
CLEAN-ECC: High Reliability ECC for Adaptive Granularity
Memory System

Seong-Lyong Gong
ECE, UT Austin

sl.gong@utexas.edu

Minsoo Rhu
NVIDIA

mrhu@nvidia.com

Jungrae Kim
ECE, UT Austin

dale40@gmail.com
Jinsuk Chung
ECE, UT Austin

chungdna@gmail.com

Mattan erez
ECE, UT Austin

mattan.erez@utexas.edu

ABSTRACT
Adaptive-granularity memory architectures have been
considered mainly because of main memory bottleneck
and power efficiency. Meanwhile, highly reliable pro-
tection schemes are getting popular especially in large
computing systems. Unfortunately, conventional ECC
mechanisms including Chipkill require a large number
of symbols to guarantee strong protection with accept-
able overhead. We propose a novel memory protection
scheme called CLEAN (Chipkill-LEvel reliable and Ac-
cess granularity Negotiable), which enables us to bal-
ance the contradicting demands of fine-grained (FG) ac-
cess and strong & efficient ECC. To close a potentially
significant detection coverage gap due to CLEAN’s de-
tection mechanism coupled with permanent faults, we
design a simple mechanism access granularity enforce-
ment. By enforcing coarse-grained (CG) access, we can
get only the advantage of higher protection compara-
ble to Chipkill instead of achieving the adaptive access
granularity together. CLEAN showed Chipkill level re-
liability as well as improvement in performance, system
and memory power efficiency by up to 11.8%, 10.8%
and 64.9% with mixes of SPEC2006 benchmarks.

Categories and Subject Descriptors
B.3.4 [Memory Structures]: Reliability, Testing, and
Fault-Tolerance; C.4 [Performance of Systems]: Re-
liability, Availability, and Serviceability

Keywords
DRAM Memory, Reliability, Chipkill, Adaptive Granu-
larity Memory System

This is the author version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in the Proceedings of MICRO-48 December 5âĂŞ9, Waikiki,
Hawaii, USA

1. INTRODUCTION
Given the high arithmetic performance of chip multi-

processor, the performance bottleneck is often the main
memory system. This is particularly true for applica-
tions with poor spatial locality because memory systems
are typically optimized for cache-line granularity access
and squander performance and power efficiency when
frequent finer-grained accesses are required. Memory
systems that can adapt to available spatial locality have
been shown to alleviate the memory bottleneck and im-
prove both performance and efficiency [1, 2, 3]. These
mechanisms enable accessing only a subset of the mem-
ory devices in each memory rank to reduce power con-
sumption and allow the overlap of memory requests to
different groups of devices in a rank (subranks) to im-
prove performance.

While these adaptive-granularity architectures offer
significant improvement for some applications (e.g., Yoon
et al. [2] showed up to 31% speedup on average for a
range of memory-intensive workloads), prior work did
not sufficiently address the crucial aspect of memory
reliability. Recent studies have shown two important
trends about memory errors [4, 5, 6, 7, 8]. The first is
that memory errors that affect a large number of bits
in a single memory transfer are common, necessitat-
ing memory protection schemes that are stronger than
those proposed previously for adaptive granularity. The
second is that memory errors can be quite frequent. Er-
ror rates are significant because the rate at which per-
manent faults occur is on par with transient fault rates,
but once a permanent fault occurs many accesses to the
faulty device result in memory errors. Thus, there is a
practical need for strong memory protection that can
tolerate multi-bit errors as well as permanent faults.

Highly-reliable coarse-grained memory systems rely
on chipkill -level protection and can tolerate errors where
all data transferred from a single memory device is er-
roneous [9, 10, 11]. Prior work on adaptive granularity
however does not provide for such strong protection. As
we show later, the Dynamic Granularity Memory Sys-
tem(DGMS) [2] cannot correct all errors resulting from
50.3% of faults (which corresponds to fault rate about
31.3 FIT/device) when estimated with the fault rates
reported in [6] since it cannot correct single-chip errors.

We propose a memory protection scheme specifically
for adaptive-granularity systems. Our Chip-LEvel reli-
able and Access-granularity Negotiable (CLEAN) ECC
uses a concatenated code with an inner code used only
for error detection and an outer code for correction.
This code design enables us to balance the contradict-
ing demands of fine-grained access and strong ECC. We
use the inner code for strong detection when performing
fine-grained access on subranks and use the outer code
for rare correction events, to ensure a low rate of unde-
tected errors (that may lead to silent data corruption),
and opportunistically when performing coarse-grained
accesses. While this design is reminiscent of RAID [12,
13], we make several new contributions to meet the con-
straints of memory system design and to adapt granu-
larity and protection, briefly:

• We design a concatenated (two-tier) ECC code
that simultaneously meets the requirements of us-
ing standard DRAM devices with the standard
12.5% storage overhead and achieving chipkill-level
reliability and still enable fine-grained access to
fault-free memory locations. The key insights to
our design are that: (1) detection is performed for
all accesses (fine or coarse) while correction may
be limited to when the entire rank is read, and (2)
our correction mechanism is far less complex than
typical symbol-based Chipkill ECC.

• We carefully evaluate both the correction and de-
tection coverage and identify a potentially signif-
icant coverage gap that can result in a higher-
than-desired undetected error rate. We analyze
the main reason for this coverage gap, which is
a result of our use of a short code for detection
coupled with permanent and intermittent faults
or significant read-only data. Based on the analy-
sis, we design a novel hardware technique to close
the coverage gap and closely approach both the
undetected and corrected error rates of Chipkill .
Three additional main insights underly the pro-
posed mechanism: (1) our code can be used in a
way that increases detection coverage when coarse-
grain accesses are performed, (2) the probability of
having two independent faults simultaneously oc-
cur is extremely low, and (3) coarse-grain access
can be forced by hardware to meet coverage goals.

• We combine the above techniques in order to form
the CLEAN memory system, which improves per-
formance, system power efficiency, and memory
power efficiency by up to 11.8%, 11%, and 65%
respectively when compared to a baseline Chipkill
system; we show that reliability level is similar for
important system configurations and that redun-
dancy level is identical.

• We evaluate the hardware overhead of CLEAN us-
ing a Verilog implementation and show that it is
on par with that of our baseline coarse-grained
chipkill-level ECC.

2. BACKGROUND

2.1 Fine-Grained Memory Accesses
Current memory systems generally seek to achieve

high capacity and high throughput, which is effectively
achieved by optimizing the memory interface for coarse-
grained, sequential accesses. Hence a coarse-grained
memory system performs well on programs with high
spatial locality, increasing peak memory bandwidth while
amortizing control overheads. Not all applications, how-
ever, can be re-factored to maximize memory band-
width utilization because non-unit strides, indexed gather
/ scatter accesses, and other complex access patterns in-
herently exhibit very low spatial locality. Previous stud-
ies have demonstrated that, for applications with low
spatial locality, having fine-grained memory access ca-
pability can help in avoiding unnecessary data transfers,
providing substantial improvements in terms of power-
efficiency, memory bandwidth utilization, and overall
system performance [1, 2, 3]. The cache hierarchy and
the memory subsystem of these adaptive granularity
memory systems (AGMS) can effectively handle a mix
of both coarse and fine granularity memory accesses.
Below we discuss some key architectural features that
are necessary to enable fine-grained management and
storage of data in the cache-memory system. We do
not propose any innovation in these basic mechanisms
and therefore keep the discussion short and refer the
reader to prior publications for details [1, 2, 3].

Granularity Decision.
In order to mix access granularities it is necessary

to first decide which accesses are coarse and which are
fine. This can be done either statically per address or
memory instruction [1] or with a dynamic granularity
predictor [2, 3]. In addition, the interaction of different
granularity accesses may degrade memory scheduling
effectiveness and granularity decision may also be based
on such factors [2, 3].

Fine-Grained Cache Management.
Because AGMS grants both coarse and fine-grained

accesses, the cache hierarchy must be capable of ef-
fectively handling both types of accesses. To amortize
cache tag-array overhead, a sectored cache design [14,
15] or a more sophisticated derivative, can be used. In a
sectored cache, each cache-line is partitioned into multi-
ple sectors where; each sector has its own valid and dirty
bits but all the sectors within the cache-line share a
common address tag. Thus, the cache maintains the in-
formation needed for fine-grained reads and writes with
very small overhead.

Fine-Grained Memory Interface.
A conventional CPU uses multiple DRAM chips or-

ganized into ranks to provide large coarse-grained ac-
cesses to memory (Figure 1 (a)). To provide finer-
grained access capability with low overhead, an AGMS
leverages a sub-ranked memory module design (Figure 1
(b)). Sub-ranked memory systems were originally pro-

ABUS

DBUS (64bits data + 8bits redundancy)

x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4 x4 x4 x4 x4 x4 x4 x4

(a) Conventional rank module

Reg/demux

ABUS x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4 x4 x4 x4 x4 x4 x4 x4
IO

SR0 SR1 SR2 SR3 SRECC

(b) Sub-ranked module

Figure 1: In our baseline sub-ranked memory
system, 18 ×4 chips (16 for data/2 for ECC)
are divided into 9 physical subranks (2 chips per
subrank); baseline A/DGMS can accesses data
in a single 8b-wide subrank while CLEAN re-
quires data accesses of paired subranks to enable
strong protection.

posed, for the most part, to reduce the memory access
power of many-threaded CPUs by improving row-buffer
locality. Such designs include HP’s MC-DIMM (multi-
core dual in-line memory module) [16, 17], Rambus’s
threaded memory module [18], the mini-rank memory
system [19], and Convey’s S/G DIMM (scatter/gather
DIMM) [20].In a sub-ranked DIMM, a register chip is
used to direct memory command signals to a subset
of the DRAM chips in a rank without changing the
DRAM device structure itself. Figure 1 shows the sub-
ranked memory configuration we assume in our work.
The baseline A/DGMS can perform 8B accesses, but
to support strong ECC CLEAN requires a minimum
access granularity of 16B.

Reliability.
Note that despite AGMS’s superior memory band-

width utilization, the use of fine-grained accesses sig-
nificantly compromises ECC coverage. Prior work on
AGMS [1] only provided SECDED (Single Error Cor-
rection, Double Error Detection) protection with very
high storage overhead or a weak form of SECDED at
conventional 12.5% storage overhead. Unlike current
SECDED ECC on full ranks, which can tolerate any
single-bit or single-pin fault, the SECDED configura-
tion of DGMS [2] can only tolerate single-bit faults [2].
This difference results in markedly compromised relia-
bility as shown in Table 1. In particular, DGMS can
detect only 74.6% of single chip errors while SECDED
can detect almost 99% of single chip errors – this implies
that DGMS can result in many more silent data corrup-
tion events (SDCs) even with single faults (see also Fig-
ure 11b). The difference is even greater when compared
to currently-standard chipkill-level techniques that can
detect and correct all faults confined to a single DRAM.

type result SEC-DED DGMS [2] Chipkill [9]

1bit
CE 100.0000% 100.0000% 100.0000%

DUE 0.0000% 0.0000% 0.0000%
SDC 0.0000% 0.0000% 0.0000%

1word
CE 26.6706% 34.8022% 100.0000%

DUE 55.5483% 53.7213% 0.0000%
SDC 17.7811% 11.4765% 0.0000%

1pin
CE 100.0000% 3.1393% 100.0000%

DUE 0.0000% 74.9011% 0.0000%
SDC 0.0000% 21.9596% 0.0000%

1chip
CE 0.0142% 0.0000% 100.0000%

DUE 98.8388% 74.6222% 0.0000%
SDC 1.1470% 25.3778% 0.0000%

Table 1: Estimated fault coverage with respect
to single chip errors (methodology detailed in
Section 4); CE, DUE, and SDC are corrected er-
rors, detected but uncorrectable errors, and po-
tential silent data corruption, respectively. The
overall reliability of DGMS is much worse than
even fairly weak SECDED ECC.

2.2 Memory Errors and Protection Mechanisms
Errors in DRAM.

Recent studies [6, 7, 4, 5] indicate that memory sys-
tem error rates are rising and that the rate of permanent
faults is on par with that of transient ones. With a high
permanent-fault rate, the likelihood of multi-bit faults,
overall error rate, and possibly even accumulated faults
increases. As a result, the memory protection level pro-
vided with SECDED is no longer sufficient to guaran-
tee reliable operation of the main memory system and
stronger Chipkill -level ECC is required [11, 9, 10].

Chipkill for Enhanced DRAM Reliability.
Chipkill is a popular ECC mechanism widely adopted

in high reliability systems such as commercial server
markets. A typical symbol-based Chipkill protection
scheme provides SSCDSD (Single Symbol Correction,
Double Symbol Detection) protection. This means that
a Chipkill -enabled system is able to correct all errors
resulting from a fault to a single chip and detect all
errors resulting from faults to two chips. In this way,
severe faults to a single chip do not impact reliability
and even faults to multiple chips do not result in silent
data corruption.

To achieve this, symbols are aligned with chips such
that the data transfered from a single chip in a single
codeword matches a symbol in the codeword. Because
of this alignment, Chipkill requires either unacceptably
high redundancy or large minimum access granularity
(e.g., 64 – 128 bytes per memory access, even with nar-
row ×4 chips). Thus, it can only be applied to a coarse-
grained, full-rank memory system with narrow-interface
chips. Recent work presents several alternative DRAM
system organizations that minimize ECC storage and
which can be used with ×8 and wider DRAM chips
while providing strong Chipkill reliability [25, 26, 24,
23]. The focus of these studies, however, is on wider
interfaces or stronger protection and they are not ap-
plicable to our goal of mixing fine-grained and coarse-
grained memory accesses.

We summarize the access-granularity and redundancy
characteristics of these Chipkill -level schemes in Ta-
ble 2. The challenge with fine-grain access is that re-

DGMS [2] CLEAN Chipkill [9] ARCC [21] MAGE [22] BambooECC [23] MultiECC [24] VECC [25] LOT-ECC[26]

Fine-grained Access Yes Yes No No No No No No No
Strong Reliability No Yes Yes Yes Yes Yes Yes Yes Yes
Access Granularity 8-64B 16-64B 64B 64-128B 64-256B 64B 64B 64B 64B
Adaptive Reliability No Yes No Yes Yes Yes No No No
Storage Overhead 12.5% 12.5% 12.5% 12.5% 12.5% 3.1-12.5% 12.9% 18.75% 26.5%

Chip Width ×8 ×4 ×4 ×8 ×4-×16 ×4 ×8 ×8 ×8

Table 2: Summary of related ECC work; only CLEAN provides both fine-grained memory access and
high reliability.

silience is first and foremost bounded by the error detec-
tion coverage and that this coverage improves rapidly
as the codeword length grows; as explained and demon-
strated by Kim et al. [23] for memory systems. As a
result, nearly all prior work maintains long codewords
and redundancy for strong detection and cannot be used
for fine-grain access. This is true even when the schemes
are appropriate and effective for a small number of wider
chips [25, 22, 21, 24, 27]. For example, Multi-ECC relies
on coarse-grain access for detection and only uses a nar-
row CRC code for localizing an error before correcting
it as an erasure [24].

Two exceptions are schemes designed for stacked mem-
ories [28, 26] and the design presented for DGMS [2].
These are similar to CLEAN in the use of a RAID par-
ity code for correction and an inner code for detection.
However, these schemes were not evaluated for their im-
pact on silent data corruption risk in detail. Using our
evaluation framework, we found that in our configura-
tion a scheme like LOT-ECC would have an unaccept-
able risk of SDC, which is orders of magnitude greater
than that with CLEAN; we do not present these results
in detail. The same is true for the chipkill-level ECC
sketched by Yoon et al. [2], which was not evaluated in
detail.

Finally, an inner/outer coding scheme similar to CLEAN
has been patented [29], but the patent is vague and we
are not aware of any analysis and evaluation. To the
best of our knowledge, no prior work has addressed the
issue of guaranteeing strong reliability while simultane-
ously providing fine-grained memory accesses at reason-
able overhead. Our two-tier, inner/outer ECC coding
mechanism effectively achieves the conflicting goals of
chipkill-level reliability and the ability to provide fine-
grained accesses, while simultaneously incurring low ECC
storage overheads (12.5%). We detail our CLEAN ECC
in the following section.

3. CLEAN ERROR PROTECTION
This section describes the mechanisms for implement-

ing CLEAN (Chipkill-LEvel reliable, Access-granularity
Negotiable) ECC design using the baseline dynamic-
granularity memory system described in Section 3.1 as
a concrete example. Our goal is to provide reliability
that is on par with that of Chipkill . To achieve this
goal of strong protection in concert with fine-grained
memory access capability, we utilize a two-tier coding
mechanism that relies on a concatenated error code –
an inner code is used for error detection and an outer
code is used mostly for correction.

In this section we describe the insights behind CLEAN
and the mechanisms for achieving access granularity-

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

ECC ECC

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

4B 4B

SR0 SR1 SR2 SR3

SR0 SR1 SR2 SR3

Figure 2: Data/ECC layout used by CLEAN
for spreading ECC locations to reduce subrank
conflicts; For calculating the rotated positions, a
modulo-9 residue generator using efficient par-
allel designs is available [30].

negotiable strong protection. We first briefly review the
baseline adaptive granularity memory system for which
CLEAN is designed (Section 3.1). We then introduce
the basic outer code and correction procedure including
a description of how the ECC information needed for
CLEAN is accessed and updated with minimized mem-
ory traffic overhead (Section 3.2). We then describe
the inner code and detection mechanisms (Section 3.3),
followed by a discussion of how the two codes are com-
bined to localize errors (Section 3.4) and minimize the
rate of undetected errors that can lead to silent data
corruption (SDC) events (Section 3.5).

3.1 Baseline Memory Hierarchy
Memory Subsystem.

As discussed in Section 2, we assume a sub-ranked
memory system that enables adaptive (coarse/fine) gran-
ularity access. Concretely, we assume that memory
ranks consist of 18 ×4 DDR3 DRAM chips (16 chips
for data and 2 chips for ECC, having 12.5% ECC over-
head), which is standard for current commodity systems
that support Chipkill -level reliability [9, 10]. CLEAN
ECC logically divides the 18 DRAM chips into 5 effec-
tive subranks with 4 of the subranks providing data at
a minimum granularity of 16B (each subrank consisting
of four x4 chips) and the fifth subrank used for stor-
ing 2B of ECC information (consisting of two x4 chips).
As discussed in the following subsections, one of these
two chips is used to store the inner code and the sec-
ond for the outer-code information. Logically, 16 chips
are mapped to the 4 data subranks and 2 chips to the
ECC subrank. Physically, the mapping of chips to logi-
cal subranks alternates with DRAM addresses to reduce
subrank conflicts (Figure 2 as is done in RAID systems
and prior work on DGMS [2]). We denote these two
chips with ‘I’ for the inner (detection) code and ‘O’ for
the outer code.

O Chip

64 bits (16 x4 chips)

Bu
rs

t l
en

gt
h

8

Per bit position XOR
+

Figure 3: Layout of the outer code. Each bit in
the outer-code chip (o) is the bit-wise XOR of
the same bit position in all 16 data chips.

Bu
rs

t l
en

gt
h

8

x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4

IO

D0

D0

SR0 SR1 SR2 SR3
=?

① Check symbols

② Regenerated symbols

p3p2p1p0

p’3p’2p’1p’0
③ Comparison

D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

1
B

d0 d1d2d3

1
B

1
B

1
B

1
B

1
B

1
B

1
B

=? =? =?

x4

Figure 4: Detection: Check symbols are encoded
when writing data into memory as in conven-
tional ECC (1©). Check symbols are then re-
computed for each accessed subrank when read-
ing data (2©) and are compared with the stored
symbols (3©).

Cache Hierarchy.
Because CLEAN accepts both coarse and fine-grained

accesses, the cache hierarchy must be capable of han-
dling both data granularities. CLEAN utilizes a sim-
ple sectored cache to manage on-chip management and
storage of fine-grained data. Each 64B cache-line is di-
vided into four 16B sectors. Cache coherence is main-
tained at the granularity of a full cache line; sectors
cannot be modified separately by multiple core.

Data Access Granularity Decisions.
Yoon et al. [1, 2] provide a detailed analysis of the

different considerations and design options for dynami-
cally deciding the granularity of each DRAM access. We
adopt the same hardware-based spatial-pattern predic-
tor design [31, 32] used in prior work [2]. The predictor
is configured with 32 sets of 8 ways each. More detailed
microarchitectural descriptions of the dynamic predic-
tor can be found in [31, 32, 2].

3.2 Error Correction
The outer code is used primarily for correction. The

correction requirement is for errors originating from a
single chip. Thus, for each word of the outer (correc-
tion) code, at most one chip has an error that requires
correction. Using a simple XOR-based RAID code [12,
13], exactly one chip is dedicated for correction. In each
full rank and for each coarse-grained access, the O chip
holds the per-bit-location bit-wise XOR of the 16 data
chips; the outer code consists of 32 parity bits, one par-
ity for each of the 32 bits in a burst, computed across

the 16 data chips. This is represented by Equation 1,
where dj,k denotes the k-th bit of the j-th data chip Dj

and ok is one of the 32 bits of the outer code, which
are stored in 8 consecutive ×4 beats; this organization
is shown in part 1© of Figure 3. Correction is straight-
forward as it simply requires computing the XOR of all
the data from the 16 non-erring chips (15 data chips
and the O chip).

ok = d0k ⊕ d1k ⊕ · · · ⊕ d15k, k = 0..31 (1)

The outer code requires a single coarse-grained read
regardless of whether the error was detected on a fine-
grained access or not. This access is needed both for
correction events, which are rare, and also for main-
taining the correction information because it is encoded
based on the data from the entire rank. Updating the
outer code when writing back only a subset of sectors
from the LLC is challenging.

Performing a coarse-grained read before every partial
writeback is likely to have a very high memory traffic
overhead. Instead, we rely on two important charac-
teristics of the CLEAN architecture. First, the codes
used in CLEAN are linear and systematic. With such
codes, the updated ECC information (o′′) can be com-
puted from only the modified data (d′∗i) and the orig-
inal ECC information (o) by subtracting the original
FG data read (d∗i) from o. This procedure is defined in
Equation 2 and Equation 3.

The second characteristic is that a partial writeback
implies that there are invalid sectors in the cache block.
Thus, to avoid reading the entire rank or even just the
ECC information from memory before a partial write-
back, we store the original ECC information read when
the cache was filled in an empty sector, as shown in Fig-
ure 5b. When writing back a partial line, the first in-
valid sector following the last sector to be written holds
the original ECC information, which is then updated
as shown in Equation 3 and written back to memory
along with the data (Figure 5c). Note that we read
and cache, but do not use all the ECC information on a
FG access. Hence, data transfer errors that may occur
on this unchecked ECC information may go undetected
and in such a case a partial writeback may lead to data
corruption. We have not seen fault models for transfers
and do not evaluate the risk; however, we expect that
it is very small.

o′ = d4i ⊕ d5i ⊕ d6i ⊕ d7i ⊕ oi, (2)

o′′ = d′4i ⊕ d′5i ⊕ d′6i ⊕ d′7i ⊕ o′i, (3)

3.3 Error Detection
The goal of CLEAN ECC is to enable independent

fine-grained access to multiple subranks. CLEAN must
therefore provide an inner codeword for each data sub-
rank within the single remaining ECC chip (chip I).
In our configuration, we partition the 32 bits provided
in one transfer (4-bits ×8 beats) of the ECC chip used
for the inner code into four 8-bit symbols; each symbol
is used as the check symbol for one of the four sub-

IO

x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4 x4 x4 x4 x4 x4 x4

16BTag V C 16B V C 16B V C 16B V C

Memory Controller

x4

A sectored cacheline of 64B (LLC)

(a) Coarse-grained DRAM read
IO

x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4 x4 x4 x4 x4 x4 x4

16BTag I C 16B V C 16B I C 16B I C

Memory Controller

x4

16B [D4~D7] 8B [I ; O’]

A sectored cacheline of 64B (LLC)

D4 D5 D6 D7

SR1

(b) Fine-grained DRAM read
IO

x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4 x4 x4 x4 x4 x4 x4

16BTag I C 16B VD 16B I C 16B I C

Memory Controller

x4

16B [D4’~D7’]

8B [I’; O’’]

A sectored cacheline of 64B (LLC)

D4 D5 D6 D7

SR1

(c) Fine-grained DRAM write

Figure 5: CLEAN DRAM read/write examples. Compared to CG reads, FG cache fills store the
ECC information within an empty sector of the LLC. This eliminates an extra memory access when
writing back a partial cache block.

ranks (Figure 4). We propose a simple-to-implement
Reed-Solomon-like generalized symbol code for detec-
tion, which we describe below; although any strong de-
tection code, (e.g., CRC) will work well.

Each fine-grained access is composed of 16 8-bit data
symbols from the four data chips in a subrank, and the
single 8-bit symbol from the I chip in the ECC subrank
(4 check symbols are read, but only one is associated
with the specific FG read). The check symbol is a lin-
ear combination (weighted sum) of the data symbols
over a Galois Field, as shown in Equation 4. In the
equation, pi denotes the check symbol of the ith sub-
rank, djk denotes the kth 8-bit symbol of the jth data
chip, and ajk are the weights for calculating the check
symbol; we chose the weights at random and verified
their effectiveness with Monte Carlo simulation.

pi =
∑
j,k

ajkdjk, j ∈ {4i, · · · , 4i + 3}, k = 0, · · · , 3. (4)

When a data is read out of the i-th subrank, the for-
mula of Equation 4 is again used to regenerate a check
symbol p′i, which is compared to the stored symbol read
from the I chip. Any single corrupted symbol will cause
the check symbol to always be different and thus de-
tected. Errors in multiple symbols may lead to an un-
detected error because the limited domain of the Galois
field may result in a random match between the re-
computed and stored symbols. With a good choice of
weights the probability of such an undetected error is
just 1

2n , where n is the symbol length (0.39% probability
in our code).

To minimize the likelihood that a fault affects multi-
ple symbols, inner-code symbols are aligned with data
pins (DQs); any single-bit or single-pin error is guaran-
teed to be detected, while other multi-bit errors are de-
tected with high probability, which in practice is much
better than the pessimistic bound of 0.39%. We evalu-
ate the practical protection in Section 5.2.

Coarse-Grained Detection.
While the error coverage of the inner code is already

high, the outer code can be used to further improve de-
tection and curb the risk of SDC. When performing a
coarse-grained access, if no error is reported by any of
the inner-code checks, we can use the outer-code infor-

mation to verify the parity of each bit location in the
access. If any parities do not match, at least one chip
has an error that was not detected by the inner code or
the O chip has an error. In other words, if any single
chip, other than the O chip has an error, coarse-grained
detection is guaranteed to detect the error, no matter
how many bits in the data chip are erroneous.

Proof by contradiction. Assume, w.l.o.g., that:
d′0i 6= d0i but is not detected
Undetected error implies:
⇔ o′i = oi
⇔ d′0i ⊕ d1i ⊕ · · · ⊕ d15i = d0i ⊕ d1i ⊕ · · · ⊕ d15i

⇔ d′0i = d0i

which is a contradiction.

If the O chip has an error and the inner-code does not
detect an error, the implications are that either multi-
ple chips faulted, or that all four independent inner-
code checks had an undetected error simultaneously de-
spite having no errors – an extremely low probability

(
(
2−8
)4

) that does not impact practical coverage.

3.4 Error Localization
While the outer code can effectively recover a cor-

rupted chip by using information from the full rank, the
specific chip within the erring subrank that caused the
symbol error still needs to be identified; on its own, the
inner code only determines which subrank has an error
but not the exact faulting chip. We localize the error
to a single chip, or detect multiple-chip faults, using a
verification step that utilizes the additional ECC infor-
mation of the outer code and its XOR correction mech-
anism. Localization is best-effort inference given the re-
striction of FG access, whereas current Chipkill (e.g. [9])
determines the error location by generating and solving
the error polynomial based on the syndromes.

The process is to attempt multiple corrections (possi-
bly in parallel), each time under the assumption that a
different data chip in the accessed subrank is corrupted
(Figure 6). After a correction attempt, the check sym-
bol is regenerated and compared to the stored check
symbol of the inner code. If the assumption that only a
single data chip is corrupted is true, then only one of the
correction attempts will succeed with high probability.
If, on the other hand, more than one of the corrections
appears to succeed or if no correction attempt succeeds,
then more than one chip is corrupted concurrently, one

x4 x4 x4 x4 x4x4

IO

x4 x4 x4 x4

x4 x4 x4 x4

x4 x4 x4 x4

x4 x4 x4 x4

Attempt 0
corrupted D0?

Attempt 1
corrupted D1?

Attempt 2
corrupted D2?

Attempt 3
corrupted D3?

D0 D1 D2 D3

1
B=?

p3p2p1p0

: corrupted

x4 : recovered

1
B

1
B

1
B

1
B

1
B
1
B
1
B4 Correction

Attempts
for subrank 0

Figure 6: Localization. Suppose that an error
in subrank 0 is detected. Four corrections are
attempted in parallel with each attempt assum-
ing that a different single chip is corrupted. Be-
cause D0 is corrupted, only the first correction
attempt (D0?) can regenerate the check symbol
correctly; because the code is not perfect, other
attempts may also regenerate the symbol with
very low probability.

Access

Detected?

Detection (inner)

no

yes

coarse?

Detection (outer)

yes

Detected?

no

No Error!

Correction
in parallel

yes

Localization (inner) Verification
(outer)

Verification
(outer)

yes

no

Pass? Pass?

Uncorectable!

yes

no

no

Corrected!

yes

no

of passes
=1?

Figure 7: Summary of CLEAN operations.

of the correction attempts resulted in an undetected
error when rechecked, or the check symbol has an er-
ror. In the first two cases a detected uncorrectable error
should be reported. The third case, where the I chip is
corrupted, can return corrected data and notify of the
detected error in the I chip for diagnostics.

To differentiate between the first two cases from the
third, we again utilize the outer code for detection.
Specifically, if all correction attempts fail but the outer
code detects no error in the original data, we assume
the error is in the I chip only because the outer code
does not include the I chip in its parity calculation.
Otherwise, a detected uncorrectable error is reported.
Similarly, we conclude that only O chip is faulty if only
the outer code detects errors but none of the inner codes
do and correction attempts using the outer code lead to
inner-code detected errors (verification failure). With
high-probability, we are also able to differentiate the
case where only O is faulty from cases in which multi-
ple chips, including the O chip, return erroneous data.

The full detection and correction flow of CLEAN is
illustrated in Figure 7. CLEAN first checks for errors
in each accessed subrank with its corresponding inner
codes. If no errors are detected and if the access was
CG, CLEAN double-checks for errors with the outer

code. If an error is detected, CLEAN attempts to cor-
rect all possibly erroneous chips (chips in subranks indi-
cated by the inner code) using the outer code; each cor-
rection attempt is checked with the corresponding inner
code and a successful correction increments a counter.
After all chips are attempted, the outer code is used to
once again verify the result. If the outer code confirms
a correct value and only a single correction attempt suc-
ceeded, CLEAN concludes that an error was detected
and corrected. If no correction attempt succeeded, but
the outer code did not detect an error, the most likely
conclusion is that the I chip had an error, so no data
error occurred. If more than one correction attempt
succeeded or if the outer code could not verify the cor-
rection, an uncorrectable error is reported.

3.5 SDC-Rate Minimization
Our evaluation (Section 5.2) shows that the rate of

undetected errors when using CLEAN is dominated by
errors experienced during FG reads from subranks with
single-chip faults. In fact, because of the layout of the
inner code, only faults that impact multiple DQ pins
across multiple bus beats in a single chip during a fine-
grained transfer or faults that affect multiple chips in
the same transfer can lead to possible SDCs. Further-
more, those faults that affect multiple chips are detected
with higher probability with CLEAN than when using
the commercial Chipkill code of recent AMD proces-
sors [9]. Thus, to approach the SDC rate of Chipkill ,
we focus on minimizing the number of potential SDCs
caused by single-chip multi-DQ faults.

The raw rate of such single-chip/multi-DQ/multi-beat
faults, which includes single-chip/multi-DQ, single-bank/
multi-DQ, and single-row/multi-DQ faults, is quite low
according to Sridharan et al. [6, 7, 8] and the inner code
is still able to detect/correct all but 0.26% of errors re-
sulting from such faults1. Hence, the real danger of a
high SDC rate is from permanent faults that may lead
to numerous errors, and thus a high SDC error rate.

An SDC occurs when the inner code fails to detect an
error, which happens at most once out of 28 different
data/error pairs on average. Thus, multiple SDCs will
only occur if unmodified data is read from a faulty lo-
cation multiple times without either being overwritten
or without other reads to different memory blocks that
are also impacted by the same fault. In other words,
the danger of multiple SDCs is from scenarios that are
quite unlikely where software repeatedly performs FG
reads from a single memory block with no intervening
writes to that location and no accesses to other loca-
tions in the same DRAM row, bank, or chip (the faults
that may lead to SDCs in the first place). Any read of
different data or a different memory location under the
same fault has an independent chance of detecting the,
thus the probability of an SDC decreases exponentially
(a Geometric distribution) with the number of such de-
tection attempts.

1The undetected rate of errors from one of the four data
chips is 2−8 = 0.39%, but errors from the I or O chips
return correct data with CLEAN and do not cause an SDC.

Even though we did not observe problematic cases
in the applications we evaluated, it is possible that re-
peated SDCs can occur in some software. CLEAN avoids
even this unlikely scenario of a possibly unbounded num-
ber of errors from a single fault by relying on the highly-
effective CG detection, which utilizes the outer code. If
multiple errors are detected CG from a rank, CLEAN
forces all further accesses to the rank to be CG, avoiding
the problematic case of insufficient coverage of the in-
ner code. To ensure multiple errors are detected, even
when in the problematic scenario, CLEAN randomly
overrides one out of every n FG accesses to be CG.
Thus, at most n SDCs are expected from even the most
insidious faults and access patterns. In Section 5.1 we
show an occasional CG override has negligible overhead.

SDC-minimization approach requires only a single very
narrow saturating error counter per rank to identify
the threshold of forcing all-CG access. If desired, the
counter can be reset on every scrub interval to avoid
transient faults forcing CG for long periods of time.

4. EVALUATION METHODOLOGY
We evaluate CLEAN in terms of system performance

and efficiency, reliability, and hardware overhead. To
estimate the impact on system performance, we use
gem5 [33] integrated with DrSim [34], a detailed cycle-
accurate DRAM simulator that supports subranked mem-
ory systems and fine-grained accesses (Section 3). To
quantify reliability, we run Monte Carlo simulations (of
1 billion iterations) using a DRAM fault/error evalua-
tion framework to analyze both error coverage of dif-
ferent fault scenarios and the overall expected rates of
faults that can lead to uncorrectable errors and faults
that can results in SDCs. To gauge the impact on hard-
ware, we implement CLEAN and Chipkill in Verilog and
synthesize the designs to estimate their area and delay.

4.1 Performance Evaluation
Workloads.

We evaluate CLEAN using multi-programmed SPEC
CPU2006 benchmarks [35] that are known to be mem-
ory intensive [36] (Table 3). In the mixes, there is no
biased choices for spatial locality or access granularity.
To warm up the cache hierarchy, each benchmark mixes
are fast-forwarded 10 billion instructions2 and are then
simulated in detail for 300 million instructions; we were
not able to set correct and consistent multi-programmed
SimPoints (we tried) and opted for fixed-count fast-
forwarding instead.

System Configurations.
Our baseline system is configured as an out-of-order 8-

core processor with a three-level cache hierarchy. Table
4 summarizes our baseline system configuration, which
is simulated using gem5 [33] and DrSim [34].

21 billion fast-forwarding shows practically-identical results

Metrics.
To report the system throughput of multiprogrammed

workloads, we use Weighted Speedup(WS) as defined by

Eyerman et al. [37]: WS =
∑N−1
i=0

IPCshared
i

IPCalone
i

. Here N

refers to the number of cores, IPCshared
i is the IPC of

the i-th program when CMP resources are shared, and
IPCalone

i is the IPC of i-th program when running alone
on the CMP. We estimated DRAM power consumption
based on the power modeling framework published by
Micron [38]. Although our study focuses on the reliabil-
ity of the memory subsystem, the power consumption of
the cores is also estimated by using McPAT [39] based
on the parameters of a 40-nm ARM-A9.

MIX0 libquantum×2,lbm×2,bwaves×2,GemsFDTD×2
MIX1 bzip2×2,mcf×2,leslie3d×2,soplex×2
MIX2 bwaves×2,GemsFDTD×2,leslie3d×2,soplex×2
MIX3 lbm×2,libquantum×2,bzip2×2,mcf×2
MIX4 leslie3d×2,bzip2×2,bwaves×2,libquantum×2
MIX5 soplex×2,mcf×2,GemsFDTD×2,lbm×2
MIX6 GemsFDTD×2,bzip2×2,lbm×2,leslie3d×2
MIX7 mcf×2,soplex×2,libquantum×2,bwaves×2

Table 3: Simulated SPEC CPU2006 workloads

Processor 4GHz ARM out-of-order, 8 cores
L1 I-caches 32kB private, 64B cache line, 2 cycle latency
L1 D-caches 32kB private, 64B cache line, 2 cycle latency
L2 caches 256kB private, 64B cache line, 6 cycle latency

LLC 4MB shared, 64B cache line, 18 cycle latency

Main memory
16GB, 72-bit wide DDR3-1600 channel,
×4, 8 banks/rank, 4 ranks/channel
scheduling - FR-FCFS [40]
parameters - Micron DRAM [41]

Table 4: Simulated system parameters.

4.2 Reliability Evaluation
To measure system-level failure probability over time

(Figures 11 and 12),we use the two-stage Monte Carlo
simulation approach described by Kim et al. [23]. The
first stage randomly injects faults into each memory
channel3, using the fault modes and rates described in
the literature [6]4 while keeping a history of the injected
faults to model fault accumulation, as also described by
Roberts et al. [42]. The second stage then invokes a
random error pattern generator for each cache FG or
CG access, where the error pattern corresponds to the
worse-possible average error pattern based on the in-
jected and accumulated faults. To summarize, we in-
ject faults with rates corresponding to those measured
on a large-scale system [6] and generate random error
patterns from the resulting faults.

Specifically, the per-chip fault modes discussed by
Sridharan et al. [6] are mapped into one of four per-
3Fault injection is based on error reports that include trans-
mission errors. Note that from ECC perspective, error pat-
terns from either transmission or storage are equivalent and
can be detected or corrected within ECC capacity.
4We do not use the model for DDR3 presented more re-
cently [7] because the earlier model provides additional de-
tail that we use to determine potentially uncorrectable er-
rors; there is consensus that DRAM fault rates are more
strongly related to the number of DRAM devices than to
the device generation [6, 7].

0
1000
2000
3000
4000
5000
6000

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

N
oE

CC
SE
CD

ED
Ch

ip
ki
ll

CL
EA

N
CL
EA

N
‐S
D
Cm

in
SE
CD

ED
‐D
G
M
S

N
oE

CC
‐D
G
M
S

MIX0 MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7

DR
AM

 P
ow

er
 (m

W
)

BG ACT RW IO REG/DEMUX

Figure 8: DRAM power

cache-line fault types: bit, word, pin, or chip, based on
the number of failing DQs and beats they can cause. A
bit fault causes a single bit error at a random position
and corresponds to bit faults of [6]. A word fault in a
cache line transfer is a result of either word or column
faults using Sridharan et al.’s terminology; a column
fault may affect multiple DQ pins, but those cannot
map onto a single cache-line transfer. A pin fault affects
two or more bits, but in the same DQ; pin faults cor-
respond to all single-DQ faults reported in [6]. Finally,
chip faults correspond to all faults that affect more than
one DQ pin and more than one bus beat in a transfer;
chip faults correspond to Sridharan et al.’s single-row,
single-bank, multi-bank, and multi-rank faults that also
affect multiple DQs.

Once the possible erroneous bits are determined, an
error pattern is generated by randomly flipping each po-
tentially erroneous bit with 50% probability. We then
evaluate coverage for each error pattern, we test CLEAN
and other ECC schemes to check whether the error is
a correctable error (CE), detected but uncorrectable
(DUE), or possibly a silent data corruption event be-
cause it was either not detected or detected but mis-
corrected to the wrong codeword. After determining
error coverage, we combine the fault rates to determine
the expected probability that a fault and potential ac-
cess that lead to a DUE or an SDC may occur in a rank.
We report these probabilities over time for systems with
different memory capacities. This methodology yields
the practical coverage of an ECC technique rather than
its, typically exaggerated, worse-case behavior [23].

5. RESULTS AND ANALYSIS
In this section we present the efficiency and perfor-

mance benefits of CLEAN and compare them to prior
work. We do not dwell on these performance and effi-
ciency results because the main contribution of the pa-
per is in improving reliability. We then evaluate and dis-
cuss the reliability implications in detail, followed by an
analysis of the hardware implementation requirements.

5.1 Efficiency and Performance
The largest benefits from adapting granularity are

the increased energy efficiency of the DRAM subsystem
because fewer chips are accessed and the performance
improvements from better bandwidth utilization. We
compare DRAM power consumption, system through-
put, and power efficiency of three coarse granularity

0

2

4

6

8

10

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7

W
e
ig
h
te
d
 s
p
e
e
d
u
p

NoECC SECDED Chipkill CLEAN CLEAN‐SDCmin SECDED‐DGMS NoECC‐DGMS

Figure 9: System throughput

only systems (NoECC, SECDED, and Chipkill) and
three adaptive granularity systems (CLEAN, DGMS [2],
and DGMS-NoECC [2]).

DRAM Power Consumption.
CLEAN achieves up to 21 − 40% reduction (32% on

average) in terms of DRAM power consumption, mainly
because the fine-grained accesses in benchmarks with
low spatial locality reduces both the number of chips
that are activated and those that communicate data
(Figure 8). Looking into the breakdown of power con-
sumption, the reduction comes from both fewer activa-
tions (ACT) and fewer reads and writes (RW). Back-
ground power is roughly proportional to the number of
chips in a rank and is unchanged. CLEAN provides a
more modest reduction than DGMS because CLEAN
requires 16b-wide data subranks as opposed to the 8b
subranks used by DGMS. The benefit of CLEAN is in
its much higher reliability.

System Throughput.
Figure 9 shows that CLEAN generally outperforms

the baseline CG-only system, but that the gains in ef-
ficiency are more prominent. Four of the seven bench-
mark mixes we evaluated showed noticeable gains in
weighted speedup (up to 11.8% improvement), and three
showed little gain or a minor performance loss (−1.5%
at worse). On average CLEAN provides a 3.3% im-
provement in system throughput across the seven bench-
mark mixes we evaluate. We attribute this minor per-
formance degradation to the different memory schedul-
ing policy required for supporting a mix of FG and CG
accesses and again want to emphasize the significant
energy efficiency benefits. CLEAN does not support
the critical-word first optimization technique, but fine-
grained access already provides some of those benefits;
while our baseline ECC schemes utilize critical-word
first in performance evaluation.

0

0.5

1

1.5

2

2.5

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7

N
o
rm

a
liz
e
d
 T
h
ro
u
gh
p
u
t

/
D
R
A
M
 P
o
w
e
r

NoECC SECDED Chipkill CLEAN CLEAN‐SDCmin SECDED‐DGMS NoECC‐DGMS

(a) Normalized Throughput / DRAM Power Consumption

0

0.5

1

1.5

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7

N
o
rm

al
iz
e
d
 T
h
ro
u
gh

p
u
t

/
Sy
st
e
m
 P
o
w
e
r

NoECC SECDED Chipkill CLEAN CLEAN‐SDCmin SECDED‐DGMS NoECC‐DGMS

(b) Normalized Throughput / System Power Consumption

Figure 10: System / DRAM power efficiency.

CLEAN is not as effective as DGMS and only achieves
39 − 88% of the performance improvement of DGMS.
This is because of two reasons: the larger minimum ac-
cess granularity and the data layout used for CLEAN
compared to DGMS. Because the finest access granular-
ity of CLEAN is 16B compared to 8B with DGMS, the
throughput improvement due to the decreased DRAM
off-chip traffic is smaller than with DGMS. Moreover,
the rotating position of the ECC chips is done with
fewer effective “banks”, which leads to more subrank
conflicts and further diminishes performance improve-
ments over CG-only systems.

Importantly, the SDC-minimization scheme that
forces one out of every 10−100 FG accesses to be CG did
not have a significant impact on performance or power;
the impact is (less than 1% degradation the numbers
reported above include this overhead.

System / DRAM Power Efficiency.
Figure 10a shows DRAM power efficiency, defined as

the normalized throughput divided by DRAM power
only. Figure 10b shows system power efficiency, defined
as the normalized throughput divided by the total sys-
tem power, including cores, caches, and DRAM as esti-
mated by McPAT. CLEAN improves both system and
DRAM power efficiency when compared to Chipkill by
up to 11% and 65% and 5.5% and 42% on average,
respectively. These correspond to 67% and 74% (on
average) of the benefits of DGMS. Because the cores
consume most of system power as we estimate by Mc-
PAT (42 − 46W out of 50W total), system power effi-
ciency shows less improvement than DRAM power ef-
ficiency. Note that some studies have reported a much
larger proportion of power in the memory subsystem, in
which case the benefit of CLEAN will be closer to the
improvement shown in Figure 10a.

5.2 Reliability
This section quantitatively shows the high reliability

level of CLEAN, which approaches that of a commer-
cial Chipkill implementation [9]. We chose this particu-
lar commercial implementation because it matches our

1.E+00

1.E+01

1.E+02

1.E+03

 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

o
f
D
IM

M
S

System Memory Capacity (TiB)

DGMS SECDED Chipkill CLEAN_COARSE CLEAN_FINE

1
2
3 2
4
7

2
0
9

1
0
5

(a) Expected number of DIMMs that experience DUEs

1.E‐07

1.E‐05

1.E‐03

1.E‐01

 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

SD
C
 P
ro
b
ab

ili
ty

System Memory Capacity (TiB)

DGMS SECDED Chipkill CLEAN_COARSE CLEAN_FINE

(b) SDC probability

Figure 11: System level reliability over 5 years
and varying memory capacity (using 16GiB
DIMMs): (a) the expected reliability impact of
DUEs; and (b) the risk that the system has at
least one SDC.

1.E‐07

1.E‐05

1.E‐03

1.E‐01

 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

SD
C
 P
ro
b
ab

ili
ty

System Memory Capacity (TiB)

SECDED Chipkill libquantum bwaves leslie3d

GemsFDTD soplex lbm bzip2 mcf

Figure 12: System level reliability over 5 years
and varying memory capacity (using 16GiB
DIMMs) for individual SPEC 2006 applications
(profiled with a Pintool[43]): the risk that the
system has at least one SDC.

configuration of 64B cache-line access granularity and
its details are clearly described in a published manual.
Note that stronger protection is possible on wider inter-
faces, such as when coupling two DRAM channels [10]
but we do not evaluate such protection in this paper.
Figure 11a shows the expected number of faults that
lead to a DUE over a five-year lifetime of systems with
varying memory capacity, and Figure 11b shows the
probability that those systems experience at least one
SDC event over their five-year lifetime.

We discuss three key takeaway points from our eval-
uation: (1) CLEAN correction capability is on par with
Chipkill ; (2) when performing CG accesses, CLEAN de-
tection coverage is on par with Chipkill ; and (3) the
detection coverage of CLEAN with FG accesses is ac-
ceptable for a large range of systems sizes for which
DGMS and SECDED are insufficient. We explain these
results by referring to Table 5 in which we break down
the fault scenarios; we do not consider the rates at which
the different scenarios occur for this analysis.

The correction capability of CLEAN is very close
to that of Chipkill and is orders of magnitude better

chip type result CLEAN CLEAN ChipkillFG CG

single

1bit CE 100.0000% 100.0000% 100.0000%
1word CE 100.0000% 100.0000% 100.0000%
1pin CE 100.0000% 100.0000% 100.0000%

1chip
CE 99.7401% 99.6491% 100.0000%

DUE 0.0000% 0.3509% 0.0000%
SDC 0.2599% 0.0000% 0.0000%

double

1bit+1bit
CE 1.1344% 0.0000% 0.0000%

DUE 98.8303% 99.9749% 98.9244%
SDC 0.0353% 0.0251% 1.0756%

1bit+1pin
CE 1.1291% 0.0000% 0.0000%

DUE 98.7982% 99.9440% 99.9407%
SDC 0.0727% 0.0560% 0.0593%

1bit+1word
CE 0.8956% 0.0000% 0.0000%

DUE 99.0614% 99.9833% 98.6447%
SDC 0.0430% 0.0167% 1.3553%

1bit+1chip
CE 0.5306% 0.0000% 0.0000%

DUE 99.2258% 99.9276% 100.0000%
SDC 0.2436% 0.0724% 0.0000%

1pin+1word
CE 0.8955% 0.0000% 0.0000%

DUE 99.0453% 99.9751% 99.9343%
SDC 0.0592% 0.0249% 0.0657%

1pin+1pin
CE 1.1353% 0.0000% 0.0000%

DUE 98.7933% 99.9415% 99.9889%
SDC 0.0714% 0.0585% 0.0111%

1pin+1chip
CE 0.5317% 0.0000% 0.0000%

DUE 99.2230% 99.9208% 100.0000%
SDC 0.2453% 0.0792% 0.0000%

1word+1word
CE 0.6749% 0.0000% 0.0000%

DUE 99.2809% 99.9926% 100.0000%
SDC 0.0442% 0.0074% 0.0000%

1word+1chip
CE 0.3265% 0.0000% 0.0000%

DUE 99.4450% 99.9318% 98.6040%
SDC 0.2285% 0.0682% 1.3960%

1chip+1chip
CE 0.0000% 0.0000% 0.0000%

DUE 99.6118% 99.8789% 100.0000%
SDC 0.3882% 0.1211% 0.0000%

Table 5: Breakdown of ECC results for realistic
fault types (109/type random errors). CE, DUE
and SDC stand for corrected fault, detected but
uncorrectable fault and silent data corruption.

Chipkill [9] CLEAN CLEANpar

Area(µm2) 2527.65 1237.10 4948.29
Delay(ns) 4.84 2.52 0.63

Table 6: Synthesis results for overhead estima-
tion.

than that of DGMS. With CLEAN, some single-chip
faults that occur in the O chip that holds the outer-code
ECC information can lead to errors that are reported
as uncorrectable, even when the errors are confined to
the O chip and are therefore correctable as the data is
not erroneous. This is evident in the single-chip fault
mode in Table 5 and is discussed in Section 3.3 and Sec-
tion 3.4. The practical absolute difference in correction
capability is just about 0.6, which is 0.01% of the entire
system in the largest system we evaluate.

The detection coverage of CLEAN for CG ac-
cesses is on par with that of Chipkill ; About 10% more
DUEs resulted from single chip faults (Figure 11a), only
0.35% of which are DUEs with CG CLEAN(Table 5).
Similarly, we see that the expected DUE rate for FG
CLEAN and Chipkill is almost the same (Figure 11a),
however, FG CLEAN has a higher SDC rate. Even in
the largest system we evaluate, the SDC risk of CG
CLEAN is only 0.3% larger than that of the baseline
Chipkill . This small difference results from the small
fraction of two-chip faults that can be detected by the
longer codeword used by AMD Chipkill , especially when
including its history mechanism [9, 23], but which are
missed by the shorter concatenated code of CLEAN.
This can be seen by observing the small SDC probabil-
ities of the double-chip fault cases in Table 5.

FG CLEAN suffers from a higher SDC risk
than Chipkill as discussed in Section 3.5. This higher
SDC rate is almost entirely the result of single-chip
faults because these suffer from both having the highest
probability going undetected by the inner code (0.26%)
and are more frequent than double-chip faults. This
manifests in a significant degradation of reliability with
respect to SDCs compared to CG CLEAN and Chip-
kill . However, FG CLEAN is still sufficiently strong
for large systems with memory capacities of many TiB
(Figure 11b) and is orders of magnitude better than
SECDED and DGMS. In addition, some smaller sys-
tems that utilize ECC today can benefit from the per-
formance and efficiency improvements of CLEAN-ECC
without effective impact on reliability.

Because there is a gap between the SDC risk of FG
and CG accesses, each application has a different SDC
rate; a larger fraction of FG accesses results in greater
SDC risk. Figure 12 shows that the estimated SDC risk
of the memory bandwidth intensive SPEC CPU2006 ap-
plication based on their ratio of FG and CG accesses
(profiled with a Pintool [43]). Applications with high
spatial locality have low SDC whereas the SDC proba-
bility of applications that have lower spatial locality is
dominated by the lower reliability of the inner code. Ap-
plications that are not bandwidth intensive use CLEAN-
CG only.

5.3 Hardware Overheads
While the storage overhead of CLEAN equals that

of Chipkill , the hardware implementation of the en-
coders and decoders is different. We estimate the ex-
pected hardware requirements for CLEAN and compare
them to those of Chipkill by implementing its encoder
in Verilog and synthesizing and evaluating our designs
with the Cadence Design Vision (DVE) targeting the
FreePDK45-gscl45nm [44].

We implemented an aggressively parallelized Chipkill
encoder that is hard-coded for a specific polynomial to
reduce latency. This leads to a larger area than re-
quired for the well-known shift-register based encoder
in which input symbols are sequentially computed, but
results in far better latency which we believe is a better
design point for the main memory system. The de-
sign of both the inner and outer encoders and decoders
of CLEAN is simple because they inherently rely on
straightforward parity operations. We also note that a
single layer of muxes and wires is needed for aligning the
32 inner and 32 outer-code parity bits with the encoders
and decoders because of the modulo-9 RAID-like data
layout described in Section 3.1; the data symbols are
all symmetric and don’t require long shifts. We imple-
mented two versions of CLEAN encoder: one that op-
erates on all four subranks in parallel (CLEANpar) and
a lower-area version that operates serially (CLEAN).
Table 6 summarizes our synthesis results and shows that
CLEAN provides lower latency decoding at a compara-
ble area to Chipkill ’s encoder, which is the simplest part
in Chipkill . If correction is required, the CLEAN local-
ization is equivalent to four encoding operations.

6. CONCLUSIONS
In this paper, we presented, for the first time, a highly-

reliable memory protection scheme that is able to per-
form fine-grained subrank accesses in a dynamic fashion
that is completely transparent to software. We conclude
that prior work on adaptive granularity does not provide
sufficiently strong memory protection because the data
layout and codes it uses [1, 2] cannot account for chip
faults or even single-pin faults. In contrast, CLEAN
can approach the reliability of Chipkill when perform-
ing coarse-grained accesses, provides similar correction
capability even with fine-grained accesses, and manages
the rate of possible silent data corruption events. This
is all achieved while maintaining the customary 12.5%
storageoverhead, using standard DDR3 DRAM chips,
and with no additional on-chip components compared
to prior adaptive-granularity architectures.

7. ACKNOWLEDGEMENTS
The authors acknowledgement the support of the Na-

tional Science Foundation under Grant #0954107, which
partially funded this reasearch.

8. REFERENCES
[1] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive granularity

memory systems: A tradeoff between storage efficiency and
throughput,” in Proc. of ISCA, 2011.

[2] D. H. Yoon, M. K. Jeong, M. B. Sullivan, and M. Erez, “The
dynamic granularity memory system,” in Proc. of ISCA, 2012.

[3] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware
memory hierarchy for energy-efficient gpu architectures,” in
Proc. of MICRO, 2013.

[4] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in
the Wild: a Large-Scale Field Study,” in Proc. of the
International Joint Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2009.

[5] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic
Rays Don’t Strike Twice: Understanding the Nature of DRAM
Errors and the Implications for System Design,” in Proc. of
ASPLOS, 2012.

[6] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in Proc. of SC, pp. 76:1–76:11, 2012.

[7] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng shui of supercomputer memory:
Positional effects in dram and sram faults,” in Proc. of SC,
pp. 22:1–22:11, 2013.

[8] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira,
J. Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in
modern systems: The good, the bad, and the ugly,” in Proc. of
ASPLOS, 2015.

[9] “BIOS and Kernel Developer’s Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors,” Jan 2013.

[10] “Intel Xeon Processor E7 Family: Reliability, Availability, and
Serviceability,” 2011.

[11] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc
for pc server main memory,” 1997.

[12] IBM, IBM 3330 data storage.

[13] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (raid),” in Proc. of the
ACM International Conference on Management of
Data(SIGMOD), pp. 109–116, 1988.

[14] J. S. Liptay, “Structural aspects of the system/360 model 85: Ii
the cache,” IBM Syst. J., vol. 7, no. 1, pp. 15–21, 1968.

[15] J. B. Rothman and A. J. Smith, “The pool of subsectors cache
design,” in Proc. of the 13th International Conference on
Supercomputing(ICS), pp. 31–42, 1999.

[16] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.
Schreiber, “Future scaling of processor-memmory interfaces,” in
Proc. of SC, Nov. 2009.

[17] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi,
“Multicore DIMM: An energy efficient memory module with
independently controlled DRAMs,” IEEE Computer
Architecture Letters, vol. 8, pp. 5–8, Jan. - Jun. 2009.

[18] F. A. Ware and C. Hampel, “Improving power and data
efficiency with threaded memory modules,” in Proceedings of
the International Conference on Computer Design (ICCD),
2006.

[19] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu,
“Mini-rank: Adaptive DRAM architecture for improving
memory power efficiency,” in Proc. of MICRO, Nov. 2008.

[20] T. M. Brewer, “Instruction set innovations for the Convey HC-1
computer,” IEEE Micro, vol. 30, no. 2, pp. 70–79, 2010.

[21] X. Jian and R. Kumar, “Adaptive reliability chipkill correct
(arcc),” vol. 0, pp. 270–281, 2013.

[22] S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B.
Brockman, Y. Xie, and N. P. Jouppi, “Mage: Adaptive
granularity and ecc for resilient and power efficient memory
systems,” in Proc. of SC, 2012.

[23] J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe,
and flexible codes for reliable computer memory,” in Proc. of
HPCA, Feb. 2015.

[24] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar,
“Low-power, low-storage-overhead chipkill correct via multi-line
error correction,” in Proc. of SC, pp. 24:1–24:12, 2013.

[25] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main
memory,” in Proc. of ASPLOS, pp. 397–408, ACM, 2010.

[26] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis,
and N. P. Jouppi, “LOT-ECC: localized and tiered reliability
mechanisms for commodity memory systems,” SIGARCH
Comput. Archit. News, vol. 40, pp. 285–296, June 2012.

[27] X. Jian and R. Kumar, “Ecc parity: A technique for efficient
memory error resilience for multi-channel memory systems,” in
Proc. of SC, 2014.

[28] A. N. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. P. Jouppi, “Rethinking
dram design and organization for energy-constrained
multi-cores,” SIGARCH Comput. Archit. News, vol. 38,
pp. 175–186, June 2010.

[29] R. Blankenship, D. Brzezinski, and E. Valverde, “Memory error
detection and/or correction,” Aug. 21 2012. US Patent
8,250,435.

[30] Z. Wang, G. A. Jullien, and W. C. Miller, “An efficient tree
architecture for modulo 2 n + 1 multiplication,” Journal of
VLSI Signal Processing, pp. 241–248, Dec. 1996.

[31] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data
caches using spatial footprints,” in Proc. of ISCA, pp. 357–368,
1998.

[32] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate
and complexity-effective spatial pattern prediction,” in Proc. of
HPCA, 2004.

[33] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, pp. 1–7, Aug. 2011.

[34] M. K. Jeong, D. H. Yoon, and M. Erez, “Drsim: A platform for
flexible DRAM system research.”
http://lph.ece.utexas.edu/public/DrSim.

[35] Standard Performance Evaluation Corporation, “SPEC CPU
2006.” http://www.spec.org/cpu2006/, 2006.

[36] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and
M. Erez, “Balancing dram locality and parallelism in shared
memory cmp systems,” in Proc. of HPCA, pp. 1 –12, feb. 2012.

[37] S.Eyerman and L.Eeckout, “System-level performance metrics
for multiprogram workoads,” vol. 28, no. 3, pp. 42–53, 2008.

[38] M. Technology, “Calculating memory system power for ddr3,”
Technical Report TN-41-01, 2007.

[39] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures,” in Proc. of MICRO, pp. 469–480, 2009.

[40] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, “Memory access scheduling,” in Proc. of ISCA,
pp. 128–138, 2000.

[41] Micron Corp., Micron 1 Gb ×4, ×8, ×16, DDR3 SDRAM:
MT41J256M4, MT41J128M8, and MT41J64M16, 2006.

[42] D. Roberts and P. Nair, “FAULTSIM: A fast, configurable
memory-resilience simulator,” in The Memory Forum: In
conjunction with ISCA, vol. 41.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “PIN: Building
customized program analysis tools with dynamic
instrumentation,” in Proc. the ACM Conf. Programming
Language Design and Implementation (PLDI), Jun. 2005.

[44] “FreePDK45.”
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents, 2006.

http://lph.ece.utexas.edu/public/DrSim
http://www.spec.org/cpu2006/
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

	Introduction
	Background
	Fine-Grained Memory Accesses
	Memory Errors and Protection Mechanisms

	CLEAN Error Protection
	Baseline Memory Hierarchy
	Error Correction
	Error Detection
	Error Localization
	SDC-Rate Minimization

	Evaluation Methodology
	Performance Evaluation
	Reliability Evaluation

	Results and Analysis
	Efficiency and Performance
	Reliability
	Hardware Overheads

	Conclusions
	Acknowledgements
	References

