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Abstract

Formal methods, theory, and supporting tools can aid the design, analysis, and verification of the security-related and cryptographic
protocols used over open networks and distributed systems. The most commonly followed techniques for the application of formal methods
for theex-postanalysis and verification of cryptographic protocols, as theanalysis approach, are reviewed, followed by the examination of
robustness principles and application limitations. Modern high-level specification languages and tools can be used for automatically
analysing cryptographic protocols. Recent research work focuses on theex-anteuse of formal methods in the design state of new security
protocols, as thesynthesis approach. Finally, an outline is presented on current trends for the utilisation of formal methods for the analysis
and verification of modern complicated protocols and protocol suites for the real commercial world.q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A protocol is a set of rules and conventions that define the
communication framework between two or more agents.
These agents, known as principals, can be end-users,
processes or computing systems. In cryptographic proto-
cols, part of at least one message is encrypted. Security-
related and cryptographic protocols are used to establish
secure communication over insecure open networks and
distributed systems. These protocols use cryptographic tech-
niques to achieve goals such as confidentiality, authentica-
tion of principals and services, message integrity, non-
repudiation, order and timeliness of the messages, and
distribution of cryptographic keys. Unfortunately, open
networks and distributed systems are vulnerable to hostile
intruders who may try to subvert the protocol design goals.

Given such requirements, it is not surprising that there
have been several examples of security-related and crypto-
graphic protocols that were published, believed to be sound,
and later shown to have several security flaws [1–3]. After

the discovery of flaws in a protocol, the flaws are often
corrected or approaches adopted to avoid using the reason-
ing of the flawed protocols [4]. These facts increasingly
prompted research into the development of several different
formal methods for detecting protocol failures, following an
analysis approach to designing secure protocols. As is the
case in the analysis of conventional communication proto-
cols, two kinds of techniques were applied to this problem:
those based on attempts to construct inferences using
specialised logics based on a notion of knowledge and
belief, that protocol participants can confidently reach
desired conclusions and, those based on attempts to
construct possible attacks using algebraic properties of the
algorithms in the protocols.

Inference-construction methodsare utilising model logics
similar to those that have been developed for the analysis of
the evolution of knowledge and belief in distributed
systems. These methods are widely used [5–7]. A number
of specific problems are associated with them [8–12] related
to: the analysis of zero knowledge protocols, the detection
of parallel session multi-role flaws, the transformation of
messages and prepositions to idealised messages, the fact
that there is no complete semantics for the logic, and the
modelling of freshness.
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Attack-construction methodsconstruct probable attack
sets based on the algebraic properties of the protocol’s algo-
rithms. These methods [13–22] are targeted towards ensur-
ing authentication, correctness, or security properties; they
are independent of the correctness of a proposed logic. Their
main disadvantage lies in the big number of possible events
that must be examined.

Attempting to avoid the exponential searches of the
attack-construction methods or to extend analyses to proto-
cols that involve arbitrarily large numbers of participants
and messages, has given rise to a third approach for the
analysis of protocol failures. This is the recent approach
of proof-construction methods, which has the potential of
being as thorough as attack-construction in finding possible
attacks, while avoiding exponential searches by replacing
them with theorems about these searches. The proof-
construction methods are complementary to inference-
construction methods, as they are also based on the problem
formalisation through hypotheses and authentication prop-
erties, but rely on problem-specific properties and a speci-
fication at a finer level of precision. Proof-construction
methods formally model the actual computations performed
in protocols and prove theorems about these computations.
This approach has been taken by Snekkenes [23], Bolignano
and Paulson [24–26], and Brackin [27].

In this article, we provide a review of the state-of-the-art
in the application of formal methods and the development of
relevant tools for the analysis, design and verification of
security-related and cryptographic protocols and outline
major trends of research in this area. The remainder of
this article is organised as follows: in Sections 2–4, we
describe under theanalysis approachthe most commonly
followed approaches to theex-post application of formal
methods to the already designed cryptographic protocols.
In Section 5, we outline the use of security-related formal
specification languages and tools for automatically analys-
ing cryptographic protocols. In Section 6, we present an
assortment of helpful principles and limitations encapsulat-
ing relative experience of good and bad practice that can be
used in the design of error-free cryptographic protocols. In
Section 7, we discuss the recent trends for theex-anteuse of
formal methods in the design stage of new cryptographic
protocols using thesynthesis approach. Finally, in Section
8, we outline the modern trends for the utilisation of formal
methods in the analysis and verification of modern compli-
cated protocols and protocol suites for the real commercial
world.

2. Attack-construction methods

Attack-construction methods can be divided into three
sub-categories based on their theoretical foundation:

• methods based on general purpose validation languages;
• algebraic simplification theoretic model methods; and
• special purpose expert system, scenario based methods.

In the following paragraphs, we present these sub-
categories in order to describe the basic features of every
method.

2.1. Methods based on general purpose validation
languages

These methods analyse a cryptographic protocol as any
other program whose correctness they are trying to prove.
This is achieved by specifying the protocol: as a finite-state
machine [21,22], using predicate calculus [14], or within a
process algebra [20,15].

Sidhu and Varadharajan map the protocol to a finite-state
machine [21,22]. The first analysis method [21] verifies the
basic properties of a number of protocols, detects basic
flaws, but is unable to detect flaws due to the re-use of old
messages as no temporal assumptions are made. The second
method [22] also verifies the basic properties of a number of
protocols, but exhibits a number of problems as the number
of states increase. In addition, in order to deal with the flaws
related to the re-use of old messages, the authors propose to
incorporate the analysis data from the session key message
contents.

Another approach introduced by Kemmerer, is based on
predicate calculus extensions [14]. This method uses the
specification language Ina Jo and the Formal Development
Methodology. Ina Jo [28] is a non-procedural assertion
language that is an extension of first-order predicate calcu-
lus. Formal specifications written in Ina Jo specify defini-
tions, initial conditions, transforms, axioms, and criteria.
Criteria are used to specify critical requirements for a secure
state. Ina Jo formal specifications can then be executed and
verified by related tools, such as Inatest. This approach has
proved to be successful in locating both active and passive
attack flaws, as in both cases the intruder is a separate entity
in the model’s mathematical framework.

Roscoe proposed a more rigorous approach [20], which is
based on modelling all the agents taking part in the protocol,
including the communicating principals and the intruder as
Communicating Sequential Processes (CSP). The proposed
method can be used to formalise messages, traces, intruders,
and nonce challenges. The Failures Divergence’s Refine-
ment checker (FDR) tool is a general purpose tool that is
used later to determine whether an implementation refines a
specification. FDR takes as input two CSP processes; a
specification and an implementation and tests whether the
implementation refines the specification. Initially, this
approach was used to analyse many sorts of systems, includ-
ing distributed databases and communication protocols
[29]. Recently, it has also been used to analyse security
protocols [20,15]. In the case of protocol authentication,
FDR is used to test whether the protocol correctly achieves
authentication and to discover a specific kind of attack of the
protocol: this is the case in which an intruder is masquerad-
ing as another one within a protocol run. Then, the protocol
is adapted in order to remove the potential flaw and FDR is
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used to verify that there are no attacks on a small system
running the protocol. The tests using FDR have proven to be
rather fast. However, the main problem of the effectiveness
of this approach in the examination of large scale systems
remains. As FDR requires a user-specified limit on proper-
ties such as the number of objects it will consider, failure to
find an attack only asserts that an attack cannot be found
within those specified limits.

Roscoe and Goldsmith [30] have described how a fully
potent cryptographic protocol attacker can be modelled
using a given inference system in CSP. Their approach
utilises the FDR2 tool by Formal Systems. It uses a lazy
exploration strategy which examines the subset of intruder
states reachable by the protocol rules effectively exploring
the behaviour of the intruder in parallel with the protocol’s
evolution. A particular advantage of their methodology lies
in their ability to reason out the absence of denial-of-service
attacks. Their technique requires the production of a CSP
description of the protocol by hand. This has proved to be
not only time-consuming, but also error-prone, even for
experts in this area. For semi-automating the CSP descrip-
tion, Lowe designed a program named Casper [31]. Casper
is an effective front-end for the aforementioned approach
and will be presented in Section 5.

J.C. Mitchell, M. Mitchell, and Stern use a general-
purpose state enumeration tool, named Murf [32]
(pronounced ‘‘Mur-Phi’’ from the Greek letterf) to analyse
security-related protocols [19]. The methodology is similar
to the approach used in CSP model checking of crypto-
graphic protocols. It involves modelling the protocol and
the desired properties in the Murf language. Murf then
verifies—using breadth-first or depth-first full state
enumeration—that all reachable states of the system satisfy
the specification. Typically, the methodology for analysing
protocols involves the following successive steps: formulate
the protocol, add an adversary to the system, state the
desired correctness condition, run the protocol for some
specific choice of system size parameters, experiment with
alternate formulation, and repeat. Murf has been used to
demonstrate flaws already known, as TMN [33] and
Kerberos version 5 [34]. A useful aspect of the Murf
approach is that it is feasible to modify a system description
to reflect a situation in which one or more pieces of secret
information were compromised.

The standardised language LOTOS [35–36] has also been
used to specify security protocols and cryptographic opera-
tions [37] and aid the verification of a protocol’s robustness
to intruder attacks. LOTOS is made up of two main compo-
nents: a process algebra with a structured operational
semantics and an abstract datatype language. The LOTOS
formal language has been used to model the Equicrypt
protocol [38] for conditional access to multimedia services
and to find some successful attacks against it [39]. LOTOS
has also been used by Germeau and Leduc to specify a
registration protocol for the mutual authentication between
a Trusted Third Party and a user [40].

Another general purpose formal specification language
used in this area is ASTRAL [41], whose strength lies in
the specification real-time systems. Dang uses the ASTRAL
model checker [42] to check the ability of satisfaction of
critical requirements of an ASTRAL specification by
enumerating the possible runs of transitions within a given
time. ASTRAL has been applied on the Needham–Schroe-
der public-key authentication protocol [2], and the TMN
protocol [33]. The ASTRAL model checker missed a bug
in TMN, because it required excessive execution time under
the given ASTRAL coding of the specification. Further, the
ASTRAL approach uncovers simple bugs also uncovered by
Murf tool. These results are preliminary, but it is expected
that ASTRAL will prove to be more effective in the inves-
tigation of real-time protocols.

All the approaches described before were shown to
discover attacks caused by the lack of explicitness in the
protocol messages. Unfortunately, they suffer from the large
size of the state space under exploration. Additionally, if a
method fails to find an attack, this only means that there is
no attack on the particular small system analysed, but an
attack may exist for some larger system running the same
protocol. Hence, the effectiveness of the aforementioned
methods in the examination of large scale systems remain
to be demonstrated. Lowe [43] presents sufficient conditions
for the protocol and its environment guaranteeing that, if
there is no breach of secrecy when the protocol is run by an
appropriate small system, then there is no breach of secrecy
on any system.

Although these general purpose methods were judged as
an important contribution to the field, research has often
turned into more specialised directions. The driving force
behind this turn is the strong desire to use reasoning knowl-
edge specific to the cryptography domain.

2.2. Algebraic simplification theoretic model methods

The algebraic simplification methods model a protocol
with a collection of rules for transforming and reducing
algebraic expressions representing messages. Representa-
tive methods in this category have been proposed by
Dolev and Yao [13], and Meadows [16,17].

Dolev and Yao presented the basic model for the state-
machine approach [13]. According to their model, an intru-
der is in full control of the network being able to read,
modify, create, and delete messages; effectively, the intru-
der is using the system being attacked as a machine to
generate words (messages). The words follow some rewrite
rules, based, for example, on the properties of symmetric
encryption. The intruder’s task is to discover a word that
should have been secret. Thus, the protocol security
problem is transformed into a search based on a term-
rewrite system. This approach was used to develop analysis
algorithms for some restricted protocol classes.

According to the aforementioned work, two models were
developed, namely the cascade protocol model, in which the
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users can apply cryptographic operations in several layers to
form messages and, the name-stamp protocol model in
which the users are allowed to append, delete, and check
names encrypted together with the plaintext. The name-
stamp protocol can be used to model layers of encryption.
The main drawbacks of the Dolev–Yao model are its failure
to model the principals’ ability to remember state informa-
tion between states, and the fact that it can only detect
protocol deficiencies.

Meadow’s NRL Protocol Analyzer [16,17] is a proto-
type verification tool, written in Prolog, that can be
used to assist either in the verification of security prop-
erties of cryptographic protocols or in the detection of
security flaws. The NRL model takes the same approach
as the term-rewrite model of Dolev–Yao. The main
difference between the two models is that the Dolev–
Yao model treats a protocol as a machine for producing
words, while NRL Protocol Analyzer treats a protocol
as a machine for producing not only words, but also
beliefs and events. In the NRL model, each protocol
participant possesses a set of beliefs. These beliefs are
created or modified as a result of receiving messages
made up of words, while messages are sent depending
on both beliefs and messages received. Events represent
the state transitions in which new words are generated
and beliefs modified. Thus, an intruder who controls the
dissemination of messages can use the protocol to
produce words, beliefs, and events.

The NRL Protocol Analyzer, in common with the Inter-
rogator model [18,44] uses a backward search strategy to
construct a path from a specified insecure state to an initial
state. The main difference between the NRL model and the
Interrogator stems from their end goals: the NRL model
aims to prove that a protocol is secure, while the Interroga-
tor is designed to search for ways to achieve insecure states
without guaranteeing that the protocol is secure if the search
fails. However, unlike the Interrogator model the NRL
Analyzer can construct a single path using an arbitrary
number of protocol rounds, thereby working in an infinite
state space. This approach allows the NRL Analyzer to
discover attacks based on a combination of a protocol runs.

The NRL Protocol Analyzer was used successfully to
locate a series of previously unknown flaws in a number
of protocols [45,46], and to demonstrate flaws that were
already known in the literature [47]. The main drawback
of the current implementation is the fact that to keep the
state space workable, some drastic simplifying assumptions
are required. In addition, as with most rule-rewrite systems,
it is not clear how well the system scales as more compli-
cated algorithms will need to be expressed using an ever
increasing set of rules. Another source of difficulty in using
the NRL Protocol Analyzer lies in the generation of lemmas
stating that infinite classes of states are unreachable: these
have to be proved by hand. In Section 5, we describe an
effective procedure [48] for making this task easier by auto-
mating the process of generation of lemmas.

2.3. Special purpose expert system, scenario based methods

One of the earliest systems that used the Dolev–Yao
approach is the Millen’s Interrogator Model [18,44]. The
Interrogator is a software tool written in Prolog that incor-
porates a protocol state-transition model. While the abstract
model includes the usual state variable for the intruder’s set
of known items, the search algorithms expressed recursively
use a state representation with no explicit mention of the
known set.

In addition, the Interrogator has an equation-solving facil-
ity for terms using encryption and other operators used in
authentication protocols. This facility called generalised
narrowing implements a multiple-theory approach which
handles commutative operators like exclusive-or and others,
such as a limited form of finite-field exponentiation to which
prior narrowing algorithms do not apply. Protocol partici-
pants are modelled as communicating state machines whose
messages to each other are intercepted by an intruder who
can either destroy messages, modify them, or let them pass
through unmodified. Given a final state in which the intruder
knows some word which should be secret, the Interrogator
will try—by using operations defined by non-confluent
rewrite systems—all possible ways of constructing a path
by which that state can be reached. If it finds such a path,
then it has identified a security flaw; however, its failure to
find an attack does not constitute a proof that no attack exists
within its model. The Interrogator model has not uncovered
previously unknown attacks in well-known protocols, but it
was able to reproduce a number of already known attacks
[47].

3. Inference-construction methods

A formal logic model, called BAN logic [5], presented by
Burrows, Abadi, and Needham has been widely used in the
analysis of authentication protocols. BAN logic of belief
belongs to the class of KD45 modal logics which practically
means that any fact is only a belief and does not need to be
universal in time and space. It assumes that authentication is
a function of integrity and freshness, and uses logical rules
to trace both of those attributes through the protocol. There
are three main stages for the analysis of protocol using the
BAN logic. The first step is to express the assumptions and
goals as statements in a symbolic notation so that the logic
can proceed from a known state to one where it can ascertain
whether the goals are in fact reached. The second step is to
transform the protocol steps into symbolic notation. Finally,
a set of deduction rules called postulates are applied. The
postulates should lead from the assumptions, via intermedi-
ate formulae, to the authentication goals.

BAN logic was a success. It found flaws in several proto-
cols, including Needham–Schroeder [2] and CCITT X.509
[49]. It uncovered redundancies in many protocols, includ-
ing Needham–Schroeder, Kerberos [50], Otway–Rees [51],
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and CCITT X.509 [49]. Many published articles use BAN
logic to make claims about their protocol’s security [52,53].

Inevitably, critiques on various features of the BAN logic
have been published. According to Liebl, it is difficult to
prove properties of the BAN logic, such as completeness,
and the logic does not take into consideration the release of
message contents and the interaction of the runs at different
time of the same protocol [54]. Nessett criticised the BAN
logic about its claimed goals of authentication [55]. He
constructed a specific example in order to demonstrate the
BAN logic’s failure to discover flaws which violate security
in a basic sense. Snekkenes examined the BAN logic’s
limitation of providing partial correctness of proofs [56].
Syverson described the common misunderstandings about
the BAN logic’s goals and explained a problem of inform-
ality in BAN logic’s operational semantics [10]. For this
reason, specific measures to formalise BAN logic have
been proposed by Mao and Boyd [57]. This formalisation
is desirable, not only for its potential in providing rigorous
analysis of security protocols, but also for its ability to
support computer-aided analysis.

The most criticised points in the BAN logic are: the fact
that there is no complete semantics for the logic and the
modelling of freshness. The lack of complete semantics
may lead to problems in modelling as some facts may
have an unclear meaning. It usually causes problems at
the idealisation step due to ambiguity and vagueness, parti-
cularly where a message is idealised into a formula contain-
ing information not present in the message itself.
None the less, it was often during the idealisation step that
researchers found interesting protocol flaws. An interesting
research goal to overcome the BAN logic’s drawback would
be the development of an efficient method for authenticating
protocol idealisations. This method would presumably be
based on rule-based techniques and would result in a way
to refine a big protocol message transformation step into
smaller, simpler, and easier to understand steps. This
method would reduce the possibility of error occurrence
in the informal protocol idealisation steps and would
increase the ease of diagnoses of lower-level design flaws.
Mao and Boyd have worked towards this goal [58], but their
work neither covers protocols using public-key algorithms
nor does it include a theoretic proof of the soundness of the
proposed idealisation rules. Regarding the modelling of
freshness, it is not possible—as is the case in most modal
logics—to distinguish between the freshness of creation and
freshness of receipt. The abstract level of BAN logic models
results in difficult to assess hypotheses and protocol descrip-
tions. According to Syverson [59], BAN logic’s results seem
to be less reliable than NRL Protocol Analyzer’s, but are
easier to come by. Other published logic systems are
designed as extensions to BAN logic [6,9,60] or correct
perceived weaknesses [56,57].

A successful, but rather complicated approach called
GNY logic, was proposed by Gong, Needham, and Yahalom
[6] increasing the scope of BAN logic. GNY logic aims to

analyse a protocol step-by-step, making explicit any
assumptions required, and drawing conclusions about the
final position it attains. This logic offers important advan-
tages over the BAN logic. The GNY approach places a
strong emphasis on the separation between the content
and the meaning of messages which increases the consis-
tency in the analysis and introduces the ability to reason at
more than one level. In GNY logic, principals can include
messages data which they do not believe in, but just possess.
It is also possible to express the ability of a recipient to
identify the expected messages and allows one to determine
that certain messages are not replays of a recipient’s own
previous messages in a given session. GNY logic has a
number of drawbacks: it addresses only authentication and
is much more complicated and elaborate than other methods
as it has many rules which have to be considered at each
stage [61].

A Higher Order Logic (HOL) theory [62] formalising an
extended version of GNY, named BGNY logic has been
introduced by Brackin [8]. This belief logic is used by the
software that automatically proves authentication properties
of cryptographic protocols. Similar to the GNY logic,
BGNY addresses only authentication. However, BGNY
extends the GNY logic including the ability to specify
protocol properties at intermediate stages, and being able
to specify the protocols that use multiple encryption and
hash operations, message authentication codes, hash codes
as keys, and key-exchange algorithms.

Another logic, called SvO, presented by Syverson and
van Oorschot [7], is designed to capture the features of
extensions and variants of four logics, namely BAN,
GNY, AT [63], and vO [60] in a single unified framework.
In addition, the authors provide model-theoretic semantics
with respect to which the logic is sound. The SvO logic was
intended to encompass the reasoning of these other logics,
while providing a rigorous understanding of its formal
expressions. The SvO logic is considered to be simpler to
use and more expressive than any of the logics from which it
is derived.

Kailar proposes a special-purpose logic to be used in the
analysis of communication protocols that require account-
ability [64], such as those for secure electronic transactions.
This logic looks at what can be achieved without making
any assumptions about freshness. A set of postulates which
are applicable to the analysis of proofs in general, and the
proofs of accountability in particular are proposed. In the
same framework, an authentication logic presented by Kess-
ler and Neumann [65] analyse the accountability of transac-
tions in the framework of electronic commerce protocols.
Their work is based on the AUTLOG semantics developed
in [66]. New rules and predicates are used to model account-
ability and to prove that the new calculus is correct with
respect to the formal semantics.

Wedel and Kessler also propose a logic for the analysis of
authentication protocols [66] providing formal semantics
for proving its soundness. This logic can handle a wide
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variety of cryptographic mechanisms using a minimum of
notation. In their approach, the elimination of the formuli
out of the idealised messages leads to a clear distinction
between the protocol itself and the assumptions about it.

4. Proof-construction methods

As mentioned before, inference-construction methods do
not address secrecy, often lack clear semantics, and it is
sometimes difficult to say exactly what a belief-logic
proof actually proves. However, attack-construction meth-
ods may have to search spaces that grow exponentially with
the size of the protocol, hence the time and space they
require can easily exceed all available resources.

In order to confront the aforementioned drawbacks,
Bolignano proposed an approach targeting the generation
of human-readable proofs [25]. Such proofs can be used
as part of a vulnerability analysis or formal code inspec-
tions. In order to achieve this goal, specific properties of
the problem are used to formalise the requirements and
simplify the proofs. The approach places particular empha-
sis on the clear description of the problem providing a clear
separation between reliable and unreliable principals, the
precise description of their roles, beliefs, and control struc-
tures, the imposition of sequencing constraints, the expres-
sion of authentication properties using temporal features,
and the formalisation of algorithm properties. The use of
powerful invariants and the axiomatisation of intruder
knowledge result in a verification process whose concise-
ness is comparable to that of modal based approaches. The
process can be automated within a framework of typed
logics using the Coq proof assistant [67].

Paulson has independently developed a similar approach
synthesising the inference-construction method idea of
protocol message guarantees and the attack-construction
method notion of events [24,26]. Unlike Bolignano, who
models the states of the four agents A, B, S, and the Spy,
Paulson defines protocols inductively as the set of all pos-
sible event traces. Agents receiving a trace can forward it
and extend it according to the protocol rules, while remain-
ing agnostic to the message’s true sender. This approach
allows the modelling of both attacks and key losses.
Again, the process is partially automated using the Isabelle
theorem prover [68].

Within the same framework, Schneider presents a general
approach for the analysis and verification of authentication
properties in the language of CSP [69]. The focus of this
research work is the development of a specific theory
targeted towards the analysis of authentication protocols
and built on top of the general CSP semantic framework.
The CSP syntax provides a precise way to describe authen-
tication protocols in terms of the messages accepted and
transmitted by the individual protocol participants. This
approach aims to bridge the gap between the ability to
express authentication protocols in a precise way and the

facility to reason formally about the properties they exhibit.
The aforementioned theory has been successfully applied
[70] to the modelling and analysis of the Zhou and Goll-
mann fair non-repudiation protocol [71].

More recently, Fabrega, Herzog, and Guttman introduced
the notion of astrand space[72,73]. They proposed a model
and a set of proof methods for cryptographic protocols along
the lines of the NRL Protocol Analyzer, Schneider’s work,
and Paulson’s inductive definitions. Astrandis defined as a
sequence of events within the domain of a security protocol
representing the actions of legitimate party or a penetrator.
Defining astrand spaceas a graph of stands allows protocol
correctness to be expressed as connections between differ-
ent kinds of strands. In conjunction with the aforementioned
formalism, the authors use the concept of ideals to prove the
bounds on a penetrator’s capabilities independent of the
security protocol being analysed. This approach is charac-
terised by the simplicity of the model and the effortless
production of reliable protocol correctness proofs. An inter-
esting concept of this method is the pictorial approach [74]
which is used as a heuristic for stating and proving the
correctness results. Strand spaces can help users draw infor-
mative pictures of security protocols, attacks, correctness
theorems, and crucial steps in the proofs; thereby focusing
on the protocol goals and their satisfaction.

Finally, another related approach is the implementation
of the protocol security theory developed by Snekkenes [23]
within the HOL theorem prover [62]. The prover works on
an explicit identification of the participants’ message extrac-
tions, computations, tests, and actions exploiting the alge-
braic properties of the cryptographic algorithms used. The
theory also distinguishes participants from the roles they
play, thereby modelling attacks in which an attacker leads
the legitimate participants to think they are at different
stages in the protocol than they really are Snekkenes has
also developed proof tools that are based on large amounts
of human input.

5. Formal specification languages and tools for
automatically analysing cryptographic protocols

The techniques outlined before cannot be easily applied
by analysts other than the developers themselves. The main
reason for this difficulty is the fact that the protocols have to
be respecified for each technique, and it is not easy to trans-
form the published description of the protocol into the
required formal system. Hence, some tools are designed as
automatic translators. The input to any such translator still
requires a formally-defined language, but it can be made
similar to the message-oriented protocol descriptions that
are typically published in the literature. This introduces
the idea of designing a single common protocol specifica-
tion language that could be used as the input format for any
formal analysis technique.

Meadows [48] describes a heuristic procedure for
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automating language generation using the NRL Protocol
Analyzer. In contrast to other methods, in which languages
are defined by hand and unreachability properties are auto-
matically proved, this approach combines the language
generation with the unreachability proof. By using this
approach, the languages are efficiently created and are
also amenable to automated analysis thereby improving
the performance of the NRL Protocol Analyzer.

Brackin specifies a simple Interface Specification
Language (ISL) and describes an Automatic Authentication
Protocol Analyzer (AAPA) which can automatically either
prove that specific protocols satisfy the desired properties,
or identify precisely where these proof attempts fail [75–
77]. The AAPA produces its proofs using the BGNY proto-
col analysis belief logic implemented in the HOL family of
proof tools. The AAPA can be used either alone or as part of
the Convince system [78]. The Convince tool facilitates the
modelling and analysis of cryptographic protocols using a
HOL theorem prover with automated support. This tool,
developed by Lichota, Hammonds, and Brackin implements
BGNY belief logic. It consists of the AAPA together with a
graphical user interface that automatically creates ISL
specifications from user-created graphical protocol repre-
sentation.

The time and space required to do an AAPA analysis
grow quadratically with the size of the protocol making it
possible for the AAPA to quickly analyse large and compli-
cated protocols. A creditable performance to evaluate the
results of AAPA includes the analysis of 52 protocols from
‘‘A Survey of Authentication Protocol Literature’’ by Clark
and Jacob [79]. This is a continually updated library of
protocols analysed in the protocol-failure literature. As
mentioned before, the time for protocol analysis proved to
be quite brief; an experienced user needed 80 working hours
to model and analyse 52 protocols. However, AAPA misses
some failures, most notably non-disclosure failures, due to
the fact that BGNY belief logic makes authentication
deductions by assuming that there were no non-disclosure
violations. Nevertheless, AAPA remains one of the most
effective modern tools aiding the design and analysis
process.

Another promising language named Common Authenti-
cation Protocol Specification Language (CAPSL), partly
inspired by ISL, is being developed by Millen [80].
CAPSL is proposed as a single common protocol specifica-
tion language that can be used as the input format for any
formal analysis technique, such as Prolog state-search
analysis tools [18], the NRL Protocol Analyzer [16,17],
model-checking with FDR [15], and HOL [8]. The main
objectives of the CAPSL design are usability, abstraction,
completeness, extensibility, parsability, and scalability.

A program named Casper, developed by Lowe [31],
semi-automatically produces the CSP description from a
more abstract description, thus greatly simplifying the
modelling and analysis process. Casper compiles high
level protocol descriptions, written following a notation

similar to the notation used in the academic literature, into
CSP scripts for checking on FDR2. Casper does not yet
cover all the features found in the security protocols, but
it was applied to a number of known protocols, such as the
Andrew protocol, the Kerberos protocol, the CCITT X.509
protocol, and the Yahalom protocol [5]. Some of these case
studies are available via the Casper Web page [81]. The
main differences between the CAPSL and the Casper
language stem from the fact that a Casper input file has to
define not only the protocol itself, but also the system to be
checked; CAPSL defines only the protocol. The most impor-
tant consequence for Casper is that when designing the input
syntax, one has to provide a mechanism for defining the
agents who are taking part in the system, the specific roles
they played, and the data items they used.

Recently, Abadi and Gordon developed the Spi calculus
language to be used for specifying the cryptographic proto-
cols [82]. The Spi calculus is an extension of the Pi calculus
[83], an existing language for specifying mobile computa-
tion which does not include any construction for encryption
and decryption. Within Spi calculus protocols are repre-
sented as processes, while their security properties are
represented using the notion of protocol equivalence. The
Spi calculus approach resembles the modal logic reasoning
about channel utterances and the characterisation of knowl-
edge within a state-machine environment. However, it
differs from other approaches by representing integrity
and secrecy as equivalencies and defining the environment
as a Spi calculus process.

Finally, Brackin proposed a tool targeted towards auto-
mating proof-construction [27,84]. The HOL theory Proto-
col Description Logic (PDL) formalises the low-level
details of the actions performed by processes executing a
protocol. PDL is not sufficiently expressive to formalise all
protocols specified in CAPSL [80]. The main advantage of
Brackin’s approach is that the complexities that arise in
proving desired belief inferences will not need to be consid-
ered again once these inferences are proved. Thereby proto-
col analyses using PDL are not only as trustworthy as those
produced by attack-construction methods, but also compar-
able in speed to those performed using inference-construc-
tion methods.

6. Robustness principles

Aiming towards the design of an effective cryptographic
protocol, a complementary approach is to try to encapsulate
experience of good and bad practice into empirical rules.
The robustness principles are therefore helpful, in that
adherence to them contributes to the simplicity of protocols
and avoids a considerable number of published confusions
and mistakes. Anderson and Needham [85] propose a
number of robustness principles, and Abadi and Needham
[86,87] introduce complete analyses of desirable protocol
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properties and relevant limitations. Some of them are
mentioned in the following:

• be very clear about the security goals and assumptions;
• be clear about the purpose of encryption (secrecy,

authenticity, etc.), do not assume that its use is synonymous
with security;

• be careful that your protocol does not make some unex-
amined assumption about the properties of the underly-
ing cryptographic algorithm;

• be sure to distinguish different protocol runs from each
other;

• do not assume that a message you receive has only a
particular form, even if you can check this;

• if timestamps are used as freshness guarantees by refer-
ence to absolute time, then the difference between local
clocks at various machines must be less than the allow-
able age of a message deemed to be valid; further, the
time maintenance mechanism everywhere becomes part
of the Trusted Computing Base;

• where the identity of a principal is essential to the mean-
ing of a message, it should be mentioned explicitly in the
message;

• sign before encrypting; if a signature is affixed to encrypted
data, then one cannot assume that the signer has any knowl-
edge of the data; a third party certainly cannot assume that
the signature is authentic, so non-repudiation is lost.

It is remarkable that, in many cases, following one design
principle will sometimes lead to violating another. This is
almost expected, as we have to deal with empirical rules. In
addition, even following all these rules will not guarantee a
sound design. Many authors have considered the question of
what are appropriate goals in the context of protocol analysis.
Accordingly, Boyd [88] reviewed some design goals in
authentication protocols and proposed a classification of
them: intentional and extensional goals. Intentional goals are
generally concerned with ensuring that the protocol runs
correctly as specified, while extensional goals are concerned
with what the protocol achieves for its participants. It was
suggested that attacks should be measured by whether or not
they violate extensional specifications even if intentional ones
were used to find the attacks in the first place. Boyd proposes a
hierarchy of extensional protocol goals which includes the
major proposed goals for key establishment. He further
demonstrates how these extensional goals can be exploited
to motivate design of entity authentication protocols.

Concluding, it is becoming widely accepted that both
formal methods and structured design rules must be taken
into account in a complementary way during all phases of a
protocol design for achieving effective and reliable crypto-
graphic protocols.

7. Formal methods for protocol design

The design of secure cryptographic protocols is a very

complex and difficult process. Until recently, researchers
were orientated towards the use of formal methods for the
analysis and verification of existing protocols. These meth-
ods have proved successful in discovering flaws with exist-
ing protocols, sometimes previously unrecognised ones.
Criticisms on formal verification include the fact that key
distribution protocols, claimed to be secure under BAN
logic, have already been broken [89]. Further, BAN-like
logics do not prove that a weakness in the protocol implies
that the cryptoscheme, on which it is based, can be broken.
Therefore, a great deal of doubt remains as to whether any
of the existing techniques is sufficient to provide a proof that
a given protocol is correct. This situation has a fair analogy
in the verification process of general purpose computer
programs, in which reliable testing techniques allows us to
find many bugs, but will not provide a basis for complete
proof of correctness. Therefore, it would be a prudent and
mature trend, to design specific methods and implement
tools, in order to aid the initial correct design of crypto-
graphic protocols. The incorporation of formal methods
into design can be implemented in various ways.

One approach is to develop and use protocol design meth-
odologies that lend themselves to formal method analysis
[90]. This is exemplified by the modular design proposed by
Heintze and Tygar [91]. Using protocol security reasoning
tools and a composition theorem, they can state sufficient
conditions for combining two secure protocols to form a
new one with similar properties. Based on secret-security
and time-security notions they can provide examples of how
unmet conditions result in an insecure protocol.

Another approach is based on the development of design
principles which are used to develop protocols whose security
is easy to evaluate. To satisfy this goal, Gong and Syverson
propose the notion of fail-stop protocols [92]. The main idea
was derived from an earlier work where they proposed the
concept of a fail-stop processor, which, when failing, stops
before any effect is visible to the outside environment [93].
Similarly, a fail-stop protocol halts in response to active
attacks interfering with the protocol execution. Given such a
protocol, its security analysis involves only the examination of
possible passive attacks such as eavesdropping. It is, therefore,
much easier to conclude whether the secrecy assumption can
be violated. The suggested proof methodology for a fail-stop
protocol comprises three phases: the verification that the
protocol is fail-stop, the validation of the secrecy assumption,
and the application of BAN-like logics. The proposed metho-
dology applies the BAN-like logics because even for a fail-
stop protocol, the residue from its execution may be useful to
an attacker [55]. Another encouraging point for this methodol-
ogy is that the specifications offail-stop protocols satisfy some
of the main prudent engineering principles from Refs. [86,87].
Accordingly, the GNY logic is used to analyse a fail-stop
protocol the proof complexity can be dramatically reduced.
According to the researcher’s team investigation, many exist-
ing protocols proved to be fail-stop [92]; therefore the new
notions are not too limiting.
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The most prominent approach in this area seems to be the
layered approach proposed by Meadows [90]. This approach
can be used together with Heintze and Tygar’s approach [91].
It is based on a stack of models at different levels of abstrac-
tion. As a first step, the protocol designer uses a relatively
abstract model to construct and verify the security protocol.
If this protocol is correct at the top layer, the designer focuses
on a more detailed model which refines the abstract one. The
repeated execution of this process leads to the final production
of a detailed specification. Much of the existing work on
requirements specifications [11] has this specific flavour. For
the application of BAN logic [94], the approach is based on a
parser that translates members of a limited class of protocol
specifications into BAN logic.

Within this framework, Rudolph introduces an approach
for designing an abstract model for cryptographic protocols
that can be used as the top layer of a layered design method
[95]. The main idea of Rudolph is the usage of Asynchro-
nous Product Automata. The whole design process starts
with a relatively abstract model at the top layer and ends
in a refined specification that can be proved to be an imple-
mentation of the top level. This model reaches a higher level
of abstraction than the model presented in the work of
Heintze and Tygar [91] through the use of logical secure
channels instead of encryption.

The notion of channels is also utilised by Buttyan, Staa-
mann, and Wilhelm to present a simple logic for authentica-
tion protocol design [96]. These channels are abstract views
of various types of secure communication links between
principals. The way channels are used is similar to how
the Pi-calculus channel primitives are used in the Spi-calcu-
lus paper [82]. The proposed Simple Logic preserves the
simplicity of BAN logic and adopts some concepts from
GNY logic. It consists of a language and a small number
of inference rules. The language is used to describe assump-
tions, events, and the protocol goals. The inference rules are
used to derive new statements about the system. The goal of
the analysis is to construct a witnessing deduction, which is
a derivation of the goals from the assumptions and the
formal protocol description. The protocol is correct in the
case where such a deduction exists. The lack of a witnessing
deduction means that the protocol may not be correct. The
main advantage of this approach is the fact that in this logic
encryption and keys are replaced by channels with various
access restrictions. This abstraction makes the logic
compact because the cryptographic operations that are
usually used in authentication protocols can all be described
with a uniform notation. Furthermore, channels enable
thinking about protocols at a high abstraction level without
being concerned with the implementation details. Thus this
logic can be used for constructing protocols at the first place
rather than verifying existing protocols. For this reason they
proposed synthetic rules derived from the logic, that can be
used by designers to construct protocols in a systematic
way.

Boyd and Mao proposed another technique for designing

key exchange protocols [97] which are guaranteed to be
correct in the sense that a specified security criterion will
not be violated if protocol principals act correctly. This
technique is developed from basic cryptographic properties
that can be expected to be held by a variety of cryptographic
algorithms. Protocols can be developed abstractly and any
particular type of algorithm that possesses the required
property can then be used in a concrete implementation.

Gollmann [98] suggests that the design of authentication
protocols has proven to be error prone partly due to a
language problem. The objectives of entity authentication
are usually given in terms of human encounters, while we
actually implement the message passing protocols. The
author proposes various translations of the high level objec-
tives into a language appropriate for communication proto-
cols.

Several researchers believe that in the near future, more
effort will be spent on designing secure protocols and less on
formal verifications. As expected, this trend has received
criticism similar in nature to that expressed towards the
use of formal methods in program design and implementa-
tion [99]. Specifically, Meadows argues [90] that design
specifications do not guarantee that protocols will meet
security goals that were not foreseen by the design
approach, that the protocols designed are sometimes
impractical, and that—due to the imprecision of design
principles—flawed protocols may in any case be designed.

8. Conclusions

We presented an overview of the modern trends in the
application of formal methods for the analysis and verifica-
tion of cryptographic protocols. The three method families
we described are useful at various levels of abstraction. The
more abstract models can be used efficiently at earlier points
in the design stage, when implementation details have not
yet been decided. A protocol analysis toolkit-based usage
scenario can be described as follows [24,25,90]: initially,
use an inference-construction method, like BAN, to deter-
mine what the role of each message of a protocol should be
and to ensure freshness properties; then, use an attack-
construction method, like NRL Protocol Analyzer, for find-
ing simple attacks quickly; and finally, utilise a proof-
construction method to investigate the deeper properties
with a modest amount of effort.

Further, some areas where current research is conducted
have emerged. Bolignano is working towards investigating
the use of his approach in the context of an ITSEC evalua-
tion. Another interesting research direction is the investiga-
tion of the potential integration of methods like the NRL
Protocol Analyzer and the Interrogator model within the
methodology of fail-stop protocols in the cases of protocols
that do not satisfy the fail-stop requirements [100]. To ease
and extend the use of the Murf tool, it would be useful to
achieve automatic translation of a higher-level protocol
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specification language such as CAPSL into Murf and
combine analyses using exhaustive finite-state analysis
and formal logic methods.

Moreover, the research community is also working
towards developing tools that take easy-to-write specifica-
tions of protocols and the expected properties and quickly
perform formal analyses checking for failures of these
protocols to achieve their desired properties. AAPA [75]
and CAPSL [80] seem to be the most promising approaches
to bridge the gap between the typical informal presentations
of protocols given in research articles and the precise char-
acterisations required to conduct formal analysis. Represen-
tative research and development attempts for designing
effective tools, include the work of Brackin for a new,
currently unnamed, protocol analysis tool which, unlike
AAPA, will use CAPSL rather than ISL as its input
language and use the Protocol Description Language as
the basis for its proofs. In addition, the co-operation of
Millen, Meadows, and Brackin has resulted in a—yet
unpublished—multi-purpose CAPSL translator [84]. This
translator will be able to translate CAPSL protocol specifi-
cations into a HOL theory to be used with PDL, into input of
the NRL Protocol Analyzer, or into human-readable algo-
rithm descriptions.

An interesting research trend, lies in the fact that many
current activities use formal methods for analysing and veri-
fying modern protocols and protocol suites to be used in the
commercial world. These suites consist of a set of single
protocols which interact with each other causing, previously
unknown, potential vulnerabilities. Within this context,
Brackin describes how the AAPA works to formally analyse
two large commercial protocols [101]: the main- and coin-
sequence protocols developed by CyberCash, Inc., Murf
was used in order to analyse the SSL 3.0—ade factostan-
dard for achieving secure Internet communication—hand-
shake protocol [102], and Paulson’s Inductive method has
been applied [103] to analyse the descendant of SSL 3.0,
known as TLS Internet Protocol. Recently, Paulson’s Induc-
tive method has also been exploited [104,105] to formalise
Kerberos version IV, a real-world timestamp-based
protocol. In this work, a complete formalisation of the
whole protocol is achieved, and several guarantees about
its entangled operation are proved using the Isabelle
theorem prover. Further, Bolignano generalised [106] his
earlier approach [25] in order to achieve the verification
of electronic payment protocols, such as C-SET and SET.
The NRL Protocol Analyzer has also been utilised by
Meadows for the analysis and verification [107] of the
Internet Key Exchange protocol, IKE (formerly ISAKMP/
Oakley) [108].

Finally, from the security protocol designer’s point of
view, the research community, working towards developing
more effective techniques toex-ante design protocols that
are guaranteed to be reliable and correct in the first place,
has implemented the synthesis approach. Most of the recent
research in this area is focused on the application of the

notion of channels in order to effectively implement the
layered approach.
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