

k

d out GS

out GS dα

∈⎧⎪
⎨

∈⎪⎩
 i.e.,

()
,

(after)

Ii

Ii

k Act

i
kAct

d out GS

out GS dα

∈⎧
⎪
⎨

∈⎪⎩

thus,

1 2

1 2

((, , ,) after),

((, , ,) after).

Ii

Ii

k mAct

i
m kAct

d out Com I I I

out Com I I I d

σ

α σ

∈⎧
⎪
⎨

∈ ⋅⎪⎩

 (A1)

For / ,iI
i Actσ σ= si∈ 0

is after σi, i.e., si∈Si after σi;

1) If (, , , , ')i i i i i il P R l Tα∃ ∈ and ()i i
kP +v d = true, we have

()
.

(after)

i
k
i i

k

d out s

out s dα

⎧ ∈⎪
⎨

∈⎪⎩
 So,

(after),

(after).
k i i
i

i i k

d out S

out S d

σ

α σ

∈⎧⎪
⎨

∈ ⋅⎪⎩
 (A2)

According to (A1) and (A2), the observed behavior (,iα dk) will not violate unilateral timed
interoperability relation defined in Definition 9, so it will not violate tinterop relation defined in
Definition 11, that is, (,iα dk) is a valid output.

2) Consider two cases as follows:
a) For (, , , , ') ,i i i i i il P R l Tα∀ ∈ always ()i i

kP +v d = false:

If () (after),i
k i id out s out S σ∈ ⊆ while ()i i

kP +v d = false, according to the semantics of

MpTIOA model, then (after),i i
kout s dα ∉ so

 (after).i
i i kout S dα σ∉ ⋅ (A3)

According to (A1) and (A3),
 1 2((, , ,) after) (after).Ii m k i i kAct

out Com I I I d out S dσ σ⋅ ⊆ ⋅/ (A4)

And we also have / ,iI
k i kd Act dσ σ⋅ = ⋅ so (A4) indicates that in this case, unilateral timed

interoperability relation defined in Definition 9 will not be satisfied, and tinterop relation will not
be satisfied yet, that is, (,iα dk) is an invalid output.

b) If (, , , , ') :i i i i i il P R l Tα¬∃ ∈

According to the semantics of MpTIOA model, for ,kd +∀ ∈ R we have (i iout sα ∉

after).kd So (A3) and (A4) are satisfied, which indicates tinterop relation will not be satisfied,

that is, (,iα dk) is an invalid output.

Appendix B Proof of Theorem 2
Proof. Using mathematical induction method:
1) (1) For GS0, the clock value 0 (1,2,..., , 1,2,...,| |),i i i

j jv v i m j C= = = so the statement is true.

(2) Suppose that the statement is true for GS, that is, (1,2,..., , 1,2,...,| |)i i
jv i m j C= = can

be represented by a linear combination of 0
i
jv and dk (k=0,1,2,…,n). After extension of GS in

 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744 1743

test generation, we get GS′. According to Algorithm 1, (1)' () iGS UpdateS GS= or
(2)
,' i jGS UpdateS= ().GS By eqs. (1) and (2) in section 6.1, the possible clock valuation in GS′

can be
● ()i ′ =v 1()i

R nUpdate ++v d (i=1,2,…,m): according to Definition 2 (clock valuation
updating function),

1()
() (1,2,..., , 1,2,...,| |).

0()

i i
j n ji i

j i
j

v d t R
v i m j C

t R
+⎧ + ∉⎪′ = = =⎨

∈⎪⎩

● 1()i i
n+′ = +v v d (i=1,2,…,m): 1() ' (1,2,..., , 1,2,...,| |).i i i

j j nv v d i m j C+= + = =

So ()i
jv ′ can be represented by a linear combination of 0

i
jv and dk(k=0,1,2,…,n+1).

According to (1) and (2), the statement is true.
2) (1) For GS0, according to the initial value of Algorithm 1, we have Cond(GS0)=true; so the

statement is true.
(2) Suppose that the statement is true for GS, that is, Cond(GS) can be represented by a

conjunction over a set of linear inequalities of 0 (1,2,..., , 1,2,...,| |)i i
jv i m j C= = and

dk(k=0,1,2,…,n). According to eqs. (3) and (4) in section 6.1, we have

1() () ()i i
nCond GS Cond GS P +′ = ∧ +v d

or

1 1() () () ().i i j j
n nCond GS Cond GS P P+ +′ = ∧ + ∧ +v d v d

According to Definition 1 (MpTIOA), time constraints P(v) of a transition is a conjunction
over linear inequalities of (1,2,...,| |).jv j C= So 1() i i

nP ++v d is a conjunction over linear

inequalities of 1(1,2,...,| |).i i
j nv d j C++ = From the conclusion of 1), i

jv can be represented by

a linear combination of 0
i
jv and dk (k=0,1,2,…,n). Thus ()Cond GS ′ can be represented by a

conjunction over a set of linear inequalities of 0 (1,2,..., , 1,2,...,| |)i i
jv i m j C= = and dk (k=0,1,

2,…,n+1).
According to (1) and (2), the statement is true.

The authors thank Shi Xingang and Tian Beihang for their deep discussions.

1 ISO/IEC. ISO/IEC 9646. Information technology, open systems interconnection, conformance testing methodology and
framework. Geneva, Switzerland: ISO/IEC, 1991

2 Hao R B, Wu J P. A formal approach to protocol interoperability testing. J Comput Sci Technol, 1998, 13(1): 79―90 [DOI]
3 Viho C, Barbin S, Tanguy L. Towards a formal framework for interoperability testing. In: Kim M, Chin B, Kang S, et al., eds.

Proceedings of the 21st IFIP International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE 2001). Cheju Island, Korea: Kluwer, 2001. 53―68

4 Rafiq O, Castanet R. From conformance testing to interoperability testing. In: Davidson I, Litwack D W, eds. Proceedings of
the 3rd IFIP International Workshop on Protocol Test Systems. Virginia, USA: Elsevier Science Publishers, 1990. 371―385

5 Kang S, Shin J, Kim M. Interoperability test suite derivation for communication protocols. Comput Netw, 2000, 32(3):
347―364 [DOI]

6 Trenkaev V, Kim M, Seol S. Interoperability testing based on a fault model for a system of communicating FSMs. In:
Hogrefe D, Wiles A, eds. Proceedings of the 15th IFIP International Conference on Testing of Communicating Systems
(TestCom 2003), Lect Notes in Comput Sci (LNCS) Vol 2644. Sophia Antipolis, France: Springer, 2003. 226―242

http://dx.doi.org/10.1007/BF02946617
http://dx.doi.org/10.1016/S1389-1286(00)00005-0

1744 WANG ZhiLiang et al. Sci China Ser F-Inf Sci | Nov. 2008 | vol. 51 | no. 11 | 1723-1744

7 Seol S, Kim M, Kang S, et al. Fully automated interoperability test suite derivation for communication protocols. Comput
Netw, 2003, 43(6): 735―759 [DOI]

8 Seol S, Kim M, Chanson S T, et al. Interoperability test generation and minimization for communication protocols based on
the multiple stimuli principle. IEEE J Sel Area Comm, 2004, 22(10): 2062―2074 [DOI]

9 El-Fakih K, Trenkaev V, Spitsyna N, et al. FSM based interoperability testing methods for multi-stimuli model. In: Groz R,
Hierons R M, eds. Proceedings of the 16th IFIP International Conference of Testing of Communicating Systems (TestCom
2004), Lect Notes in Comput Sci (LNCS) Vol 2978. Oxford, UK: Springer, 2004. 60―75

10 Wang Z L, Wu J P, Yin X. Protocol interoperability test generation based on communicating multi-port FSMs (in Chinese).
Chinese J Comput, 2006, 29(11): 1909―1919

11 Hao R B, Lee D, Sinha R K, et al. Integrated system interoperability testing with applications to VoIP. IEEE/ACM Trans
Netw, 2004, 12 (5): 823―836 [DOI]

12 Desmoulin A, Viho C. Quiescence management improves interoperability testing. In: Khendek F, Dssouli R, eds. Proceed-
ings of the 17th IFIP International Conference of Testing of Communicating Systems (TestCom 2005). Lect Notes in
Comput Sci (LNCS) Vol 3502, Montreal, Canada: Springer, 2005. 365―379

13 Desmoulin A, Viho C. Formalizing interoperability for test case generation purpose. In: Proceedings of IEEE Nasa ISoLA
Workshop on Leveraging Applications of Formal Methods, Verification, and Validation. Columbia, MD, USA: IEEE, 2005

14 Desmoulin A, Viho C. A new method for interoperability test generation. In: Petrenko A, Veanes M, Tretmans J, et al., eds.
Proceedings of the 19th IFIP International Conference of Testing of Communicating Systems/the 7th International Workshop
on Formal Approaches to Testing of Software (TestCom/FATES 2007). Lect Notes in Comput Sci (LNCS) Vol 4581. Tallinn,
Estonia: Springer, 2007. 58―73

15 En-Nouaary A, Dssouli R, Khendek F. Timed Wp-method: testing real-time systems. IEEE Trans Softw Eng, 2002, 28(11):
1023―1038 [DOI]

16 Springintveld J, Vaandrager F, D’Argenio P R. Testing timed automata. Theor Comput Sci, 2001, 254(1-2): 225―257 [DOI]
17 Higashino T, Nakata A, Taniguchi K, Cavalli A R. Generating test cases for a timed I/O automaton model. In: Csopaki G,

Dibuz S, Tarnay K, eds. Proceedings of the IFIP 12th International Workshop on Testing Communicating Systems (IWTCS
1999). Budapest, Hungary: Kluwer, 1999. 197―214

18 Khoumsi A, Jéron T, Marchand H. Test cases generation for nondeterministic real-time systems. In: Petrenko A, Ulrich A,
eds. Proceedings of the 3rd Workshop on Formal Approaches to Testing of Software (FATES 2003), Lect Notes in Comput
Sci (LNCS) Vol 2931. Montreal, Canada: Springer, 2003. 131―146

19 Krichen M, Tripakis S. An expressive and implementable formal framework for testing real-time systems. In: Khendek F,
Dssouli R, eds. Proceedings of the 17th IFIP International Conference of Testing of Communicating Systems (TestCom
2005). Lect Notes in Comput Sci (LNCS) Vol 3502. Montreal, Canada: Springer, 2005. 209―225

20 Larsen K, Mikucionis M, Nielsen B. Online testing of real-time systems using Uppaal. In: Grabowski J, Nielsen B, eds.
Workshop on Formal Approaches to Testing of Software (FATES 2004), Lect Notes in Comput Sci (LNCS) Vol 3395. Linz,
Austria: Springer, 2004. 79―94

21 Briones L B, Brinksma E. A test generation framework for quiescent real-time systems. In: Grabowski J, Nielsen B, eds.
Workshop on Formal Approaches to Testing of Software (FATES 2004), Lect Notes in Comput Sci (LNCS) Vol 3395. Linz,
Austria: Springer, 2004. 64―78

22 Wang Z L, Wu J P, Yin X. Towards interoperability test generation of time dependent protocols: a case study. In: Proceedings
of IEEE Global Telecommunications Conference (GLOBECOM 2004), Vol. 2. Dallas, Texas USA: IEEE Communications
Society, 2004. 589―594

23 Lee D, Yannakakis M. Principles and methods of testing finite state machines―a survey. Proc IEEE, 1996, 84(8):
1090―1123 [DOI]

24 Tretmans J. Test generation with inputs, outputs and repetitive quiescence. Softw-Concepts and Tools, 1996, 17(3):
103―120

25 Alur R, Dill D. A theory of timed automata. Theor Comput Sci, 1994, 126(2): 183―235 [DOI]
26 Bornot S, Sifakis J, Tripakis S. Modeling urgency in timed systems. In: de Roever W P, Langmaack H, Pnueli A, eds. In-

ternational Symposium of Compositionality―The Significant Difference (COMPOS 1997), Lect Notes in Comput Sci
(LNCS) Vol 1536. Malente: Springer, 1998. 103―129

27 Wang Z L. Distributed protocol interoperability testing based on formal methods (in Chinese). Ph.D. Thesis. Beijing:
Tsinghua University, 2006

28 Narten T, Nordmark E, Simpson W. Neighbor Discovery for IP Version 6 (IPv6). IETF RFC 2461, 1998
29 ETSI: ETSI standard ES 201 873-1 V3.2.1(2007-03): The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core

Language. European Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France. 2007
30 Dai Z R, Grabowski J, Neukirchen H. TIMEDTTCN-3―a real-time extension for TTCN-3. In: Schieferdecker I, et al, eds.

Proceedings of the IFIP 14th International Conference on Testing Communicating Systems (Testcom 2002). Berlin: Kluwer,
2002. 407―424

31 Wang Z L, Wu J P, Yin X, Shi X G, Tian B H. Using TIMEDTTCN-3 in interoperability testing for real-time communication
systems. In: Uyar M U, Duale A, Fecko M, eds. Proceedings of the IFIP 18th IFIP International Conference on Testing
Communicating Systems (Testcom 2006), Lect Notes in Comput Sci (LNCS) Vol 3964. New York: Springer, 2006.
324―340

http://dx.doi.org/10.1016/S1389-1286(03)00316-5
http://dx.doi.org/10.1109/JSAC.2004.836015
http://dx.doi.org/10.1109/TNET.2004.836136
http://dx.doi.org/10.1109/TSE.2002.1049402
http://dx.doi.org/10.1016/S0304-3975(99)00134-6
http://dx.doi.org/10.1109/5.533956
http://dx.doi.org/10.1016/0304-3975(94)90010-8

