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Abstract—Over the last few years, hyperspectral image data have
been collected for a large number of locations over theworld, using a
variety of instruments for Earth observation. In addition, several
new hyperspectral missions will become operational in the near
future. Despite the increasing availability and large volume of
hyperspectral data in many applications, there is no common
repository of hyperspectral data intended to distribute and share
free hyperspectral data sets in the community. Quite opposite, the
hyperspectral data setswhich are available for public use are spread
among different storage locations and exhibit significant heteroge-
neity regarding their format, associated meta-data (if any), or
ground-truth information. The development of a standardized
hyperspectral data repository is a highly desired goal in the remote
sensing community. In this paper, we take a necessary first step
toward the development of a completely open digital repository for
remotely sensed hyperspectral data. The proposed system (avail-
able online for public use at: http://www.hypercomp.es/repository)
allows uploading new hyperspectral data sets alongwithmeta-data,
ground-truth, analysis results, and pointers to bibliographic refer-
ences describing the use of the data. The current implementation
consists of a front-end which allows management of hyperspectral
images through a web interface. The system is implemented on a
parallel cluster system in order to guarantee storage availability and
fast performance. The system includes a spectral unmixing-guided
content-based image retrieval (CBIR) functionality which allows
searching for images from the database using queries or available
information such as spectral libraries. Specifically, for each new
hyperspectral scene which is cataloged in our system, we extract the
spectrally pure components (endmembers) and their associated
fractional abundances, and then store this information as meta-
data associated to the hyperspectral image. The meta-data can be
used to efficiently retrieve images based on their information
content. In order to accelerate the process of obtaining the meta-
data for a new entry in the system, we develop efficient implementa-
tions of spectral unmixing algorithms on graphics processing units
(GPUs). This paper particularly focuses on the software design
of the system and provides an experimental validation of the
unmixing-based retrieval functionality using both synthetic and
real hyperspectral images.

Index Terms—Content-based image retrieval (CBIR), graphics
processing units (GPUs), hyperspectral imaging, parallel
computing, spectral unmixing.

I. INTRODUCTION

T HE incorporation of content-based image retrieval (CBIR)
[1] techniques into remote sensing data repositories offers

significant advantages from the viewpoint of effectively manag-
ing, storing, and retrieving large volumes of remotely sensed data
[2]. Hyperspectral imaging (also known as imaging spectroscopy
[3]) is a fast growing area in remote sensing. Hyperspectral
scenes consisted of hundreds of images (at different wavelength
channels) for the same area on the surface of the Earth, thus
generating very large data volumes that need to be efficiently
stored and managed. The interpretation of remotely sensed
hyperspectral scenes is also an increasingly relevant research
topic involving many different analysis techniques [4].

In order to provide an idea of available and future missions for
Earth observation using hyperspectral instruments, Table I pro-
vides a summary of the main characteristics of eight hyperspec-
tral instruments: two airborne (HYDICE [5] and AVIRIS [6])
and six spaceborne (HYPERION [7], EnMAP [8], PRISMA [9],
CHRIS [10], HyspIRI [11], and IASI [12]). From this list,
EnMAP, PRISMA, and HyspIRI are not yet operational. The
spatial resolutions are generally higher for airborne instruments.
The spectral coverage of HYDICE, AVIRIS, HYPERION,
EnMAP, PRISMA, and HyspIRI corresponds to the visible, the
near-infrared, and the shortwave infrared spectral bands (typi-
cally, from 0.4 to 2.5 nm), whereas CHRIS covers only the
visible bands and IASI also covers themid-infrared and the long-
infrared bands. The number of spectral bands is approximately
200 for HYDICE, AVIRIS, HYPERION, EnMAP, PRISMA,
andHyspIRI, with a spectral resolution of the order of 10 nm. The
lowest number of bands is provided by CHRIS, with 63 bands
and spectral resolutions of 1.3 and 12 nm (depending on the
region of the spectrum).Quite opposite, instruments such as IASI
provide up to 8461 spectral bands. In all cases, the spectral
resolution is very high (offering a huge potential to discriminate
materials).

Several factors make the analysis of hyperspectral data a
complexandhard task, calling for sophisticatedanalysismethods.
Among these factors, we emphasize the presence of spectral
mixingeffects thathavebeengenerallyapproachedbyidentifying
a set of spectrally pure signatures in the scene (called endmembers
in spectral unmixing terminology) and their corresponding
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abundance fractions in each (mixed) pixel of the scene [13]. An
additional issue is the extremely high dimensionality and size of
thedata, resulting fromtheveryfinespatial, spectral, and temporal
resolutions currently provided by hyperspectral instruments (see
Table I). This demands fast computing solutions that can acceler-
ate the interpretation and efficient exploitation of hyperspectral
data sets in various applications [14]–[16].

Although the amount and volume of hyperspectral image data
have been significantly increased in recent years, with a large
number of data sets already collected over different locations
over the world and several newmissions under development, the
data sets which are available for public use are spread among
different storage locations and present significant heterogeneity
regarding the storage format, associated meta-data (if any), or
ground-truth availability. As a result, only a few data sets are
recurrently used to validate hyperspectral imaging applications,
and available data are highly fragmented. Nowadays, it is
estimated that a large fraction of collected hyperspectral data
sets are never used, but simply stored in different databases. Even
if the use of standardized benchmark data is quite interesting
from the viewpoint of algorithm comparison, there is a need to
increase the pool of benchmark hyperspectral data sets available
to the community in order to allow a more appropriate selection
of specific test data for different applications. This functionality
is already available in other systems which are able to effectively
provide remotely sensed data on-demand and with high retrieval
performance [17]–[20]. At present, there is no common reposi-
tory of hyperspectral data sets which can effectively distribute
such data among potential users. Since the amount and volume of
hyperspectral data are expected to significantly increase with the
newmissions described in Table I, a highly desirable objective in
the hyperspectral imaging community is to develop new tools to
effectively share large amounts of hyperspectral data together
with their high-level associated information (e.g., ground-truth,
analysis results, pointers to bibliographic references describing
previous results on the data, etc.)

In this paper, we take a necessary first step toward the
development of a completely open and shared digital repository
for remotely sensed hyperspectral data with CBIR functionality.
The system is implemented on a cluster of PCs [each one
equipped with a graphic processing unit (GPU)] and takes
advantage of spectral unmixing concepts to generate effective
meta-data for image retrieval purposes, thus allowing potential
users of the system to effectively retrieve images based on their

content. Here, we use the information provided by spectral
unmixing (i.e., the spectral endmembers and their associated
abundances) as meta-data to assist users in the task of efficiently
searching hyperspectral image instances in our repository. Each
time a new hyperspectral image is stored in our system, a full
spectral unmixing chain is run in order to automatically obtain
the meta-data and catalog the scene. Additional information (if
available) can also be introduced for each new scene and will be
stored in the parallelfile systemof the cluster. Once themeta-data
has been generated and the image has been stored in the database,
it can be retrieved by a query provided by the user, such as
spectral signatures of interest in a previously available library or
the minimum abundance of the spectral materials that should be
present in the retrieved scenes. In order to deal with the compu-
tational cost of extracting the information needed to catalog a
new hyperspectral image in our system, we use an efficient GPU
implementation of the full spectral unmixing chain to enhance
the storage and retrieval process. The proposed system is experi-
mentally validated in this work using both synthetic and real
hyperspectral scenes already included in the system.

The remainder of the paper is organized as follows. Section II
describes related work in the development of CBIR systems
for hyperspectral image retrieval and also in the design of
efficient GPU implementations of spectral unmixing algorithms.
Section III describes the software implementation of the pro-
posed system, which is composed of three main layers: 1) client
layer, which defines the interactions between the user and the
system through a web interface; 2) server layer, which manages
the requests from end-users; and 3) processing layer, in charge of
more complex processing tasks such as generation of meta-data
or image retrieval. Section IV presents an experimental valida-
tion of the system. For this purpose, we use a collection of
synthetic and real hyperspectral data sets which are already
available in the system. Section V concludes the paper with
some remarks and hints at plausible future research lines.

II. RELATED WORK

This section describes related work focused on the develop-
ment ofCBIR strategies andGPU implementations in the context
of spectral unmixing applications. These topics are the main
ingredients of our newly proposed system and therefore, we
illustrate previous developments in those areas before introduc-
ing our system.

TABLE I
MAIN CHARACTERISTICS OF SEVERAL (AVAILABLE AND NEW) HYPERSPECTRAL IMAGING INSTRUMENTS
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A. CBIR Systems for Hyperspectral Images

There have been several attempts toward the development of
CBIR systems in the area of hyperspectral imaging. One of the
most relevant ones was described in [21], which presents a
spectral/spatial CBIR system for hyperspectral images. The
authors use endmember induction algorithms to extract a set of
image spectral features, and then compute spatial features as
abundance image statistics. These two sources of information are
then combined into a dissimilarity measure that guides the search
for answers to database queries [22]. In this context, each
hyperspectral image is characterized by a tuple given by the set
of induced endmembers and the set of fractional abundancemaps
resulting from an unmixing process conducted using three stages
[23]. For the estimation of the number of endmembers, the
authors use the virtual dimensionality (VD) [24] method. For
the endmember induction step, the authors use three different
methods: 1) a fast implementation of the pixel purity index
(PPI) algorithm [25], called fast iterative PPI (FIPPI) [26];
2) the volume-based N-FINDR method [27]; and 3) the incre-
mental lattice strong independence algorithm (ILSIA) [28].
For the estimation of the fractional abundances of inducted
endmembers, the authors use a fully constrained least-squares
unmixing (FCLSU) algorithm [29]. The authors validate their
approach using synthetic data and a real hyperspectral data set
(with pixels and 125 spectral bands, cut in patches of

pixels for a total of 360 patches).
A similar strategy is employed in [30], which presents a

parallel heterogeneous CBIR system for efficient hyperspectral
image retrieval using spectral mixture analysis. Here, the PPI
algorithm performs endmember extraction and FCLSU estimates
the abundances. A spectral signature matching algorithm guides
the queries to the database. This algorithm first considers the
spectral angle distance (SAD) [31] in order to retrieve images by
means of an endmember-guided similarity criterion, and then
the search is refined by analyzing the relative difference between
the abundance fractions associated to the retrieved image and the
example image for the search. Another contribution of [30] is an
efficient implementation of the system for heterogeneous net-
works of computers, possibly distributed among different loca-
tions. This idea arised from the naturally distributed format of
hyperspectral image databases. The system was tested using a
collection of 154 hyperspectral data sets collected by theAVIRIS
sensor over theWorld TradeCenter area inNewYork, only a few
days after the terrorist attacks of September 11, 2001. The
implementation used a heterogeneous network of 16 worksta-
tions, and also the NASA Thunderhead cluster1 with 256 CPUs,
providing good results in terms of image retrieval accuracy and
parallel performance.

B. GPU Implementations of Spectral Unmixing Techniques

In recent years, GPUs have evolved into highly parallel,
multithreaded, many-core coprocessors with tremendous
computational power and memory bandwidth [32]. The com-
bined features of general-purpose supercomputing, high paral-
lelism, high memory bandwidth, low cost, compact size, and

excellent programmability are now making GPU-based desktop
computers an appealing alternative to massively parallel systems
made up of commodityCPUs. The explodingGPUcapability has
attracted more and more scientists and engineers to use it as a
cost-effective high-performance computing platform in many
applications, including hyperspectral imaging problems. In ad-
dition, GPUs can also significantly increase the computational
power of cluster-based and distributed systems (e.g., clusters of
GPUs are becoming an important architecture for supercomput-
ing purposes.2).

Several efforts exploiting GPU technology can already be
found in the hyperspectral unmixing literature, including [33]
and references therein. Only in the area of spectral unmixing of
hyperspectral data, there have been many developments already.
A GPU-based implementation of an automated morphological
endmember extraction (AMEE) algorithm for pure spectral
signature identification was described in [34]. In this case,
speedups on the order of were reported. The well-known
PPI algorithm [35] has been implemented in GPUs using different
strategies [36], [37]. A GPU-based real-time implementation of
the vertex component analysis (VCA) algorithm [38] has also
been recently reported in [39]. A full spectral unmixing chain
[40], [41] comprising the automatic estimation of the number
of endmembers using the VD [42] or the hyperspectral sub-
space identification with minimum error (HySime) [43], the
identification of the endmember signatures using the N-FINDR
algorithm [27], and quantification of endmember fractional
abundances using unconstrained least-squares unmixing (ULS)
[44] has been reported in [45], with speedups superior to .
A variation of this chain using the orthogonal subspace projec-
tion (OSP) [46] instead N-FINDR for endmember identification
[47] was given in [48], achieving similar speedups and real-time
unmixing results. Since ULS provides abundances that are not
subject to constraints, a non-negative abundance estimation
method called image space reconstruction algorithm (ISRA)
[49], which was available in the form of a field programmable
gate array (FPGA) implementation [50], has been recently
implemented in multicore systems in [51]. Here, we will use
a newly developed implementation of the ISRA algorithm
for GPUs.

C. New Contributions of the Presented System

The digital repository that we present in this work is inspired
by some of the aforementioned developments, but, at the same
time, includes some new important features. These innovative
contributions can be summarized as follows.

1) The presented system uses a full unmixing chain to per-
form the cataloguing and retrieval of hyperspectral images
in the repository, as already discussed in [21] and [30].
However, the proposed implementation allows for more
complex search criteria than the ones presented in previous
contributions. Specifically, the queries in our system can
be defined by the spectral information (provided by end-
member signatures) and/or the spatial information (pro-
vided by abundances), in joint or separate fashion.

1http://science.gsfc.nasa.gov/606.1/docs/Specs.pdf. 2http://www.top500.org.
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2) Another important contribution of our system is the pos-
sibility to use previously available spectral libraries as the
main criteria in order to perform the query. In other words,
our tool allows automatically loading a spectral library and
using the spectra in such library in order to perform CBIR.
The user may select a few spectra from the library or even
the full library, using the selected spectral signatures as
input to a query. Hence, the increased availability of open
repositories of spectral libraries such as the SPECCHIO
project3 is a good complement to the system thatwe present
in this contribution.

3) The processing modules included in our system comprise
many well-established techniques in all parts of the full
hyperspectral unmixing chain. Specifically, our system
currently includes two methods for estimating the number
of endmembers (VD and HySime), two algorithms for
identifying the spectral signatures of the endmembers
directly from the data (N-FINDR and OSP), and two
methods for estimating the fractional abundances, uncon-
strained (ULS) and non-negatively constrained (ISRA).
GPU implementations for all thesemethods are included in
the system, thus allowing for fast cataloguing and meta-
data generation for new hyperspectral image scenes. It
should be noted that the GPU implementation of ISRAwas
specifically developed as part of this contribution as it was
not previously available.

4) Although the contribution [30] already discussed an effi-
cient implementation of an unmixing-based CBIR system
for hyperspectral imagery, this implementation was spe-
cifically developed for heterogeneous networks of work-
stations or clusters of computers, without taking advantage
of hardware accelerators such as GPUs which are now
widely available in modern clusters and supercomputers.
In this regard, the proposed system expands the parallel
features of the system in [30] and includes the use of GPU
accelerators, thus increasing the computational perfor-
mance significantly.

5) Last but not least, previous developments such as [21] or
[30] were not fully available to the community. In this
contribution, we present a fully open system, with an
advanced user interface, and implemented on a large
supercomputing facility: a cluster of GPUs available at
the Center of Advanced Technologies in Extremadura
(CETA-Ciemat), which is one of the most powerful clus-
ters of GPUs in Spain. As a result, the CBIR system that we
describe in this contribution is completely available for
public use.4 It contains several synthetic and real hyper-
spectral data sets that interested readers can use to conduct
their own experiments and include additional hyperspec-
tral data sets in the repository.

In the Section III, we describe the proposed system and its
different layers. Experimental results with the synthetic and real
hyperspectral data sets which are already included in the system
will be reported in Sections III–V.

III. PROPOSED CBIR SYSTEM

The proposed system has been implemented as a web service
composed of different layers. Itsmodular design provides quality
of service and scalability and allows adding and/or modifying
components without the need tomodify the system. On the client
layer, an intuitive web interface provides users with remote
access to the system. On the server layer, the system provides
data management and storage capabilities. On the processing
layer, the system provides advanced processing functionalities
for image cataloguing and retrieval. In order to accelerate the
CBIR process, parallel processing functionalities and GPU
implementations are also provided.

The remainder of this section, devoted to the description of our
system, is organized as follows. In Section III-A, we describe the
software architecture of the system and the different layers that
compose it. In Section III-B, we describe the structure of the
database that stores the hyperspectral data in our system.
Section III-C describes how the queries to the database are
carried out. Section III-D briefly outlines the parallel processing
modules and GPU implementations available in our system, as
well as their integration with the other components.

A. Software Architecture

As shown in Fig. 1, the software architecture of the proposed
system is formed by different layers, which can be defined by
their roles. The system follows a modular design in which the
communication between layers is defined using standard data
exchange formats and transfer protocols, so that any layer can be
modified as long as it can communicate with the rest of the
system. Our design has been carried out using free software tools
such as Symfony2,5 a full-stack web framework, while the
adopted format for data exchange is JavaScript Object Notation

Fig. 1. Architecture of the proposed hyperspectral image repository.

3http://www.specchio.ch.
4http://www.hypercomp.es/repository. 5http://symfony.com.
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(JSON),6 an open standard format that uses human-readable text
to transmit data objects. In the following, we describe the
different software layers that compose the system.

1) Client Layer: This layer defines the interactions between
the user (through an Internet browser) and our system and
is responsible for providing users secure remote access to the
system. A web interface has been designed using HTML5,7 the
most widely used web programming language, and CSS3,8 a
standard style language that improves the HTMLweb appearance.
In our software design of this layer, we also use jQuery9which is
a JavaScript-based library designed to make responsive and
dynamic websites and applications that are highly accessible. In
addition, the interaction between the user and theweb interface is
captured by the events handlers of the jQuery libraries. The web
interface transmits the request to the server layer via the hypertext
transfer protocol (HTTP), an application protocol for distributed,
collaborative, and hypermedia information systems, and the
foundation of data communication for the World Wide Web.
Most of the views are actually generated in the server, using
Symfony2, a robust web development framework.

2) Server Layer:Our system is implemented as a web service.
Thismeans that itsmain purpose is to deliverweb pages to a set of
clients (i.e., the users of our system), while it also receives
content from the clients. An advantage of this approach is that
no additional software has to be installed on the client computer,
since only a web browser is required. Many of the services
provided by the system are managed and executed on the server
layer, which is composed of several elementswith different roles.
As Fig. 1 shows, the web server handles web interface requests
(via HTTP) and manages the system resources, such as meta-data
storage and file data, in addition of handling algorithm
executions. The server layer can be considered as the main
engine of the system since it is in charge of managing and
connecting the different components of our system. The server
layer is also in charge of storing image meta-data, following a
database schema that is described in Section III-A3. MySQL,10 an
open-source relational databasemanager, has been selected since
it provides fast queries and low computational cost. This is a
popular choice of database for use inweb applications and has the
advantage that many programming languages (such as C/C++,
used for the development of our system) include libraries for
accessing MySQL databases. On the other hand, a file storage
server is also included in this layer for providing remote file
access to any of the layers of the system. This module is also in
charge of uploading and downloading file data, such as images
and meta-data, via the file transfer protocol (FTP), a standard
network protocol used to transfer files from one host to another
such as, in our case, the intermet. The file server provides image
data to the processing layer, which is described next.

3) Processing Layer: The processing layer is in charge of
executing algorithms with high computational cost, mostly
related with the cataloguing of new hyperspectral images in the

systemand the execution of queries for image retrieval. This layer
relieves thewebserver loadbyprovidinghighsystemavailability.
The processing layer is implemented in C/C++ using libraries to
access parallel computing facilities, which efficiently execute
requests coming from the web server. The execution requests
aremanagedvia secure shell (SSH), a network protocol for secure
data communication. Currently, our processing layer supports
efficient algorithm executions using a cluster of 44 GPUs at
CETA-Ciemat11 (called hereinafter CETA-GPU-Cluster). The
resources of the cluster are managed by the SLURM12 resource
manager, selected because of its scalability, performance, and
fault tolerance. Although not used in the current implementation,
the system is also ready for multicluster support, as indicated
in Fig. 1.

B. Database Structure

The structure of the database used to store hyperspectral
images is illustrated in Fig. 2. The database has been carefully
designed in order to store relevant information about the hyper-
spectral images which are stored in our system. In addition to
standard information about each scene, such as number of
samples, lines, bands, data type, byteorder, wavelength infor-
mation or interleave, we also store additional information such as
the endmembers and abundances associated to each scene (meta-
data), as well as additional (optional) information such as the
results and publications in which a certain hyperspectral scene
has been addressed, or the results obtained for the scene by
different algorithms. The meta-data are automatically generated
by the system using unmixing algorithms that are used to catalog
each scene, hence the procedure for uploading a new data set to
the system only requires basic information about the scene. In
addition, relevant information about previous analyses and
experiments with each scene can also be stored in the database
if available, while the unmixing results are used to generatemeta-
data that can be then used for retrieval purposes using different
queries. In Section III-C, we describe the structure of the queries
that can be carried out in order to retrieve hyperspectral scenes
from the database.

C. Queries

Our CBIR system allows an end-user to perform queries to the
hyperspectral image database described in Fig. 2. For each new
hyperspectral data set, the spectral endmembers and their corre-
sponding abundance maps can be obtained using a set of algo-
rithms implemented in the system. These algorithms conform a
full spectral unmixing chain made up of three steps: 1) the
number of endmembers to be extracted from the image can be
automatically calculated using the VD [24] or the hyperspectral
subspace identification with minimum error (HySime) [43]
methods; 2) the endmember signatures can be extracted using
two different methods: N-FINDR or an OSP [46] method im-
plemented using Gram–Schmidt (GS) orthogonalization [48];
and 3) abundance estimation can be either conducted using ULS

6http://www.json.org.
7http://www.w3.org/TR/html51.
8http://www.w3.org/Style/CSS.
9http://jquery.com.
10http://www.mysql.com.

11http://www.ceta-ciemat.es.
12https://computing.llnl.gov/linux/slurm.
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or ISRA. The information provided by endmember identification
and abundance estimation is then used as meta-data, to catalog
each image stored in the database. This allows for fast CBIR
functionality, as the meta-data provide a compact representation
of each scene in the database, and the full unmixing chain is
implemented efficiently in parallel (exploiting also the GPUs
available in the system). In the following, we describe the
searching methodology including aspects such as distance me-
trics and matching algorithms used for retrieval purposes. This
section concludes with a description of the searching strategy
from the end-user’s point of view, with particular emphasis on
the web interface developed and the searching options available
in the system.

1) Searching Methodology: Two searching options are
available in the proposed system. The first one relies on the
SAD in order to retrieve hyperspectral images with endmembers
that are similar to those available in a spectral library that can be
loaded in the system. A particular issue that may arise in this kind
of search is the fact that the wavelengths of the spectral library
used as input can be different from the wavelengths of the
hyperspectral images stored in the system. For this purpose,
we have implemented a spectral convolution strategy that looks
forwavelength valueswhich are present in both the hyperspectral
data and the input spectral library (with the possibility to include
a tolerance threshold in the wavelength matching procedure).
Inmost cases, the spectral resolution of the input signatures in the
spectral library is much higher than the images stored in the
database, and it is often possible to retrieve scenes with great
accuracy as their associated wavelengths are a subset of those of
the signatures in the spectral library.

On the other hand, the system also allows queries based on the
specific abundance of a given endmember. For instance, we may
not only look for scenes with a specific kind of vegetation
(endmember), but also with a significant presence (abundance)
of this kind of vegetation in the retrieved scene. For this purpose,
we may set a minimum threshold for the abundance of a given
endmember (or group of endmembers) in the retrieved scene.
This is implemented by calculating the total abundance of each of
the endmembers in the scene, summing all the relative contribu-
tions in each pixel and obtaining the total abundance coverage of
an endmember in the scene. Then, we may impose a minimum

abundance threshold that is used in the retrieval process. In this
way, we can effectively perform image retrieval based on both
endmember and abundance information (i.e., not only retrieving
scenes that contain a certain endmember but also scenes that
contain a certain amount of a given endmember). Since this
information is available as meta-data for each scene, the retrieval
process is quite fast and the most computationally expensive part
is the generation of the meta-data itself, which is carried out in
parallel as will be explained at the end of this section.

2) Search Procedure: From an end-user’s point of view, a
standard search procedure in our system can be summarized by
the following steps.

1) Initialization. In this step, a spectral library of signatures
used for the search is loaded in the system.

2) Spectral convolution. The system automatically performs a
spectral convolution strategy that allows comparing the
wavelengths of the input spectral library with the wave-
lenghts of the real hyperspectral data stored in the system.

3) Signature comparison. For a spectral signature (or set of
signatures) available in the loaded spectral library, the
system calculates the SADwith all the endmembers stored
as meta-data for each hyperspectral scene in the system,
and retrieves a number of matching scenes satisfying the
specified criterion.

4) Abundance filter. As an optional step, the system allows
defining a minimum abundance filter which is used as an
additional condition to the signature comparison described
in the previous step. In this case, the image is retrieved only
if the matching endmember contains a total abundance in
the scene that is higher than a minimum predefined abun-
dance threshold.

5) Sorting and visualization. The retrieved images are shown
to the user sorted from higher to lower spectral similarity
(lowest to highest spectral angle).

In the following, we provide a simple step-by-step example
illustrating how to perform a simple hyperspectral image retriev-
al task in our system. Fig. 3(a) shows a general overview of our
system, which allows guest access (this option does not allow
uploading new images in the system). Full access to the system is
also available upon request, including the image uploading
functionality. The system is now fully operational, although still

Fig. 2. Structure of the database used to store hyperspectral images in our system.
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Fig. 3. (a) General overview of the system. (b) Catalog panel of the system. (c) Example of a query.
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in beta version, and allows any interested user to obtain a fully
operational account.

Fig. 3(b) shows the catalog panel of the system, which allows
for automatically extracting meta-data for each new hyperspec-
tral scene that is uploaded in the system. The user can decide
between two algoritms for estimating the number of endmembers
(VD and HySime), two algorithms for identifying endmember
signatures (N-FINDR and OSP-GS), and two algorithms for
estimating the endmember abundance signatures (LSU and
ISRA). The user can also decide in which computing resource
the algorithms will be run. If the option CETA-GPU-CLUSTER
is activated, the algorithms will be executed in the cluster of
GPUs. After the algorithms have been executed, the results
obtained are visualized and the user can decide the best combi-
nation of algorithms in order to catalog the hyperspectral scene.
Once the procedure is completed, the hyperspectral imagewill be
automatically cataloged using themeta-data obtained, and stored
in the database structure described in Fig. 2.

Fig. 3(c) shows an example of a query, in which the United
States Geological Survey (USGS) library13 is loaded in our
system and two specific spectral signatures (muscovite and
kaolinite) are used to define the query. The spectral similarity
threshold is set to 3 degrees and the minimum abundance is set to
5% (this means that we are looking for hyperspectral scenes
containing at least 5% muscovite and 5% kaolinite). The system
now provides information on the images retrieved. For the first
one in the list, the system estimates 8.48% of muscovite and
8.97% of kaolinite. In this case, the spectral similarity scores are
very high, with less than one degree in the spectral similarity test
for both endmembers. As a result, the end-user can infer that this
scene accurately satisfies the search criterion. Since there are
other scenes retrieved, the end-user may decide to select another
hyperspectral image retrieved by the query (the images are
ordered according to the combined spectral similarity score
resulting from the query).

D. Parallel Implementations

As mentioned above, the extraction of meta-data for a given
hyperspectral image has been efficiently implemented in a cluster
of GPUs called CETA-GPU-CLUSTER. The GPU implementa-
tions have been carried out using the compute unified device
architecture (CUDA) developed byNVidia. The architecture of a
GPU can be abstracted as a set of multiprocessors (MPs), in
which each MP is characterized by a single instruction multiple
data (SIMD) architecture, i.e., in each clock cycle, each processor
executes the same instruction but operating on multiple data
streams. Each processor accesses a local sharedmemory and also
local cachememories in theMP,while theMPs have access to the
global GPU (device) memory. GPUs can be, therefore, abstract-
ed in terms of a stream model, under which all data sets are
represented as streams (i.e., ordered data sets). Algorithms are
constructed by chaining so-called kernels which operate on
entire streams and which are executed by an MP, taking one or
more streams as inputs and producing one or more streams as
outputs. Thereby, data-level parallelism is exposed to hardware,

and kernels can be concurrently applied without any sort syn-
chronization. The kernels can perform a kind of batch processing
arranged in the form of a grid of blocks, where each block is
composed by a group of threads that share data efficiently
through the shared local memory and synchronize their execu-
tion for coordinating accesses to memory (see Fig. 4). It should
be noted that all implementations have been carried out using
only one of the GPUs available in the cluster, since the com-
plexity of the scenes currently stored in the system allows
completing the cataloguing in a few seconds only. However,
the system allows using the full cluster of 44 GPUs available if
needed, using a hybrid implementation based on MPI14 and
CUDA. Additional details about the GPU implementations of
the algorithms currently used by the system for cataloguing
purposes can be found in [52] and [53].

IV. EXPERIMENTAL RESULTS

The performance of the proposed unmixing-based CBIR
system has been evaluated from two different perspectives: 1) its
ability to retrieve hyperspectral images of interest from the set of
cataloged ones available in the system; and 2) the efficiency in
cataloguing and retrieving hyperspectral images. Experiments
have been conducted using both synthetic images (in a fully
controlled environment) and also representative real hyperspec-
tral images. The remainder of the section is organized as follows.
First, we describe the synthetic and real hyperspectral data sets

Fig. 4. Different levels of memory in the GPU for the thread, block, and
grid concepts.

13http://speclab.cr.usgs.gov. 14http://www.mcs.anl.gov/research/projects/mpi.
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used in our experiments. Then, we perform an evaluation of the
system from the viewpoint of retrieval accuracy. Finally, we
perform an evaluation from the viewpoint of computational
efficiency.

A. Hyperspectral Data

1) Synthetic Data: The main reason for using synthetic data in
our evaluation of retrieval accuracy is that these kind of images
can be generated in a fully controlled environment. As a result,
algorithm accuracy can be effectively validated and tested. In this
work, we have used a set of synthetically generated images using
fractals. We have selected fractals because they can simulate
naturally occurring patterns in nature. For illustrative purposes,
Fig. 5 displays the five fractal images used in our simulations.
The procedure for generating one of our simulated images is
depicted in Fig. 6, in which a fractal image is used to simulate
spatial patterns. The -means clustering algorithm is adopted to
select a set of clusters from the fractal image. Then, a procedure
starts which assigns a set of spectral signatures from a spectral
library to each region resulting from the clustering step
mentioned before. A crucial step in the simulation procedure
is how to assign a spectral signature to each cluster. For this
purpose, we have implemented an automatic procedure that
follows a simple strategy, in which signatures are first
assigned to spatially disjoint regions belonging to different
clusters. The remaining regions are then assigned spectral
signatures in an automatic way, ensuring that: 1) spatially
adjacent clusters always have different signatures associated
to them; and 2) there is a balance among the overall number
of pixels in the image which are associated to each spectral
signature. Inside each region, the abundance proportions of
spectral signatures have been generated following a procedure
that tries to imitate reality as much as possible, i.e., those pixels
closer to the borders of the regions aremore heavilymixed, while
the pixels located at the center of the regions are more spectrally
pure in nature. This is accomplished by linearly mixing the
signature associated to each cluster with those associated to
neighboring clusters, making sure that the most spectrally pure
signature remains at the center of the region while signature
purity decreases linearly away from the center to the borders of
the regions. With the aforementioned procedure, the simulated
regions exhibit the following properties.

1) All the simulated pixels inside a region are mixed, and the
simulated image does not contain completely pure pixels.
This increases the complexity of the unmixing problemand
simulates the situation often encountered in real-world
analysis scenarios, in which completely pure pixels are
rarely found.

2) Pixels close to the borders of the region are more heavily
mixed than those in the center of the region.

3) If the simulated region is sufficiently large, the pixels
located at the center can exhibit a degree of purity of
99% of a certain endmember. However, if the size of the
simulated region is small, the degree of purity of pixels at
the center of the region can decrease until 95% of a certain
endmember, while pixels located in the region borders are
generally more heavily mixed.

To conclude the simulation process, zero-mean Gaussian
noise was added to the scenes in different signal-to-noise ratios
(SNRs) of 10:1, 30:1, 50:1, 70:1, 90:1, and 110:1 to simulate
contributions from ambient and instrumental sources, following
the procedure described in [54]. For illustrative purposes, Fig. 6
shows the spectra of the United States Geological Survey
(USGS) library15 used in the simulation of one of the synthetic
scenes (labeled as “Fractal 1”). In total, we considered five
different fractal images (first simulated without noise, i.e., with

) and then six different versions of each scene cor-
rupted with different noise levels, which gives a total of 30
synthetic images, all of them available in our system for
public use.

2) Real Data: In addition to the 30 synthetic images described
in Section IV-A, our repository has currently 12 additional real
hyperspectral images for a total of 42 hyperspectral images and
total space of about 2 GB. It is worth noting that the repository is
ready to receive additional scenes from end-users so that the
database can grow. For the experiments that will be described in
Section IV-B, we have considered three well-known
hyperspectral images with reference information (and which
have been widely used in recent hyperspectral imaging
literature) in order to substantiate both the retrieval accuracy

Fig. 5. Fractal images used in our simulations.

Fig. 6. Procedure used for generating a synthetic hyperspectral image from
a fractal image.

15http://www.speclab.cr.usgs.gov.
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and parallel performance of the proposedCBIR system. Since the
images comprise different analysis scenarios, sizes, and
properties, our selection is expected to be sufficiently
heterogeneous to provide an evaluation of the system from
different perspectives.

1) The first scene used in our experiments is the AVIRIS
Indian Pines data set, which comprises 145 lines, 145
samples, and 220 spectral channels between 400 and
2500 nm, and a total size of around 9 MB. This scene has
been widely used as a benchmark in classification applica-
tions, and contains detailed ground-truth in the form of a
ground-truth map with 16 mutually exclusive classes.

2) The second scene used in our experiments is the AVIRIS
Cuprite data set, comprising 350 lines, 350 samples, and
188 spectral channels between 400 and 2500 nm and a total
size of around 50 MB. The spectral signatures of the
minerals comprised by this scene are available in theUSGS
spectral library. This scene has been widely used as a
benchmark in spectral unmixing applications [55].

3) The third scene used in our experiments is the AVIRIS
World Trade Center data set, comprising 512 lines, 614

samples, and 224 spectral channels between 400 and
2500 nm and a total size of around 140 MB. This scene,
which has been widely used as a benchmark in target and
anomaly detection applications, comprises reference in-
formation available in several forms.16

B. Evaluation of Image Retrieval Accuracy

In order to illustrate the performance of our CBIR system, we
specifically address a case study in which the synthetic images
described in Section IV-A are used to substantiate retrieval
accuracy using different noise conditions. For illustrative pur-
poses, we also use theAVIRISCuprite scene to evaluate retrieval
accuracy with real hyperspectral data. The two metrics that we
have used in our experiments (and which are included in the
presented system) are the SAD in endmember comparison and
the root-mean-square error (RMSE) in the estimated abundance
fractions [31]. These two metrics are widely used in the hyper-
spectral unmixing literature and constitute the main evaluation
metrics included in our system.

TABLE II
SAD (DEGREES) AND ROOTMEANRECONSTRUCTION ERROR (RMSE) IN ABUNDANCE ESTIMATIONOBTAINEDUSINGNINEUSGSMINERAL SPECTRA (THOSEUSED TOCONSTRUCT

THE FRACTAL SYNTHETIC SCENES USED IN OUR EXPERIMENTS) AS INPUT TO A QUERY ON OUR DATABASE OF HYPERSPECTRAL SCENES

The similarity results obtained for thefive synthetic scenes (on average)with different noise ratios and for theAVIRISCuprite scene are reported. In all cases, the scenes
were cataloged using a spectral unmixing chaing given by VD+N-FINDR+ISRA.

16http://www.speclab.cr.usgs.gov/wtc.
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Table II shows the SAD and RMSE results obtained after
using a query based on the nine USGS spectral signatures that
were used to construct the fractal synthetic images: Kaolinei-
teKGA-l(wxyl), Dumortierite HS190.3B, Nontronite GDS41,
Alunite GDS83 Na, Sphene HS189.3B, Pyrophyllite PYS1A,
Halloysite NMNH10623, Muscovite GDS108, and Kaolinite
CM9. The algorithms used to catalog the scenes were VD,
N-FINDR, and ISRA. As shown in Table II, the SAD and RMSE
scores obtained for the synthetic scenes generally decrease as the
amount of simulated noise is lower, with SAD scores well below
10 for SNR levels of 30:1 or below. Since the worst case for the
SAD is 90 , this is considered to be a good similarity score. In
other words, the SAD metric reveals that our system can effec-
tively retrieve the scenes containing endmembers which are
highly similar, spectrally, to those used in the set of input
signatures used to launch the query. The results reported in
Table II for the RMSE metric follow a similar pattern. These
results could not be obtained for the AVIRIS Cuprite scene since
the ground-truth abundances are difficult to obtain in real
scenarios, but in this case we used the RMSE between the
original and the reconstructed scene using the endmembers and
abundances derived by the considered unmixing chain. The
overall reconstruction error obtained in this case was very low
(0.158) [56], indicating that this strategy can also be used as a
retrieval criterion including abundance information in the case
that no ground-truth information is available.

C. Evaluation of Parallel Performance

The computational performance of the proposed CBIR system
has been evaluated using the CETA-GPU-CLUSTER with 44
NVidia TESLA C205017 GPUs, each of which features 448
streaming processor cores with 1.15 GHz, with single precision

floating point performance of 1.03 Tflops, double precision
floating point performance of 515 Gflops, total dedicated mem-
ory of 3 GB, and memory bandwidth of 144 GB/s. Each GPU is
connected to a multicore CPU of type Quad Core Intel Xeon at
2.26 GHz with four physical cores, and 24 GB of DDR3 SRAM
memory. The GPU is mounted on a Bullx R422.18 Before
describing our results, it is important to emphasize that our GPU
versions provide exactly the same results as the serial versions of
the algorithms, implemented using the gcc (gnu compiler de-
fault) with optimization flag –O3. The serial algorithms were
executed in one of the available cores of the system. Since the
hyperspectral images contained in our repository can all fit the
video memory of a single GPU (3 GB), we report the processing
results obtained in a single GPU, although our system is ready to
use the full cluster with 44 GPUs in parallel if needed. This is
mainly because the current volume of stored hyperspectral data
makes computations manageable with a single GPU. Since the
computational requirements of the system can be currently
managed with one GPU unit, we have decided to provide results
based on the utilization of a single GPU. In the future, if the
system grows as we expect with the addition of new data sets
from external users, we may need to resort to a multi-GPU
implementation. This is perfectly feasible, since the system has
been designed with this configuration in mind, although current-
ly we only need to use one GPU device. Another important
consideration is that working in a single GPU reduces commu-
nication time, particularly if the scenes can be allocated into a
single GPU memory. However, the communication overheads
for a full multi-GPU implementation could be significant and it
would be necessary to fully test our implementation in this
scenario. In any event, we expect the searching part to scale

TABLE III
PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE GPU IMPLEMENTATION OF VD, N-FINDR, AND ISRA ALGORITHMS USED TO CATALOG THREE REAL

HYPERSPECTRAL SCENES AVAILABLE IN OUR CBIR SYSTEM

The table reports the mean values and the standard deviations measured across 10 algorithm executions.

17http://www.nvidia.co.uk/object/product_tesla_C2050_C2070_uk.html.

18http://www.bull.com/catalogue/details.asp?tmp=bxs-rack-fr&opt=ns-
r422e02&dt=ft&cat=bullx.
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properly with the GPU number since our search strategy is based
on comparing the spectral endmembers and the abundance
fractions using standard distance metrics. The most challenging
part would be the cataloguing of a new scene using different
endmember extraction techniques, as it will depend on the
considered endmember extraction strategy, but in this case the
cataloguing will take place only once (at the beginning) and
the results would be then immediately available for searching
purposes.

In the following, we analyze the processing times (in seconds)
used by our system in the process of cataloguing three real
hyperspectral scenes using two different unmixing chains. In
each experiment, 10 runs were performed and the mean values
were reported. We include the initialization times in our experi-
ments since, as mentioned before, these times are generally
higher in a GPU cluster rather than in single GPUs’ devices,
which is due to the fact that the communications between the
nodes of the cluster introduce a slight delay in the process.
Table III shows the processing times of the first unmixing,
based on VD for identification of the number of endmembers,
N-FINDR for endmember signature finding, and ISRA for non-
negative abundance estimation. In the case of N-FINDR, a
dimensionality reduction of the original scene using PCA is
conducted, hence we report the times for the PCA and for the
N-FINDR algorithm in this case. Furthermore, Table IV shows
the timing results obtained by a second unmixing chain made
up of HySime for finding the number of endmembers, OSP-GS
for extracting the endmember signatures, and ULS for uncon-
strained abundance estimation. In both Tables III and IV, we
display the CPU and GPU times (including the initialization
required in the GPU cluster) and the speedup of the GPU version
over the CPU one. As shown by the Tables III and IV, using only
one GPU of the cluster can already significantly accelerate the
cataloguing process for the three considered scenes, which takes

only a few seconds in all cases and with significant speedups.
The initialization times (retained in our results in order to give an
idea of the performance of the system in a GPU cluster, even if
only one GPU is really used for the calculations) are not
significant. This means that, once a new hyperspectral scene has
been uploaded into our system, its associated meta-data can
be efficiently generated in automatic fashion for subsequent
retrieval. It is also worth noting that the results of the cataloguing
can be dynamically selected, i.e., the end-user may decide to use
any algorithm combination to catalog a scene. In this regard,
Tables III and IV show two among many possibilities that can be
derived by different combinations of the available blocks to
conform different unmixing chains. Also, as Tables III and IV
show, the speedups obtained increase with the hyperspectral
image size.

V. CONCLUSIONS AND FUTURE LINES

In this paper, we have presented a new digital repository for
hyperspectral image data that allows uploading and retrieving
images through aCBIR functionality based on spectral unmixing
concepts. The current version is implemented as a web service,
which allows remote user access through a web interface while a
server is in charge of managing the repository database and
performing algorithm executions. The most computationally
expensive operations (such as meta-data generation) are effi-
ciently implemented in parallel. We have used well-known
algorithms in the spectral unmixing community in order to
generate suitable meta-data for retrieval purposes, based on
relatively complex queries including both endmember and abun-
dance information. Our main focus on this work has been on
describing the different software layers of the system, as well as
on conducting a detailed evaluation based on synthetic and real
data. The synthetic data sets allowed us to evaluate the

TABLE IV
PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE GPU IMPLEMENTATION OF HYSIME, OSP-GS, AND ULS ALGORITHMS USED TO CATALOG THREE REAL

HYPERSPECTRAL SCENES AVAILABLE IN OUR CBIR SYSTEM

The table reports the mean values and the standard deviations measured across 10 algorithm executions.
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performance of the system in a fully controlled scenario, while
the real image data sets provided a practical illustration of the
system with widely used hyperspectral data sets. The proposed
system is fully available for public use and represents a first step
toward a standardized hyperspectral data repository data in-
tended to distribute and share hyperspectral data sets in the
community. The proposed system is expected to increase the
value of the data acquired by available and new airborne/satellite
hyperspectral imaging instruments, and to improve the availabil-
ity of the data and its associated information. As future extension
of the system, we will implement multicore versions of the
algorithms used to implement the system and explore in more
details its multi-GPU functionality. Specifically, a multicore
implementation would perhaps exhibit less restrictions in terms
of communication overhead than a GPU cluster, due to the
availability of shared memories. In both cases (multi-GPU and
multicore), our system is expected to adapt quite well to these
architectures since the searching part can be efficiently per-
formed in parallel and the cataloguing part (in spite of the fact
that it would depend on the considered endmember extraction
implementation in multiple processors) would only need to be
used once for each scene. In addition, we are planning on
including other algorithms such as sparse unmixing techniques,
which could be useful to improve the queries based on large
spectral libraries.
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