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Abstract- In compressive sensing (CS) a challenge is to

find a space in which the signal is sparse and hence recov-

erable faithfully and efficiently. Given the nonstationarity of

many natural signals such as images, the sparse space varies

in time/spatial domain. As such, CS recovery should be con-

ducted in locally adaptive, signal-dependent spaces to counter

the fact that the CS measurements are global and irrespec-

tive of signal structures. On the contrary most CS methods

seek for a fixed set of bases (e.g., wavelets, DCT, and gradient

spaces) for the entirety of a signal. To rectify this problem we

propose a new framework for model-guided adaptive recov-

ery of compressive sensing (MARX), and show how a piece-

wise autoregressive model can be integrated into the MARX

framework to adapt to changing second order statistics of a

signal in CS recovery. In addition, MARX offers a powerful

mechanism of characterizing and exploiting structured spar-

sities of a signal, greatly restricting the CS solution space. A

case study on CS-acquired images shows that the proposed

MARX technique can increase the reconstruction quality by

up to 8 dB over existing methods.

Index terms: compressive sensing, adaptive modeling,

autoregressive process, inverse problem.

1. INTRODUCTION

The recent development of compressive sensing (CS) theory

[1, 2] has stirred quite an amount of excitement in signal pro-

cessing community. The CS theory reveals, in a pleasant sur-

prise, the possibility of reconstructing a signal from a small

number of random measurements, if the signal has a sparse

representation in some space Ψ. A signal f = {fn}N
n=1 of

lengthN is said to be sparse in space Ψ of bases {ψn}1≤n≤N ,

if the transform coefficients 〈f , ψn〉, 1 ≤ n ≤ N , are mostly

zero. The sparsity of f in Ψ is quantified by the number

of non-zero coefficients K. The signal can be perfectly re-

covered from M = O(K log(N/K)) observations with high

probability. Given M CS measurements y = Φf , with Φ pro-

ducing the random projections, the CS recovery of f from y
is posed as the following constrained optimization problem:

min
f

‖ ΨT f ‖l1 subject to y = Φf , (1)

The �1 minimization problem of (1) can be solved by linear

programming [3]. Few other CS recovery algorithms were

recently proposed: gradient projection sparse reconstruction

[4], matching pursuit [5], and iterative thresholding [6].

A much celebrated property of CS is its ability to com-

pactly encode a signal f in total blindness of any structures of

f , i.e., the same random projections Φ can be performed on all

signals, regardless of the differences in their characteristics.

However, this does not mean that one can escape from the is-

sue of adapting or optimizing the CS recovery process to the

specific signal f on hand. Indeed, a thorny issue in practice is

what space Ψ should be chosen to recover a particular f . For

example, in signal compression, while conventional methods

strive to encode f in a transform domain that achieves max-

imum energy packing of f , CS methods need to recover f
from Φf in a space Ψ in which f exhibits a high degree of

sparsity. Thus, from a system point of view, CS merely trans-

fers the task of signal-dependent code optimization from the

encoder to the decoder. Finding a sparse space Ψ for optimal

CS recovery of the signal f poses as much, if not more, a chal-

lenge as finding an adaptive transform to completely decorre-

late f . This is attested by so far disappointing performance

of CS-based compression methods, despite the enthusiasm to

change the prevailing practice of ”oversampling followed by

massive dumping” in signal acquisition-compression by CS.

The poor rate-distortion performance of current CS recov-

ery techniques relative to conventional coding techniques is

rooted in a fatal flaw of the problem formulation (1) for CS re-

covery. A natural signal f is typically nonstationary, and there

exists no space Ψ in which all segments of f exhibit sparsity.

The problem is particularly acute for images. For a nonsta-

tionary 2D Nr ×Nc image signal f(x, y) ∈ N
Nr×Nc , in two

different areas Ai and Aj of the spatial domain, subimages

fi(x, y) and fj(x, y) can have very different waveforms (e.g.,

smooth shade vs. strong edge), and hence they are sparse in

different spaces Ψi and Ψj . Thus, performing CS recovery

in a fixed space Ψ, such as that of DCT, a wavelet, or total

variation, can and do fail in parts of the image. This critique

leaves us no choice but seeking for a locally adaptive strategy

to recover CS-acquired images.

In this work we propose a new framework of Model-based

Adaptive Recovery of Compressive Sensing (MARX) to rec-

tify the flaw in the current CS recovery problem formula-

tion (1). The defining feature of MARX, which distinguishes

it from other CS recovery techniques, is a locally adaptive
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sparse signal representation facilitated by a piecewise autore-

gressive (PAR) model f = Af +v. For images f is the vector

by stacking all N = NrNc pixels of an image f(x, y) ∈
N

Nr×Mc , and A ∈ R
N×N is a square matrix with all ele-

ments on the main diagonal being zero. The term v ∈ R
N is

a random vector that is the excitation of the 2D autoregressive

process. The nth row vector of A is denoted by an, ann ≡ 0,

1 ≤ n ≤ N . Since an image is a random Markov field (RMF)

of a modest order, each row vector an is sparse, i.e., only a

very small portion of the elements of an are nonzero. The

nonzero elements of an constitute the 2D support of the re-

gression relation fn = anf + v for pixel fn. The spatial

configuration and the order of the regression support for fn

are given by the image waveform at the pixel location n.

Respecting the fact that a natural image is a nonstationary

RMF, MARX allows the PAR model parameters an to vary

in n. As such, via its parameter matrix A, the PAR model

offers a sparse and yet adaptive representation of image signal

f . Therefore, the CS recovery of f can be formulated as the

following problem of �1 minimization:

min
A,f

∑
1≤n≤N

‖an‖�1 subject to y = ΦAf . (2)

We stress the contrast between the variability of A in (2) and

the predetermined bases of Ψ in (1). The MARX sparsity

mechanism can fit image local structures (e.g., edges, tex-

tures, smooth shades, etc.) much better than wavelet, curvelet,

DCT or whatever predetermined bases of Ψ.

Granted, the proposed MARX objective function is com-

putationally more complex than that in the current CS prob-

lem formulation. The former involves joint estimation of the

image f and its underlying PAR model A, rather than esti-

mating f in a fixed space Ψ. The added search space of A
makes the inverse problem of CS recovery severely underde-

termined. In following sections we will develop algorithm

techniques to overcome this difficulty, making the MARX so-

lution feasible and robust. In pursuing maximum confinement

of the solution space for (2), we exploit structured sparsities

due to fractal behavior (self similarities) of natural images.

We show how the PAR model can be made a convenient ma-

chinery to incorporate the structured sparsities into the frame-

work of MARX. The resulting technique not only makes the

MARX process computationally tractable but also greatly im-

proves the performance of existing CS recovery algorithms.

Very recently, Baraniuk et al. demonstrated theoretically the

possibility of recovering a signal using a substantially smaller

number of measurements than M = O(K log(N/K)) by

leveraging more realistic signal models [7]. Our work offers

a fresh and successful example to corroborate the above the-

ory. Extensive experiments on a broad class of natural im-

ages, ranging from conventional photographs to biomedical

images, establish the superior recovery quality of MARX over

other CS methods. The gap in performance can be as much

as 1 ∼ 8 dB, with the advantage of MARX being the most

prominent in the recovery of local structural information.

The remainder of the paper is presented as follows. The

detail of the MARX algorithm is described in Section 2. Sec-

tion 3 develops the MARX algorithm with pattern classifica-

tion. Experimental results are reported in Section 4.

2. MARX ALGORITHM BASED ON STRUCTURED
SPARSITY

The power of adaptive PAR model A lies in its capability

of providing, by varying an, different sparse representations

for image waveforms in different spatial locations. But one

should fully use statistical knowledge of natural images to

structure an’s in ways to confine the solution space of the

underdetermined inverse problem (2). In the CS constraint

y = Φ(a1f ,a2f , · · · ,aN f)T , let us examine the PAR predic-

tion of pixel fn: f̂n = anf , an,n ≡ 0. For natural images are

random Markov field, fn only depends on pixels in a local

window wn = (fn, fn�1, fn�2, · · · , fn�K). The subscript

n � k denotes the kth neighbor of pixel fn in the image

domain. The ordering of the potentially K effecting pixels

fn�1, fn�2, · · · , fn�K is given by a fixed 2D traversal (e.g.,

raster scan) with respect to pixel location n. Therefore, we set

to zero those coefficients in an that correspond to spatial lo-

cations outside of the local window wn, inducing a structure

of sparsity in A that is intrinsic to the physical problem.

A more important and beneficial structured sparsity of A
presents itself if one considers fractal property of natural im-

ages. Namely, an image f often exhibits a similar waveform

structure, i.e., having similar second order statistics, in differ-

ent localities and scales. To characterize the 2D image wave-

form and noting that the PAR parameters ai and aj are the

same if wi = wj + c1, we associate each pixel fn with a

mean-removed feature vector

w̃n = wn − μn1, μn =
1

K + 1

K∑
k=0

fn−k. (3)

Observing that fi and fj are generated by an underlying PAR

model of the same or similar parameters if the two corre-

sponding feature vectors w̃i and w̃j are close to each other,

we can strengthen the MARX formulation of (2) to

min
A,f

∑
1≤n≤N

‖an‖�1

subject to |anf − fni
| ≤ κ‖w̃n − w̃ni

‖
1 ≤ n ≤ N, ni ∈ {ı | ‖w̃ı − w̃n‖ < τ}
y = ΦAf

(4)

where κ is a normalizing factor, and τ is a threshold to select

samples having similar 2D waveform as w̃n to learn an.

Even with added constraints of structured sparsity, solv-

ing (4) directly is still difficult and numerically less stable.

We propose an iterative EM approach of constructing the PAR

model A and recovering f from y alternatingly in the MARX
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framework. Specifically, we estimate the PAR model param-

eters in A with respect to an initial estimated image f (0), i.e.,

solving the constrained �1 minimization problem (4) given

f = f (0). The resulting estimated PAR model A(0) is then

used to improve f (0) to f (1), and in turn f (1) used to improve

A(0) to A(1), and so forth. In iteration t, given A(t) computed

by solving (4), the next estimated image f (t+1) is obtained by

solving the following optimization problem

min
f (t+1)

⎧⎨
⎩

∑
1≤n≤N

‖f (t+1) − A(t)f (t+1)‖
⎫⎬
⎭

subject to y = Φf (t+1)

(5)

The initial estimated image f (0) can be obtained by a non-

adaptive CS recovery technique, for instance, the total varia-

tion (TV) method [4]

min
∑

n

|∇f (0)
n | subject to y = Φf , (6)

where ∇ is the 2D Laplacian operator. Other CS recovery

methods can also be used to produce f (0), such as wavelet-

based method, DCT-based method, matching pursuit, etc.

The impact of the estimation errors et = f − f (t) on the

solution of (4), t = 0, 1, · · · , is greatly reduced by imposing

the CS constraints on f (t) in (4), because error terms in et are

approximately i.i.d. and have zero mean in practice. Indeed,

it follows from Aet ≈ 0 that

y = ΦAf (t)

= ΦAf − ΦAet

≈ ΦAf ,

(7)

meaning that the use of y = ΦAf (t) has almost the same

effect as though the true f was known.

As to the termination criterion for the EM-based MARX

algorithm, we monitor the successive model fit errors δt =
‖f (t+1) − A(t)f (t+1)‖, which are byproduct of solving (5).

The MARX algorithm terminates when δt−1 − δt < ε.
In (4) the N sets of PAR parameters (all N row vectors of

A) are estimated jointly. The complexity of the MARX algo-

rithm can be greatly reduced without materially affecting the

performance by estimating a(t)
n individually, n = 1, 2, · · · , n,

in iteration t of the EM estimation process. Estimating A one

row vector at a time reduces the number of unknowns by N

folds. Denote by w̃(t)
n = (f (t)

n , f
(t)
n�1, · · · , f (t)

n�K) − μn1 the

mean-removed feature vector of the tth estimated pixel f
(t)
n ,

and let

A(t)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(t−1)
1

a(t−1)
2

...

a(t)
n

...

a(t−1)
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Then, the original sparse estimation problem of (4) can be

broken into N �1 minimization problems of much smaller

size, and solved approximately:

min
a
(t)
n

‖a(t)
n ‖�1

subject to |a(t)
n f − f

(t)
i | ≤ κ‖w̃(t)

n − w̃(t)
i ‖,

i ∈ {ı | ‖w̃(t)
ı − w̃(t)

n ‖ < τ}
y = ΦA(t)

n f (t)

n = 1, 2, · · · , N

(9)

3. MARX WITH PATTERN CLASSIFICATION

In the previous section the MARX algorithm employs N dis-

tinct PAR models, one for each pixel fn, 1 ≤ n ≤ N . The

intent is to allow the maximum degree of freedom in mod-

eling. However, for natural images, the second order statis-

tics may change spatially but the change is smooth. Further-

more, the change may be periodic so that a waveform can

repeat itself in different locations. Therefore, we can induce

an even stronger structure in the spare matrix A by classi-

fying the set of feature vectors {w̃n}1≤n≤N into C repre-

sentative waveforms, and describe the image f in the MARX

framework by C 
 N PAR models, one per classified wave-

form. The classification is performed by a vector quantizer

Q : R
K+1 → {1, 2, · · · , C}. In the vector quantization the

difference metric D : R
(K+1)×(K+1) → [0,∞) between two

mean-removed feature vectors w̃i and w̃j is defined as

D = η‖w̃i, w̃j‖�2 + (1 − η)d(i, j) (10)

where ‖w̃i, w̃j‖�2 is the �2 distance between two waveforms

w̃i and w̃j , and d(i, j) is a geometric distance between pixels

i and j. The affine weight η is used to adjust the relative

importance of the two distance components.

Let qn = Q(w̃n) ∈ {1, 2, · · · , C} be the index of the

feature class that w̃n falls into, âc be the model parameter

vector for class c. Define the permutation πn on the elements

of âc such that fn = πn(âc)f +v. Now the coefficient matrix

of the C PAR models becomes

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1(âq1)
π2(âq2)

...

πn(âqn
)

...

πN (âqN
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

in which there are only C 
 N distinct row vectors up to the

permutation as the same model âc acts on all pixels n ∈ {ı |
Q(w̃ı) = c}. The feature classifier Q imposes strong signal-

dependent structures in the sparse model parameter matrix A,
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Table 1. The PSNR (dB) results for different CS recovery

methods.

Image Method
Number of measurements

10 % 20 % 30 % 40 %

Vessels
TV 21.81 26.23 29.96 33.18

MARX 26.10 32.59 36.30 39.06

MRA-Brain
TV 20.21 23.55 26.40 29.15

MARX 22.31 26.54 29.49 31.87

Micrograph TV 20.08 22.66 24.84 26.76

image 1 MARX 21.69 25.86 28.62 30.67

Micrograph TV 19.12 21.15 23.12 24.98

image 2 MARX 20.42 23.87 26.53 28.67

Barb part TV 19.45 20.14 21.03 22.19

(256 × 256) MARX 19.46 23.65 27.87 30.20

Boats
TV 25.68 28.89 31.46 33.74

MARX 27.70 31.82 34.67 36.90

Monarch
TV 24.36 28.82 32.03 34.84

MARX 27.05 31.40 34.28 36.79

and reduces the MARX objective function to

min
â1,â2,··· ,âC ,f

∑
1≤c≤C

‖âc‖�1

subject to |πn(âqn
)f − fni

| ≤ κ‖w̃n − w̃ni
‖

1 ≤ n ≤ N, ni ∈ {ı | ‖w̃ı − w̃n‖ < τ}
y = ΦÂf

(12)

The EM-based MARX algorithm developed in the previ-

ous section can be extended to solve the estimation problem

of (12), by replacing A(t) with Â(t).

4. EMPIRICAL RESULTS AND REMARKS

In this section, we report experimental results of the proposed

MARX technique and discuss our findings. To highlight the

importance of spatial adaptability of a CS recovery method

and the efficacy of MARX in this regard, we conduct a com-

parative study between MARX and the total variation method

(TV) method, which is the best in PSNR among all CS meth-

ods posted in [8]. The software of the TV methods in our eval-

uation was downloaded from [9]. A fairly general set of test

images was used in our comparative study, including photo-

graphic images commonly found in the literature (e.g., Boats,

Barb and Monarch) and many biomedical images.

Table 1 lists the PSNR values versus the number of CS

measurements (presented as the percentage of the total num-

ber of pixels) for the two different CS recovery methods. The

MARX algorithm consistently outperforms the TV method

over all numbers of CS measurements by significant margins.

Fig. 1 is for an evaluation of tested methods in terms

of visual quality. These results manifest the superiority of

the MARX approach in preserving the structures and details

of edges and textures. Its structure preserving ability is at-

tributed to the underlying piecewise autoregressive model

that adapts to spatially varying second-order statistics of the

image signal.

(a) Original

(b) TV recovery with 15% measurements (24.22 dB)

(c) MARX with 15% measurements (30.04 dB)

Fig. 1. CS recovered MRA-Vessels images.
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