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Abstract: Context-awareness enhances human-centric, intelligent behavior in a smart environment; however, 

context-awareness is not widely used due to the lack of effective infrastructure to support context-aware ap-

plications. This paper presents an agent-based middleware for providing context-aware services for smart 

spaces to afford effective support for context acquisition, representation, interpretation, and utilization to ap-

plications. The middleware uses a formal context model, which combines first order probabilistic logic 

(FOPL) and web ontology language (OWL) ontologies, to provide a common understanding of contextual in-

formation to facilitate context modeling and reasoning about imperfect and ambiguous contextual informa-

tion and to enable context knowledge sharing and reuse. A context inference mechanism based on an ex-

tended Bayesian network approach is used to enable automated reactive and deductive reasoning. The 

middleware is used in a case study in a smart classroom, and performance evaluation result shows that the 

context reasoning algorithm is good for non-time-critical applications and that the complexity is highly sensi-

tive to the size of the context dataset. 
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Introduction 

Smart spaces are open, distributed, heterogeneous per-
vasive computing systems which aim to create a ubiq-
uitous, human-centric environment with embedded 
sensors, information appliances, and multimodal inter-
faces that assist humans to efficiently complete tasks 
by offering abundant information and assistance. Con-
text plays an important role in smart spaces in provid-
ing information about the status of the people, activi-
ties, location, physical environment, and computing 
entities. Applications in smart spaces use contextual in-
formation to become context-aware of changing  

situations relevant to the intelligent interactions with    
users[1,2]. 

For the last decade, research on context-aware com-
puting domains has investigated a wide range of theo-
retical issues related to context modeling and represen-
tation, context inference mechanisms, and related de-
velopment problems in practical systems such as data 
sensing, context acquisition, context management, and 
querying. However, the design and implementation of 
context-aware applications are still difficult. Contex-
tual information requires a formal, unified model with 
rich expression power to represent context semantics 
and support an inference mechanism. Contextual in-
formation also requires infrastructure-level software 
supports to provide context acquisition, interpretation, 
management, and querying functions. 

This paper presents an ontology-based approach for 
developing context-aware middleware for the follow-
ing reasons[3,4]: (1) A well-defined, unified ontology 
enables knowledge sharing and reuse. (2) Ontologies 
with declarative semantics provide multiple policies to 
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support context inference. (3) Ontologies provide vari-
ous complex efficient inference mechanisms to deduce 
high-level contexts from low-level, raw context data, 
and to check inconsistent contextual information due to 
imperfect sensing. (4) Explicitly represented ontolo-
gies enhance the development of context-aware sys-
tems with semantic web technologies. 

This paper introduces an ontology-based context 
model which describes contextual entities in a smart 
space environment and a context inference mechanism 
based on first-order probabilistic logic with an agent-
based, loose coupling middleware that enables the ac-
quisition, inference, management, and querying of con-
textual information from different sensors and software 
entities, to provide appropriate context-aware services 
for various applications. 

1  Context Modeling and Reasoning 

A well-defined context model is an important key to 
access the context in any context-aware system[5]. For 
instance, Henricksen[6] investigated the unified model-
ing language (UML) and entity-relationship (ER) 
modeling approach to represent context structures and 
properties. Gu et al.[7] presented an ontology-based 
context model to derive high-level contexts from low-
level context data. The important context sources are 
captured from embedded sensors in a smart space envi-
ronment which give uncertain, imperfect data. How-
ever, most of ontology-based context models fail to 
represent uncertainty, while logic-based context mod-
els fail to describe semantic relationships between con-
text entities[5]. Here, the fundamental ontology-based 
and logic-based context models are combined in a 
first-order probabilistic logic to represent the basic 
context structure and construct a probabilistic infer-
ence mechanism, which combines the expressive 
power of first-order logic with the uncertainty context 
reasoning of probabilistic theory[8]. This shared under-
standing of specific domains gives context modeling 
which uses ontology and semantic web services to de-
scribe the concepts and relationships of context entities 
in smart spaces[9]. 

1.1  Formal representation of context 

First order probabilistic logic (FOPL) is used to repre-
sent the basic context structure which combines first 

order logic and probabilistic models in a machine 
learning community. The definitions of terminology, 
including Field, Predicate, ContextAtom, and Context- 
Literal, are presented in the following. 

 *Field F∈ , where a Field is a set of individuals 
belong to the same class, e.g., Presson= {QIN, SHI, 
SUO}, Room={Room526, Room527}.  

 *Predicate ,V∈ where a Predicate  indicates the 
relationship among the entities or the properties of an 
entity, e.g., location, co-locate. 

 *ContextAtom ,A∈  where ContextAtom  is 
represented as predicate(term, term,...)  in which a 
term is a constant, a variable, or a function followed by 
a parenthesized list of terms separated by commas with 
a predicate acting on the terms. For example, 
location(QIN)  indicates QIN’s location, and 
co-locate(QIN,SUO)  indicates that QIN and SUO are 
located in the same place. 

 *ContextLiteral ,L∈  where ContextLiteral  is 
represented as the form of contextAtom=v  in which 
ContextAtom  is the instance of ContextAtom  and 
v  indicates the status of ContextAtom  or the value 
of the terms. For example, location(QIN)=Room527  
indicates that QIN’s location is Room527. 

Thus, the context knowledge is represented as the 
form of 1 2 3Pr( , , ,...) ,L L L c= where 1 2 3, ,L L L ∈Context- 
Literal, which indicates the concurrent probability of 
several ContextLiterals. For example, Pr(location 
(QIN)=Room527, location(SUO)=Room527) =0.76 in-
dicates that the probability of the fact that QIN is lo-
cated in Room527 while SUO is located in Room527 
equals 0.76. The structures and properties of this basic 
model are described in an ontology language to define 
the conceptual contexts in a rich semantic level. The 
basic context structure is represented using web ontol-
ogy language (OWL). Two OWL classes are defined as 
PriorProb and CondProb as in the approach of Ding et 
al.[10] for representing probabilities. A prior probability 

1Pr( )L  of a ContextLiteral 1L  is defined as the in-
stance of class PriorProb, which has the two mandatory 
properties, hasContextLiteral and hasProbValue. A 
conditional probability 1Pr( )L L  of a context literal 

1L  is defined as the instance of class CondProb, which 
has three mandatory properties hasContextLiteral, 
hasProbValue, and hasCondition. An example of an 
FOPL statement is represented by an OWL description 
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is given in Fig. 1. 

<owl:CondProb rdf:ID=” Pr(L1|L)”> 
    <hasCondition>L</hasCondition> 
    <hasContextLiteral>L1</ hasContextLiteral > 
    <hasProbValue>0.76</hasProbValue> 
</owl:CondProb> 

Fig. 1 FOPL statement represented in an OWL  
description 

1.2  Ontology-based context model 

The purpose of the ontology-based context model is to 
formalize the structured contextual entities in smart 
spaces by making use of the ontology methodology to 
define the concepts and relationships of the context 
elements. The context ontology is divided into a core 
context ontology for general conceptual entities in the 
smart space and an extended context ontology for the 
domain-specific environment, e.g., the classroom do-
main. The core context ontology defines very general 
concepts for the context in the smart space that are 
universal and sharable for building context-aware ap-
plications. The extended context ontology defines ad-
ditional concepts and vocabularies for supporting vari-
ous types of domain-specific applications. 

The core context ontology describes seven basic 
concepts: user, location, time, activity, service, envi-
ronment, and platform, which are the basic entities in 
the smart space as shown in Fig. 2. Part of the core 
context ontology is adopted from various widely-used 
consensus ontologies, such as DAML-Time and OWL-
S. The instance of the smart space consists of User, 
Location, Time, Activity, Service, Environment, and 
Platform classes.  

 User: Since user plays an important, central role 
in smart space applications, this ontology defines the 
vocabularies representing profile information, contact 
information, user preference, and user’s mood which 
are sensitive to the current user activity or task. 

 Location, Time, and Activity: The relationships 
between location, time, and activity facilitate validation 
of inconsistent contextual information when these con-
texts are sensed by sensors with different accuracies. 

 Platform and Service: The platform ontology de-
fines descriptions and vocabularies of hardware de-
vices or sensors and software infrastructure in a smart 

space. The service ontology defines the multi-level 
specifications of services that the platform provides to 
support service discovery and composition. In the se-
mantic web community, OWL-S is used as a standard-
ized framework to describe services in general. 

 Environment: The environment ontology defines 
the context specification of the physical environment 
conditions around the user, such as noise level, lighting 
condition, humidity, and temperature. 

The extended context ontology extends the core con-
text ontology and defines the details and additional vo-
cabulary which applies to the various domains. The 
advantage of the extended context ontology is that the 
domain separation reduces the scale of the context 
knowledge and context processing burdens for perva-
sive computing applications, and facilitates effective 
context inference with limited complexity[9]. 

1.3  Probabilistic context reasoning 

The context reasoning domain uses a rule-based infer-
ence mechanism which uses knowledge-based model 
construction (KBMC) to deduce high-level, new con-
text knowledge from low-level detected facts. Within 
the FOPL framework, context rules are defined in the 
form of 

1 2 1 2 3
Pr( | , ,...) : - , , ,...h b b C C CL L L c L L L= , which 

means that the probability of hL  is c for the con-
straints 

1
,CL

2
,CL

3
,CL and conditions 

1bL and 
2
.bL  

Note that 
iCL  denotes only the context fact and the 

others denote arbitrary ContextLiterals. For instance, 
in the classroom scenario, the statement 

Pr(TeacherStatus(Teacher)=
talking|Speaking(Student)=false)=

0.7:-IsBlackboardTouched(Room527)=false
 

denotes the rules that when the blackboard of 
Room527 has not been touched, the probability that the 
teacher is talking equals 0.7 for the condition that the 
student is silent. 

After representing the context rule, an additional 
property element rdfs:dependOn is defined to capture 
the dependency relationship between the datatype and 
the object properties in OWL. The importance of the 
FOPL-based context rule is that probability and Bayes-
ian network tools can then be used to reason with un-
certain context. The benefit of the rdfs:dependOn ele-
ment is used to translate the resource description 
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Fig. 2  Smart space context ontology 

framework (RDF) graph into the Bayesian network’s 
direct acyclic graph (DAG). Each node of the DAG 
represents a ContextLiteral, with directed arcs between 
nodes representing causal dependencies between Con-
textLiterals. The scale of the DAG is reduced by con-
straints, including valid syntax rules, the independence 
hypothesis of a causal set that extends the causal 
independence definition[11], the average distribution 
hypothesis of the residual probability, and the 
conditional independence hypothesis. These present 
the generation of the unnecessary nodes in the net so as 
to minimize the scale of the DAG and ascertain the 
exclusivity of the answer distribution. Therefore, the 
constraints and hypotheses control the inference 
complexity within an acceptable range. 

2  System Architecture 
2.1  Agent model 

This ontology-based context-aware middleware is de-
signed based on a multi-agent system which aims to 

support applications that make use of contextual in-
formation in a smart space environment. The agent 
model consists of several individual, collaborating 
agents as depicted in Fig. 3. 

 Context wrapper agent: Acquires various types of 
raw context data from different sensors, devices, pro-
files, and software agents. 

 Context provider agent: Abstracts context data 
from heterogeneous sources via various types of con-
text wrapper agents and represents contextual informa-
tion using ontologies for knowledge sharing and reuse. 

 Inference engine agent: Provides an inference 
mechanism, including the reactive method, first order 
probabilistic logic and Bayesian networks, to infer 
high-level context from low-level data. 

 Knowledge base agent: Stores inference rules, 
observed facts, and ontologies for context data man-
agement and maintenance in the database. 

 Query filter agent: Provides query interfaces for 
upper applications or agents to query or subscribe the 
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context-aware services with support of a system-level 
coordination mechanism using a formal query     
language. 

2.2  Design considerations 

The most important considerations in the architecture 
design for providing context-aware services are: 

 Loose coupling Contextual information in a 
smart space environment is very dynamic and hetero-
geneous. With this loose coupling, the system can use 
suitable plug-in components to meet the different de-
mands of context-aware applications for modeling and 
reasoning with different types of context knowledge 
with the least system integration costs. 

 Scalability The middleware architecture with 
component abstraction and encapsulation provides an 
easy way to enable context-aware service scalablility. 
By customizing the scenario profile and deploying 
various types of sensors, the context wrapper agent can 
capture abundant contextual information from different 
sources to be more adaptive to the real smart space en-
vironment. 

 Invisibility  By separating the application pro-
cedure and the underlying services, the middleware 
can use a query filter agent module for enabling under-
lying system functionalities (e.g., context data storage, 

sensor distribution, inference engine) that is invisible 
to the upper applications. 

3  Validation 

The preceding section described the design of the on-
tology-based context-aware middleware. The middle-
ware was validated by applying it to a case study in the 
smart classroom project[12,13] to demonstrate its usabil-
ity. The context reasoning performance was also  
evaluated. 

3.1  Case study 

For the smart classroom project, a smart cameraman 
module was designed to change the live-video scene to 
a situational context according to the class activity in  
a classroom by switching an array of cameras. By 
making use of context-aware services, remote students 
were able to focus their attention on relevant scenes on 
the client side. In this case, the context-awareness pro-
vided by the middleware captures the contextual    
information relevant to the user’s activity and provides 
class activity clues to the smart cameraman module. 
The middleware also delivers customized video to re-
mote students with various quality due to the various 
capabilities of their computer or systems, such as dis-
play screen size or network bandwidth. 

 
Fig. 3  Middleware architecture 
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The smart cameraman scenario uses four types of 
context rules in the class activity: 

 Teacher writing on the MediaBoard  When 
the teacher is writing comments on the MediaBoard, 
the smart cameraman module may select a close-up 
view of the board, as shown in Fig. 4a. 

 Teacher showing a model  When the teacher 
holds up a model, the smart cameraman module may 
zoom in on the model as shown in Fig. 4b. 

 Remote student speaking When a remote stu-
dent is speaking, live video of the student may be de-
livered to other remote students. 

 Other  In all other situations, the smart cam-
eraman module may select an overview of the class-
room shown in Fig. 4c. 

A predefined probability between 0 and 1 is attached 
to the context rules using basic structure of the first-
order probabilistic logic partially shown in Table 1. 
When an event (e.g., the teacher writing on the me-
diaboard) occurs, the concurrent probability distribu-
tion of the camera’s status is reconstructed according 

to the context rules, so that the camera tracks the live 
focus. A case generator shown in Fig. 4d has been de-
veloped to simulate a variety of situations and contex-
tual information to test the functionalities of the smart 
cameraman module. 

 
Fig. 4  Case study in the smart classroom project 

Table 1  Examples of context rules defined in the smart cameraman scenario 

Context rules FOPL formula 
CR1 Pr(IsStatus(Camera)=CLOSEUP_VIEW|Action(Tearcher)=WRITING, 

IsStatus(MediaBoard)=TRUE)=0.8:OnTouched(MediaBoard)=TRUE 
CR2 Pr(IsStatus(Camera)=CLOSEUP_VIEW|Action(Tearcher)=SHOWING)=0.15:OnTouched(MediaBoard)=TRUE 
CR3 Pr(IsStatus(Camera)=CLOSEUP_VIEW|Action(Tearcher)=SPEAKING)=0.05:OnTouched(MediaBoard)=TRUE 

2

3.2  Performance evaluation 

This section illustrates the performance evaluation of 
the context reasoning algorithm. The goal of the tests is 
to evaluate the computational complexity and run-time 
performance of the context reasoning algorithm. The 
middleware uses the JENA2 Semantic Web Toolkit to 
build the context reasoner which supports the rule-
based inference in OWL. The context entity datasets 
were small 1000 RDF triples to large 5000 RDF triples 
for reasoning with different computational capabilities 
(1 GB RAM with P4/2.0 GHz and P4/3.2 GHz) using 
context rules described in the previous section. 

Figure 5 shows the results including the size of the 
Bayesian network using the context data. Figure 6 
shows the runtime quantitative delay of the context 
reasoning. The results show that the context reasoning 
algorithm is good for non-time-critical applications, 
and that the complexity is highly sensitive to the size 

of the context dataset. With the dataset using 5000 
RDF triples, the context reasoning results were delayed 
by over 2 s on a P4/3.2-GHz CPU. Therefore, for time-
critical applications such as the smart cameraman 
module, the scale of the context dataset and the context 
rules should be controlled. 

 
Fig. 5  Size of the Bayesian network 
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Fig. 6  Context reasoning runtime performance 

4  Conclusions 

A context-aware middleware was developed to provide 
context-aware services for smart spaces. The middle-
ware supports the high-level abstraction of contextual 
information with the power of a formal context model 
which combines first-order probabilistic logic and ex-
plicitly represented ontologies and allows context in-
ference based on an extended Bayesian network to 
provide more precise context information adapted to 
changing, heterogeneous smart space environments. 
Further research will investigate description logic ap-
proaches with more expressive power to make the 
middleware more robust and extensible. 
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