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ABSTRACT
Myriad of graph-based algorithms in machine learning and
data mining require parsing relational data iteratively. These
algorithms are implemented in a large-scale distributed en-
vironment in order to scale to massive data sets. To accel-
erate these large-scale graph-based iterative computations,
we propose delta-based accumulative iterative computation
(DAIC). Different from traditional iterative computations,
which iteratively update the result based on the result from
the previous iteration, DAIC updates the result by accu-
mulating the “changes” between iterations. By DAIC, we
can process only the “changes” to avoid the negligible up-
dates. Furthermore, we can perform DAIC asynchronously
to bypass the high-cost synchronous barriers in heteroge-
neous distributed environments. Based on the DAIC model,
we design and implement an asynchronous graph process-
ing framework, Maiter. We evaluate Maiter on local cluster
as well as on Amazon EC2 Cloud. The results show that
Maiter achieves as much as 60x speedup over Hadoop and
outperforms other state-of-the-art frameworks.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Design, Theory, Performance

Keywords
delta-based accumulative iterative computation, asynchronous
iteration, Maiter, distributed framework.

1. INTRODUCTION
The advances in data acquisition, storage, and network-

ing technology have created huge collections of high-volume,
high-dimensional relational data. Huge amounts of the rela-
tional data, such as Facebook user activities, Flickr photos,
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Web pages, and Amazon co-purchase records, have been col-
lected. Making sense of these relational data is critical for
companies and organizations to make better business deci-
sions and even bring convenience to our daily life. Recent
advances in data mining, machine learning, and data ana-
lytics have led to a flurry of graph analytic techniques that
typically require an iterative refinement process [6, 34, 25,
9]. However, the massive amount of data involved and po-
tentially numerous iterations required make performing da-
ta analytics in a timely manner challenging. To address this
challenge, MapReduce [14, 2], Pregel [27], and a series of dis-
tributed frameworks [26, 29, 38, 27, 32] have been proposed
to perform large-scale graph processing in a cloud environ-
ment.

Many of the proposed frameworks exploit vertex-centric
programming model. Basically, the graph algorithm is de-
scribed from a single vertex’s perspective and then applied to
each vertex for a loosely coupled execution. Given the input
graph G(V,E), each vertex j ∈ V maintains a vertex state
vj , which is updated iteratively based on its in-neighbors’
state, according to the update function f :

vkj = f(vk−1
1 , vk−1

2 , . . . , vk−1
n ), (1)

where vkj represents vertex j’s state after the k iterations,
and v1, v2, . . . , vn are the states of vertex j’s in-neighbors.
The iterative process continues until the states of all vertices
become stable, when the iterative algorithm converges.

Based on the vertex-centric model, most of the proposed
frameworks leverage synchronous iteration. That is, the
vertices perform the update in lock steps. At step k, vertex
j first collects vk−1

i from all its in-neighbors, followed by
performing the update function f to obtain vkj based on

these vk−1
i . The synchronous iteration requires that all the

update operations in the (k−1)th iteration have to complete
before any of the update operations in the kth iteration start.
Clearly, this synchronization is required in each step. These
synchronizations might degrade performance, especially in
heterogeneous distributed environments.

To avoid the high-cost synchronization barriers, asyn-
chronous iteration was proposed [13]. Performing up-
dates asynchronously means that vertex j performs the up-
date at any time based on the most recent states of its in-
neighbors. Asynchronous iteration has been studied in [13,
7, 8]. Bypassing the synchronization barriers and exploiting
the most recent state intuitively lead to more efficient iter-
ation. However, asynchronous iteration might require more
communications and perform useless computations. An ac-
tivated vertex pulls all its in-neighbors’ values, but not all



of them have been updated, or even worse none of them
is updated. In that case, asynchronous iteration performs a
useless computation, which impacts efficiency. Furthermore,
some asynchronous iteration cannot guarantee to converge
to the same fixed point as synchronous iteration, which leads
to uncertainty.
In this paper, we proposeDAIC, delta-based accumulative

iterative computation. In traditional iterative computation,
each vertex state is updated based on its in-neighbors’ previ-
ous iteration states. While in DAIC, each vertex propagates
only the “change” of the state, which can avoid useless up-
dates. The key benefit of only propagating the “change” is
that, the “changes” can be accumulated monotonically and
the iterative computation can be performed asynchronously.
In addition, since the amount of “change” implicates the im-
portance of an update, we can utilize more efficient priority
scheduling for the asynchronous updates. Therefore, DAIC
can be executed efficiently and asynchronously. Moreover,
DAIC can guarantee to converge to the same fixed point.
Given a graph iterative algorithm, we provide the sufficien-
t conditions of rewriting it as a DAIC algorithm and list
the guidelines on writing DAIC algorithms. We also show
that a large number of well-known algorithms satisfy these
conditions and illustrate their DAIC forms.
Based on the DAIC model, we design a distributed frame-

work, Maiter. Maiter relies on Message Passing Interface
(MPI) for communication and provides intuitive API for
users to implement a DAIC algorithm. We systematical-
ly evaluate Maiter on local cluster as well as on Amazon
EC2 Cloud [1]. Our results are presented in the context of
four popular applications. The results show that Maiter can
accelerate the iterative computations significantly. For ex-
ample, Maiter achieves as much as 60x speedup over Hadoop
for the well-known PageRank algorithm.
The rest of the paper is organized as follows. Section

2 introduces more background information about iterative
graph processing. Section 3 presents DAIC, followed by in-
troducing how to write DAIC algorithms in Section 4. In
Section 5, we describe Maiter. We then describe Maiter’s
API in Section 6. The experimental results are shown in
Section 7. We outline the related work in Section 8 and
conclude the paper in Section 9.

2. ITERATIVE GRAPH PROCESSING
The graph algorithm can be abstracted as the operations

on a graph G(V,E). Peoples usually exploit a vertex-centric
model to solve the graph algorithms. Basically, the graph
algorithm is described from a single vertex’s perspective and
then applied to each vertex for a loosely coupled execution.
Iterative graph algorithms perform the same operations on
the graph vertices for several iterations. Each vertex j ∈
V maintains a vertex state vj that is updated iteratively.
The key of a vertex-centric graph computation is the update
function f performed on each vertex j:

vkj = f(vk−1
1 , vk−1

2 , . . . , vk−1
n ), (2)

where vkj represents vertex j’s state after the kth iteration,
and v1, v2, . . . , vn are the states of vertex j’s neighbors. The
state values are passed between vertices through the edges.
The iterative process continues until the graph vertex state
becomes stable, when the iterative algorithm converges.
For example, the well-known PageRank algorithm itera-

tively updates all pages’ ranking scores. According to the

vertex-centric graph processing model, in each iteration, we
update the ranking score of each page j, Rj , as follows:

Rk
j = d ·

∑
{i|(i→j)∈E}

Rk−1
i

|N(i)| + (1− d), (3)

where d is a damping factor, |N(i)| is the number of out-
bound links of page i, (i → j) is a link from page i to page
j, and E is the set of directed links. The PageRank scores
of all pages are updated round by round until convergence.

In distributed computing, vertices are distributed to mul-
tiple processors and perform updates in parallel. For sim-
plicity of exposition, assume that there are enough proces-
sors and each processor j performs update for vertex j. All
vertices perform the update in lock steps. At step k, vertex
j first collects vk−1

i from all its neighbor vertices, followed
by performing the update function f to obtain vkj based on

these vk−1
i . The synchronous iteration requires that al-

l the update operations in the (k − 1)th iteration have to
be completed before any of the update operations in the
kth iteration starts. Clearly, this synchronization is required
in each step. These synchronizations might degrade per-
formance, especially in heterogeneous distributed environ-
ments.

To avoid the synchronization barriers, asynchronous it-
eration was proposed [13]. Performing update operations
asynchronously means that vertex j performs the update

vj = f(v1, v2, . . . , vn) (4)

at any time based on the most recent values of its neighbor
vertices, {v1, v2, . . . , vn}. The conditions of convergence of
asynchronous iterations have been studied in [13, 7, 8].

By asynchronous iteration, as vertex j is activated to per-
form an update, it “pulls” the values of its neighbor vertices,
i.e., {v1, v2, . . . , vn}, and uses these values to perform an up-
date on vj . This scheme does not require any synchroniza-
tion. However, asynchronous iteration intuitively requires
more communications and useless computations than syn-
chronous iteration. An activated vertex needs to pull the
values from all its neighbor vertices, but not all of them
have been updated, or even worse none of them is updat-
ed. In that case, asynchronous iteration performs a useless
computation and results in significant communication over-
head. Accordingly, “pull-based” asynchronous iteration is
only applicable in an environment where the communica-
tion overhead is negligible, such as shared memory system-
s. In a distributed environment or in a cloud, “pull-based”
asynchronous model cannot be efficiently utilized.

As an alternative, after vertex i updates vi, it “pushes”
vi to all its neighbors j, and vi is buffered as Bi,j on each
vertex j, which will be updated as new vi arrives. Vertex
j only performs update when there are new values in the
buffers and uses these buffered values Bi,j , to update vj .
In this way, the redundant communications can be avoided.
However, the “push-based” asynchronous iteration results in
higher space complexity. Each vertex j has to buffer |N(j)|
values, where |N(j)| is the number of vertex j’s neighbors.
The large number of buffers also leads to considerable main-
tenance overhead.

To sum up, in a distributed environment, the synchronous
iteration results in low performance due to the multiple glob-
al barriers, while the asynchronous iteration cannot be ef-
ficiently utilized due to various implementation overhead-



s. Also note that, for some iterative algorithms, the asyn-
chronous iteration cannot guarantee to converge to the same
fixpoint as the synchronous iteration does, which leads to
uncertainty.

3. DELTA-BASED ACCUMULATIVE ITER-
ATIVE COMPUTATION (DAIC)

In this section, we present delta-based accumulative it-
erative computation, DAIC. By DAIC, the graph iterative
algorithms can be executed asynchronously and efficiently.
We first introduce DAIC and point out the sufficient condi-
tions of performing DAIC. Then, we propose DAIC’s asyn-
chronous execution model. We further prove its convergence
and analyze its effectiveness. Under the asynchronous mod-
el, we also propose several scheduling policies to schedule
the asynchronous updates.

3.1 DAIC Introduction
Based on the idea introduced in Section 1, we give the

following 2-step update function of DAIC:
vkj = vk−1

j ⊕∆vkj ,

∆vk+1
j =

n∑
i=1

⊕g{i,j}(∆vki ).
(5)

k = 1, 2, . . . is the iteration number. vkj is the state of vertex

j after k iterations. ∆vkj denotes the change from vk−1
j to

vkj in the ‘⊕’ operation manner, where ‘⊕’ is an abstract

operator.

n∑
i=1

⊕xi = x1 ⊕ x2 ⊕ . . .⊕ xn represents the accu-

mulation of the “changes”, where the accumulation is in the
‘⊕’ operation manner.
The first update function says that a vertex state vkj is

updated from vk−1
j by accumulating the change ∆vkj . The

second update function says that the change ∆vk+1
j , which

will be used in the next iteration, is the accumulation of the
received values g{i,j}(∆vki ) from j’s various in-neighbors i.

The propagated value from i to j, g{i,j}(∆vki )), is generated

in terms of vertex i’s state change ∆vki . Note that, all the
accumulative operation is in the ‘⊕’ operation manner.
However, not all iterative computation can be converted

to the DAIC form. To write a DAIC, the update function
should satisfy the following sufficient conditions.
The first condition is that,

• update function vkj = f(vk−1
1 , vk−1

2 , . . . , vk−1
n ) can be

written in the form:

vkj = g{1,j}(v
k−1
1 )⊕g{2,j}(v

k−1
2 )⊕. . .⊕g{n,j}(v

k−1
n )⊕cj (6)

where g{i,j}(vi) is a function applied on vertex j’s in-neighbor
i, which denotes the value passed from vertex i to vertex j.
In other words, vertex i passes value g{i,j}(vi) (instead of
vi) to vertex j. On vertex j, these g{i,j}(vi) from various
vertices i and cj are aggregated (by ‘⊕’ operation) to update
vj .
For example, the well-known PageRank algorithm satisfies

this condition. It iteratively updates the PageRank scores
of all pages. In each iteration, the ranking score of page j,

Rj , is updated as follows:

Rk
j = d ·

∑
{i|(i→j)∈E}

Rk−1
i

|N(i)| + (1− d),

where d is a damping factor, |N(i)| is the number of out-
bound links of page i, (i → j) is a link from page i to page
j, and E is the set of directed links. The update function of
PageRank is in the form of Equation (6), where cj = 1− d,
‘⊕’ is ‘+’, and for any page i that has a link to page j,

g{i,j}(v
k−1
i ) = d · vk−1

i
|N(i)| .

Next, since ∆vkj is defined to denote the “change” from

vk−1
j to vkj in the ‘⊕’ operation manner. That is,

vkj = vk−1
j ⊕∆vkj , (7)

In order to derive ∆vkj we pose the second condition:

• function g{i,j}(x) should have the distributive property
over ‘⊕’, i.e., g{i,j}(x⊕ y) = g{i,j}(x)⊕ g{i,j}(y).

By replacing vk−1
i in Equation (6) with vk−2

i ⊕ ∆vk−1
i , we

have

vkj =g{1,j}(v
k−2
1 )⊕ g{1,j}(∆vk−1

1 )⊕ . . .⊕

g{n,j}(v
k−2
n )⊕ g{n,j}(∆vk−1

n )⊕ cj .
(8)

Further, let us pose the third condition:

• operator ‘⊕’ should have the commutative property,
i.e., x⊕ y = y ⊕ x;

• operator ‘⊕’ should have the associative property, i.e.,
(x⊕ y)⊕ z = x⊕ (y ⊕ z);

Then we can combine these g{i,j}(v
k−2
i ), i = 1, 2, . . . , n, and

cj in Equation (8) to obtain vk−1
j . Considering Equation

(7), the combination of the remaining g{i,j}(∆vk−1
i ), i =

1, 2, . . . , n in Equation (8), which is
∑n

i=1 ⊕g{i,j}(∆vk−1
i ),

will result in ∆vki . Then, we have the 2-step DAIC as shown
in (5).

To initialize a DAIC, we should set the start values of
v0j and ∆v1j . v0j and ∆v1j can be initialized to be any val-

ue, but the initialization should satisfy v0j ⊕ ∆v1j = v1j =

g{1,j}(v
0
1) ⊕ g{2,j}(v

0
2) ⊕ . . . ⊕ g{n,j}(v

0
n) ⊕ cj , which is the

fourth condition.
The PageRank’s update function as shown in Equation (7)

satisfies all the conditions. g{i,j}(v
k−1
i ) = d · vk−1

i
|N(i)| satisfies

the second condition. ‘⊕’ is ‘+’, which satisfies the third
condition. In order to satisfy the fourth condition, v0j can be

initialized to 0, and ∆v1j can be initialized to 1− d. Besides
PageRank, we have found a broad class of DAIC algorithms,
which are described in later section.

To sum up, DAIC can be described as follows. Vertex
j first updates vkj by accumulating ∆vkj (by ‘⊕’ operation)

and then updates ∆vk+1
j with

∑n
i=1 ⊕g{i,j}(∆vki ). We refer

to ∆vj as the delta value of vertex j and g{i,j}(∆vki ) as the

delta message sent from i to j.
∑n

i=1 ⊕g{i,j}(∆vki ) is the
accumulation of the received delta messages on vertex j since
the kth update. Then, the delta value ∆vk+1

j will be used

for the (k + 1)th update. Apparently, this still requires all
vertices to start the update synchronously. That is, ∆vk+1

j

has to accumulate all the delta messages g{i,j}(∆vki ) sent



from j’s in-neighbors, at which time it is ready to be used
in the (k + 1)th iteration. Therefore, we refer to the 2-step
iterative computation in (5) as synchronous DAIC.

3.2 Asynchronous DAIC
DAIC can be performed asynchronously. That is, a ver-

tex can start update at any time based on whatever it has
already received. We can describe asynchronous DAIC
as follows, each vertex j performs:

receive:

{
Whenever receiving mj,

∆v̌j ← ∆v̌j ⊕mj .

update:


v̌j ← v̌j ⊕∆v̌j ;

For any h, if g{j,h}(∆v̌j) ̸= 0,

send value g{j,h}(∆v̌j) to h;

∆v̌j ← 0,

(9)

where mj is the received delta message g{i,j}(∆v̌i) sent from
any in-neighbor i. The receive operation accumulates the
received delta message mj to ∆v̌j . ∆v̌j accumulates the
received delta messages between two consecutive update op-
erations. The update operation updates v̌j by accumulating
∆v̌j , sends the delta message g{j,h}(∆v̌j) to any of j’s out-
neighbors h, and resets ∆v̌j to 0. Here, operator ‘⊕’ should
have the identity property of abstract value 0, i.e., x⊕0 = x,
so that resetting ∆v̌j to 0 guarantees that the received val-
ue is cleared. Additionally, to avoid useless communica-
tion, it is necessary to check that the sent delta message
g{j,h}(∆v̌j) ̸= 0 before sending.
For example, in PageRank, each page j has a buffer ∆Rj

to accumulate the received delta PageRank scores. When
page j performs an update, Rj is updated by accumulating

∆Rj . Then, the delta message d
∆Rj

|N(j)| is sent to j’s linked

pages, and ∆Rj is reset to 0.
In asynchronous DAIC, the two operations on a vertex,

receive and update, are completely independent from those
on other vertices. Any vertex is allowed to perform the
operations at any time. There is no lock step to synchronize
any operation between vertices.

3.3 Convergence
To study the convergence property, we first give the fol-

lowing definition of the convergence of asynchronous DAIC.

Definition 1. Asynchronous DAIC as shown in (9) con-
verges as long as that after each vertex has performed the
receive and update operations an infinite number of times,
v̌∞j converges to a fixed value v̌∗j .

Then, we have the following theorem to guarantee that
asynchronous DAIC will converge to the same fixed point
as synchronous DAIC. Further, since synchronous DAIC is
derived from the traditional form of iterative computation,
i.e., Equation (2), the asynchronous DAIC will converge to
the same fixed point as traditional iterative computation.

Theorem 1. If vj in (2) converges, v̌j in (9) converges.
Further, they converge to the same value, i.e., v∞j = v̌∞j =
v̌∗j .

The formal proof of Theorem 5 is provided in the Ap-
pendix. We explain the intuition behind Theorem 5 as fol-
lows. Consider the process of DAIC as information propa-
gation in a graph. Vertex i with an initial value ∆v1i propa-
gates delta message g{i,j}(∆v1i ) to its out-neighbor j, where

g{i,j}(∆v1i ) is accumulated to vj and a new delta message

g{j,h}(g{i,j}(∆v1i )) is produced and propagated to any of j’s
out-neighbors h. By synchronous DAIC, the delta messages
propagated from all vertices should be received by all their
neighbors before starting the next round propagation. That
is, the delta messages originated from a vertex are prop-
agated strictly hop by hop. In contrast, by asynchronous
DAIC, whenever some delta messages arrive, a vertex ac-
cumulates them to v̌j and propagates the newly produced
delta messages to its neighbors. No matter synchronously
or asynchronously, the spread delta messages are never lost,
and the delta messages originated from each vertex will be
eventually spread along all paths. For a destination node,
it will eventually collect the delta messages originated from
all vertices along various propagating paths. All these delta
messages are eventually received and contributed to any vj .
Therefore, synchronous DAIC and asynchronous DAIC will
converge to the same result.

3.4 Effectiveness
As illustrated above, vj and v̌j both converge to the same

fixed point. By accumulating ∆vj (or ∆v̌j), vj (or v̌j) ei-
ther monotonically increases or monotonically decreases to
a fixed value v∗j = v∞j = v̌∞j . In this section, we show that
v̌j converges faster than vj .

To simplify the analysis, we first assume that 1) only one
update occurs at any time point; 2) the transmission delay
can be ignored, i.e., the delta message sent from vertex i,
g{i,j}(∆vi) (or g{i,j}(∆v̌i)), is directly accumulated to ∆vj
(or ∆v̌j).

The workload can be seen as the number of performed
updates. Let update sequence represent the update order of
the vertices. By synchronous DAIC, all the vertices have
to perform the update once and only once before starting
the next round of updates. Hence, the update sequence is
composed of a series of subsequences. The length of each
subsequence is |V |, i.e., the number of vertices. Each vertex
occurs in a subsequence once and only once. We call this
particular update sequence as synchronous update sequence.
While in asynchronous DAIC, the update sequence can fol-
low any update order. For comparison, we will use the same
synchronous update sequence for asynchronous DAIC.

By DAIC, no matter synchronously and asynchronously,
the propagated delta messages of an update on vertex i in
subsequence k, i.e., g{i,j}(∆vki ) (or g{i,j}(∆v̌i)), are directly

accumulated to ∆vk+1
j (or ∆v̌j), j = 1, 2, . . . , n. By syn-

chronous DAIC, ∆vk+1
j cannot be accumulated to vj until

the update of vertex j in subsequence k+1. In contrast, by
asynchronous DAIC, ∆v̌j is accumulated to v̌j immediately
whenever vertex j is updated after the update of vertex i in
subsequence k. The update of vertex j might occur in sub-
sequence k or in subsequence k + 1. If the update of vertex
j occurs in subsequence k, v̌j will accumulate more delta
messages than vj after k subsequences, which means that v̌j
is closer to v∗j than vj . Otherwise, v̌j = vj . Therefore, we
have Theorem 6. The formal proof of Theorem 6 is provided
in the Appendix.

Theorem 2. Based on the same update sequence, after k
subsequences, we have v̌j by asynchronous DAIC and vj by
synchronous DAIC. v̌j is closer to the fixed point v∗j than vj
is, i.e., |v∗j − v̌j | ≤ |v∗j − vj |.

3.5 Scheduling Policies



By asynchronous DAIC, we should control the update or-
der of the vertices, i.e., specifying the scheduling policies. In
reality, a subset of vertices are assigned to a processor, and
multiple processors are running in parallel. The processor
can perform the update for the assigned vertices in a round-
robin manner, which is referred to as round-robin scheduling.
Moreover, it is possible to schedule the update of these local
vertices dynamically by identifying their importance, which
is referred to as priority scheduling. In [39], we have found
that selectively processing a subset of the vertices has the
potential of accelerating iterative computation. Some of the
vertices can play an important decisive role in determining
the final converged outcome. Giving an update execution
priority to these vertices can accelerate the convergence.
In order to show the progress of the iterative computation,

we quantify the iteration progress with L1 norm of v̌, i.e.,
||v̌||1 =

∑
i v̌i. Asynchronous DAIC either monotonically

increases or monotonically decreases ||v̌||1 to a fixed point
||v∗||1. According to (9), an update of vertex j, i.e., v̌j =
v̌j⊕∆v̌j , either increases ||v̌||1 by (v̌j⊕∆v̌j−v̌j) or decreases
||v̌||1 by (v̌j − v̌j ⊕∆v̌j). Therefore, by priority scheduling,
vertex j = argmaxj |v̌j ⊕∆v̌j − v̌j | is scheduled first. In
other words, The bigger |v̌j ⊕∆v̌j − v̌j | is, the higher update
priority vertex j has. For example, in PageRank, we set each
page j’s scheduling priority based on |Rj + ∆Rj − Rj | =
∆Rj . Then, we will schedule page j with the largest ∆Rj

first. To sum up, by priority scheduling, the vertex j =
argmaxj |v̌j ⊕∆v̌j − v̌j | is scheduled for update first.
Theorem 7 guarantees the convergence of asynchronous

DAIC under the priority scheduling. The proof of Theorem
7 can be found in the Appendix. Furthermore, according to
the analysis presented above, we have Theorem 4 to support
the effectiveness of priority scheduling.

Theorem 3. By asynchronous priority scheduling, v̌′j con-
verges to the same fixed point v∗j as vj by synchronous iter-
ation converges to, i.e., v̌′∞j = v∞j = v∗j .

Theorem 4. Based on asynchronous DAIC, after the same
number of updates, we have v̌′j by priority scheduling and v̌j
by round-robin scheduling. v̌′j is closer to the fixed point v∗j
than v̌j is, i.e., |v∗j − v̌′j | ≤ |v∗j − v̌j |.

4. WRITING DAIC ALGORITHMS
In this section, we first provide the guidelines of writing

DAIC algorithms and then show a broad class of DAIC al-
gorithm examples.

4.1 Guidelines
Given an iterative algorithm, the following steps are rec-

ommended for converting it to a DAIC algorithm.

• Step1: Vertex-Centric Check. Check whether the
update function is applied on each vertex, and write
the vertex-centric update function f . If not, try to
rewrite the update function.

• Step2: Formation Check. Check whether f is in
the form of Equation (6)? If yes, identify the sender-
based function g{i,j}(vi) applied on each sender vertex
i, the abstract operator ‘⊕’ for accumulating the re-
ceived delta messages on receiver vertex j.

• Step3: Properties Check. Check whether g{i,j}(vi)
has the distributive property and whether operator
‘⊕’ has the commutative property and the associative
property?

• Step4: Initialization. According to (5), initialize
v0j and ∆v1j to satisfy v1j = v0j ⊕ ∆v1j , and write the
iterative computation in the 2-step DAIC form.

• Step5: Priority Assignment (Optional). Specify
the scheduling priority of each vertex j as |v̌j⊕∆v̌j−v̌j |
for scheduling the asynchronous updates.

4.2 Algorithm Examples
Based on the guidelines, we have found a broad class of

DAIC algorithms.

4.2.1 Single Source Shortest Path
The single source shortest path algorithm (SSSP) has been

widely used in online social networks and web mapping. Giv-
en a source node s, the algorithm derives the shortest dis-
tance from s to all the other nodes on a directed weighted
graph. Initially, each node j’s distance d0j is initialized to be

∞ except that the source s’s distance d0s is initialized to be
0. In each iteration, the shortest distance from s to j, dj , is
updated with the following update function:

dkj = min{dk−1
1 +A(1, j),dk−1

2 +A(2, j), . . . ,

dk−1
n + w(n, j), d0j},

where A(i, j) is the weight of an edge from node i to node
j, and A(i, j) = ∞ if there is no edge between i and j. The
update process is performed iteratively until convergence,
where the distance values of all nodes no longer change.

Following the guidelines, we identify that operator ‘⊕’ is
‘min’, function g{i,j}(di) = di + A(i, j). Apparently, the
function g{i,j}(x) has the distributive property, and the op-
erator ‘min’ has the commutative and associative properties.
The initialization can be d0j = ∞ and ∆d1j = 0 if j = s, or
else ∆dj = ∞. Therefore, SSSP can be performed by DA-
IC. Further, suppose ∆dj is used to accumulate the received
distance values by ‘min’ operation, the scheduling priority
of node j would be dj −min{dj ,∆dj}.

4.2.2 Linear Equation Solvers
Generally, DAIC can be used to solve systems of linear

equations of the form

A · χ = b,

where A is a sparse n × n matrix with each entry Aij , and
χ, b are size-n vectors with each entry χj , bj respectively.

One of the linear equation solvers, Jacobi method, iterates
each entry of χ as follows:

χk
j = − 1

Ajj
·
∑
i̸=j

Aji · χk−1
i +

bj
Ajj

.

The method is guaranteed to converge if the spectral radius
of the iteration matrix is less than 1. That is, for any matrix

norm || · ||, limk→∞ ||Bk||
1
k < 1, where B is the matrix with

Bij = −Aij

Aii
for i ̸= j and Bij = 0 for i = j.

Following the guidelines, we identify that operator ‘⊕’ is

‘+’, function g{i,j}(χi) = −Aji

Ajj
·χi. Apparently, the function

g{i,j}(x) has the distributive property, and the operator ‘+’



Table 1: A list of DAIC algorithms
algorithm g{i,j}(x) ⊕ v0j ∆v1j

SSSP x+A(i, j) min ∞ 0 (j = s) or ∞ (j ̸= s)
Connected Components A(i, j) · x max -1 j

PageRank d ·A(i, j) · x
|N(j)| + 0 1− d

Adsorption pcont
i ·A(i, j) · x + 0 pinj

j · Ij
HITS (authority) d ·A(i, j) · x + 0 1

Katz metric β ·A(i, j) · x + 0 1 (j = s) or 0 (j ̸= s)

Jacobi method −Aji

Ajj
· x + 0

bj
Ajj

SimRank
C·A(i,j)

|I(a)||I(b)| · x + |I(a) ∩ I(b)| (a ̸= b) or 1 (a = b)
|I(a)||I(b)|

C
(a ̸= b) or 0 (a = b)

Rooted PageRank A(j, i) · x + 0 1 (j = s) or 0 (j ̸= s)

has the commutative and associative properties. The ini-

tialization can be χ0
j = 0 and ∆χ1

j =
bj
Ajj

. Therefore, the

Jacobi method can be performed by DAIC. Further, suppose
∆χj is used to accumulate the received delta message, the
scheduling priority of node j would be ∆χj .

4.2.3 PageRank
The PageRank algorithm [9] is a popular algorithm pro-

posed for ranking web pages. Initially, the PageRank scores
are evenly distributed among all pages. In each iteration,
the ranking score of page j, Rj , is updated as follows:

Rj = d ·
∑

{i|(i→j)∈E}

Ri

|N(i)| + (1− d), (10)

where d is damping factor, |N(i)| is the number of outbound
links of page i, and E is the set of link edges. The iterative
process terminates when the sum of changes of two consec-
utive iterations is sufficiently small. The initial guess of Ri

can be any value. In fact, the final converged ranking score
is independent from the initial value.
Following the guidelines, we identify that operator ‘⊕’ is

‘+’, function g{i,j}(Ri) = d · Ai,j
Ri

N(i)
, where A represents

the adjacency matrix and Ai,j = 1 if there is a link from
i to j or else Ai,j = 0. Apparently, the function g{i,j}(x)
function has distributive property and the operator ‘+’ has
the commutative and associative properties. The initializa-
tion can be R0

j = 0 and ∆R1
j = 1− d. Therefore, PageRank

can be performed by DAIC. Further, suppose ∆Rj is used
to accumulate the received PageRank values, the scheduling
priority of node j would be ∆Rj .

4.2.4 Adsorption
Adsorption [6] is a graph-based label propagation algo-

rithm that provides personalized recommendation for con-
tents (e.g., video, music, document, product). The concept
of label indicates a certain common feature of the entities.
Given a weighted graph G = (V,E), where V is the set
of nodes, E is the set of edges. A is a column normalized
matrix (i.e.,

∑
i A(i, j) = 1) indicating that the sum of a

node’s inbound links’ weight is equal to 1. Node j carries
a probability distribution Lj on label set L, and each node
j is initially assigned with an initial distribution Ij . The
algorithm proceeds as follows. For each node j, it iterative-
ly computes the weighted average of the label distributions
from its neighboring nodes, and then uses the random walk
probabilities to estimate a new label distribution as follows:

Lk
j = pcont

j ·
∑

{i|(i→j)∈E}

A(i, j) · Lk−1
i + pinj

j · Ij ,

where pcont
j and pinj

j are constants associated with node j.
If Adsorption converges, it will converge to a unique set of
label distributions.

Following the guidelines, we identify that operator ‘⊕’ is
‘+’, g{i,j}(Li) = pcont

j ·A(i, j) ·Li. Apparently, the function
g{i,j}(x) has the distributive property, and the operator ‘+’
has the commutative and associative properties. The ini-
tialization can be L0

j = 0 and ∆L1
j = pinj

j · Ij . Therefore,
Adsorption can be performed by accumulative updates. Fur-
ther, suppose ∆Lj is used to accumulate the received dis-
tance values, the scheduling priority of node j would be ∆Lj .

4.2.5 SimRank
SimRank [19] was proposed to measure the similarity be-

tween two nodes in the network. It has been successfully
used for many applications in social networks, information
retrieval, and link prediction. In SimRank, the similarity
between two nodes (or objects) a and b is defined as the
average similarity between nodes linked with a and those
with b. Mathematically, we iteratively update s(a, b) as the
similarity value between node a and b:

sk(a, b) =
C

|I(a)||I(b)|
∑

c∈I(a),d∈I(b)

sk−1(c, d),

where s1(a, b) = 1 if a = b, or else s1(a, b) = 0, I(a) =
b ∈ V |(b, a) ∈ E denoting all the nodes that have a link to
a, and C is a decay factor satisfying 0 < C < 1.

However, this update function is applied on node-pairs. It
is not a vertex-centric update function. We should rewrite
the update function. Cao et. al. has proposed Delta-
SimRank [11]. They first construct a node-pair graph G2 =
{V 2, E2}. Each node denotes one pair of nodes of the origi-
nal graph. One node ab in G2 corresponds to a pair of nodes
a and b in G. There is one edge (ab, cd) ∈ E2 if (a, c) ∈ E
and (b, d) ∈ E. If the graph size |G| = n, the node-pair
graph size |G2| = n2. Let vertex j represent ab and vertex i
represent cd. Then, the update function of a vertex j ∈ G2

is:

sk(j) =
C

|I(a)||I(b)|
∑

i∈I(j)

sk−1(i),

where I(a) and I(b) denote the neighboring nodes of a and
b in G respectively, and I(j) denotes the neighboring nodes
of j in G2.

The new form of SimRank update function in the node-
pair graph G2 is vertex-centric. Following the DAIC guide-
lines, we identify that operator ‘⊕’ is ‘+’, and function

g{i,j}(s(i)) = C·A(i,j)
|I(a)||I(b)| · s(i), where Ai,j = 1 if i ∈ I(j)

(i.e., cd ∈ I(ab)) or else Ai,j = 0. Apparently, the function



g{i,j}(x) has the distributive property, and the operator ‘+’
has the commutative and associative properties. The initial-
ization of s0(j) can be s0(j) = s0(ab) = 1 if a = b, or else
s0(j) = s0(ab) =

∑
c∈I(a)&c∈I(b) 1 = |I(a) ∩ I(b)|. The ini-

tialization of ∆s1(j) can be ∆s1(j) = ∆s1(ab) = 0 if a = b,

or else ∆s1(j) = ∆s1(ab) = |I(a)||I(b)|
C

. Therefore, SimRank
can be performed by DAIC. Further, suppose ∆s(j) is used
to accumulate the received delta messages, the scheduling
priority of node j would be ∆s(j).

4.2.6 Other Algorithms
We have shown several typical DAIC algorithms. Follow-

ing the guidelines, we can rewrite them in DAIC form. In
addition, there are many other DAIC algorithms. Table 1
shows a list of such algorithms. Each of their update func-
tions is represented with a tuple (g{i,j}(x), ⊕, v0j , ∆v1j ).
The Connected Components algorithm [21] finds connect-

ed components in a graph (the graph adjacency information
is represented in matrix A, Ai,j = 1 if there is a link from i
to j or else Ai,j = 0). Each node updates its component id
with the largest received id and propagates its component
id to its neighbors, so that the algorithm converges when all
the nodes belonging to the same connected component have
the same component id.
Hyperlink-Induced Topic Search (HITS) [23] ranks web

pages in a web linkage graph W by a 2-phase iterative up-
date, the authority update and the hub update. Similar
to Adsorption, the authority update requires each node i
to generate the output values damped by d and scaled by
A(i, j), where matrix A = WTW , while the hub update s-
cales a node’s output values by A′(i, j), where matrix A′ =
WWT .
The Katz metric [22] is a proximity measure between two

nodes in a graph (the graph adjacency information is repre-
sented in matrix A, Ai,j = 1 if there is a link from i to j, or
else Ai,j = 0). It is computed as the sum over the collection
of paths between two nodes, exponentially damped by the
path length with a damping factor β.
Rooted PageRank [34] captures the probability for any n-

ode j running into node s, based on the node-to-node prox-
imity, A(j, i), indicating the probability of jumping from
node j to node i.

5. MAITER
To support implementing a DAIC algorithm in a large-

scale distributed manner and in a highly efficient asynchronous
manner, we propose an asynchronous distributed framework,
Maiter. Users only need to follow the guidelines to specify
the function g{i,j}(vi), the abstract operator ‘⊕’, and the

initial values v0j and ∆v1j through Maiter API (will be de-
scribed in the following section). The framework will auto-
matically deploy these DAIC algorithms in the distributed
environment and perform asynchronous iteration efficiently.
Maiter is implemented by modifying Piccolo [32], and

Maiter’s source code is available online [3]. It relies on mes-
sage passing for communication between vertices. In Maiter,
there is a master and multiple workers. The master coordi-
nates the workers and monitors the status of workers. The
workers run in parallel and communicate with each other
through MPI. Each worker performs the update for a sub-
set of vertices. In the following, we introduce Maiter’s key
functionalities.

vid data

Receive

network

message

Update

state table

network
message

pri∆vv

Figure 1: Worker overview.

Data Partition. Each worker loads a subset of vertices
in memory for processing. Each vertex is indexed by a glob-
al unique vid. The assignment of a vertex to a worker de-
pends solely on the vid. A vertex with vid j is assigned
to worker h(j), where h() is a hash function applied on the
vid. Besides, preprocessing for smart graph partition can
be useful. For example, one can use a lightweight cluster-
ing algorithm to preprocess the input graph, assigning the
strongly connected vertices to the same worker, which can
reduce communication.

Local State Table. The vertices in a worker are main-
tained in a local in-memory key-value store, state table. Each
state table entry corresponds to a vertex indexed by its vid.
As depicted in Fig. 1, each table entry contains five fields.
The 1st field stores the vid j of a vertex; the 2rd field stores
vj ; the 3rd field stores ∆vj ; the 4th field stores the priority
value of vertex j for priority scheduling; the 5th field stores
the input data associated with vertex j, such as the adja-
cency list. Users are responsible for initializing the v fields
and the ∆v fields through the provided API. The priority
fields are automatically initialized based on the values of the
v fields and ∆v fields. Users read an input partition and fills
entry j’s data field with vertex j’s input data.

Receive Thread and Update Thread. As described
in Equation (9), DAIC is accomplished by two key opera-
tions, the receive operation and the update operation. In
each worker, these two operations are implemented in two
threads, the receive thread and the update thread. The re-
ceive thread performs the receive operation for all local ver-
tices. Each worker receives the delta messages from other
workers and updates the ∆v fields by accumulating the re-
ceived delta messages. The update thread performs the up-
date operation for all local vertices. When operating on a
vertex, it updates the corresponding entry’s v field and ∆v
field, and sends messages to other vertices.

Scheduling within Update Thread. The simplest
scheduling policy is to schedule the local vertices for up-
date operation in a round robin fashion. The update thread
performs the update operation on the table entries in the
order that they are listed in the local state table and round-
by-round. The static scheduling is simple and can prevent
starvation.

However, as discussed in Section 3.5, it is beneficial to
provide priority scheduling. In addition to the static round-
robin scheduling, Maiter supports dynamic priority schedul-



ing. A priority queue in each worker contains a subset of lo-
cal vids that have larger priority values. The update thread
dequeues the vid from the priority queue, in terms of which
it can position the entry in the local state table and performs
an update operation on the entry. Once all the vertices in
the priority queue have been processed, the update thread
extracts a new subset of high-priority vids for next round
update. The extraction of vids is based on the priority field.
Each entry’s priority field is initially calculated based on its
initial v value and ∆v value. During the iterative computa-
tion, the priority field is updated whenever the ∆v field is
changed (i.e., whenever some delta messages are received).
The number of extracted vids in each round, i.e., the pri-

ority queue size, balances the tradeoff between the gain from
accurate priority scheduling and the cost of frequent queue
extractions. The priority queue size is set as a portion of
the state table size. For example, if the queue size is set
as 1% of the state table size, we will extract the top 1%
high priority entries for processing. In addition, we also use
the sampling technique proposed in [39] for efficient queue
extraction, which only needs O(N) time, where N is the
number of entries in local state table.
Message Passing. Maiter uses OpenMPI [4] to imple-

ment message passing between workers. A message contains
a vid indicating the message’s destination vertex and a value.
Suppose that a message’s destination vid is k. The message
will be sent to worker h(k), where h() is the partition func-
tion for data partition, so the message will be received by
the worker where the destination vertex resides.
A naive implementation of message passing is to send the

output messages as soon as they are produced. This will
reach the asynchronous iteration’s full potential. However,
initializing message passing leads to system overhead. To
reduce this overhead, Maiter buffers the output messages
and flushes them to remote workers after a timeout. If a
message’s destination worker is the host worker, the output
message is directly applied to the local state table. Oth-
erwise, the output messages are buffered in multiple msg
tables, each of which corresponds to a remote destination
worker. We can leverage early aggregation on the msg table
to reduce network communications. Each msg table entry
consists of a destination vid field and a value field. As men-
tioned in Section 3.1, the associative property of operator
‘⊕’, i.e., (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), indicates that multiple
messages with the same destination can be aggregated at
the sender side or at the receiver side. Therefore, by using
the msg table, Maiter worker combines the output messages
with the same vid by ‘⊕’ operation before sending them.
Iteration Termination. To terminate iteration, Maiter

exploits progress estimator in each worker and a global ter-
minator in the master. The master periodically broadcasts
a progress request signal to all workers. Upon receipt of
the termination check signal, the progress estimator in each
worker measures the iteration progress locally and reports it
to the master. The users are responsible for specifying the
progress estimator to retrieve the iteration progress by pars-
ing the local state table. After the master receives the local
iteration progress reports from all workers, the terminator
makes a global termination decision in respect of the global
iteration progress, which is calculated based on the received
local progress reports. If the terminator determines to termi-
nate the iteration, the master broadcasts a terminate signal
to all workers. Upon receipt of the terminate signal, each

template <class K, class D>

struct Partitioner {

virtual void parse_line(string& line, K* vid, D* data) = 0;

virtual int partition(const K& vid, int shards) = 0;

};

template <class K, class V, class D>

struct IterateKernel {

virtual void init(const K& vid, V* c) = 0;

virtual void accumulate(V* a, const V& b) = 0;

virtual void send(const V& delta, const D& data, 

list<pair<K, V> >* output) = 0;

};

template <class K, class V>

struct TermChecker {

virtual double estimate_prog(LocalTableIterator<K, V>* 

table_itr) = 0;

virtual bool terminate(list<double> local_reports) = 0;

};

Figure 2: Maiter API summary.

worker stops updating the state table and dumps the local
table entries to HDFS, which contain the converged results.
Note that, even though we exploit a synchronous termina-
tion check periodically, it will not impact the asynchronous
computation. The workers proceed after producing the local
progress reports without waiting for the master’s feedback.

Fault Tolerance. The fault tolerance support for syn-
chronous computation models can be performed through
checkpointing, where the state data is checkpointed on the
reliable HDFS every several iterations. If some workers
fail, the computation rolls back to the most recent iteration
checkpoint and resumes from that iteration. Maiter exploits
Chandy-Lamport [12] algorithm to design asynchronous it-
eration’s fault tolerance mechanism. The checkpointing in
Maiter is performed at regular time intervals rather than at
iteration intervals. The state table in each worker is dumped
to HDFS every period of time. However, during the asyn-
chronous computation, the information in the state table
might not be intact, in respect that the messages may be
on their way to act on the state table. To avoid missing
messages, not only the state table is dumped to HDFS, but
also the msg tables in each worker are saved. Upon de-
tecting any worker failure (through probing by the master),
the master restores computation from the last checkpoint,
migrates the failed worker’s state table and msg tables to
an available worker, and notifies all the workers to load the
data from the most recent checkpoint to recover from work-
er failure. For detecting master failure, Maiter can rely on
a secondary master, which restores the recent checkpointed
state to recover from master failure.

6. MAITER API
Users implement a Maiter program using the provided

API, which is written in C++ style. A DAIC algorithm is
specified by implementing three functionality components,
Partitioner, IterateKernel, and TermChecker as shown
in Figure 2.
K, V, and D are the template types of data element keys,

data element values (v and ∆v), and data element-associate
data respectively. Particularly, for each entry in the state
table, K is the type of the key field, V is the type of the
v field/∆v field/priority field, and D is the type of the da-
ta field. The Partitioner reads an input partition line by
line. The parse_line function extracts data element id and
the associate data by parsing the given line string. Then



class PRPartitioner : public Partitioner<int,vector<int> >{

void parse_line(string& line, int* key, vector<int>* data) {
node  = get_source(line);
adjlist = get_adjlist(line);

*key = node;
*data = adjlist;

}

int partition(const int& key, int shards) {
return key % shards; 

}
}

Figure 3: PageRankPartitioner implementation.

the partition function applied on the key (e.g., a MOD
operation on integer key) determines the host worker of the
data element (considering the number of workers/shards).
Based on this function, the framework will assign each data
element to a host worker and determines a message’s des-
tination worker. In the IterateKernel component, users
describe a DAIC algorithm by specifying a tuple (g{i,j}(x),

⊕, v0j , ∆v1j ). We initialize v0j and ∆v1j by implementing the
init interface; specify the ‘⊕’ operation by implementing
the accumulate interface; and specify the function g{i,j}(x)
by implementing the send interface with the given ∆vi and
data element i’s associate data, which generates the output
pairs ⟨j, g{i,j}(∆vi)⟩ to data element i’s out-neighbors. To
stop an iterative computation, users specify the TermCheck-
er component. The local iteration progress is estimated by
specifying the estimate_prog interface given the local state
table iterator. The global terminator collects these local
progress reports. In terms of these local progress reports,
users specify the terminate interface to decide whether to
terminate.
For better understanding, we walk through how the PageR-

ank algorithm is implemented in Maiter 1. Suppose the in-
put graph file of PageRank is line by line. Each line in-
cludes a node id and its adjacency list. The input graph
file is split into multiple slices. Each slice is assigned to
a Maiter worker. In order to implement PageRank appli-
cation in Maiter, users should implement three function-
ality components, PRPartitioner, PRIterateKernel, and
PRTermChecker.
In PRPartitioner, users specify the parse_line interface

and the partition interface. The implementation code is
shown in Fig. 3. In parse_line, users parse an input line to
extract the node id as well as its adjacency list and use them
to initialize the state table’s key field (key) and data field
(data). In partition, users specify the partition function
by a simple mod operation applied on the key field (key)
and the total number of workers (shards).
In PRIterateKernel, users specify the asynchronous DA-

IC process by implementing the init interface, the accumu-
late interface, and the send interface. The implementation
code is shown in Fig. 4. In init, users initialize node k’s v
field (value) as 0 and ∆v field (delta) as 0.2. Users specify
the accumulate interface by implementing the ‘⊕’ operator
as ‘+’ (i.e., a = a+ b). The send operation is invoked after
each update of a node. In send, users generate the out-
put messages (contained in output) based on the node’s ∆v
value (delta) and data value (data).

1More implementation example codes are pro-
vided at Maiter’s Google Code website http-
s://code.google.com/p/maiter/.

class PRIterateKernel : public IterateKernel<int, float, vector<int> > {

void initialize(const int& k, float* value, float* delta){

*value = 0;

*delta = 0.2;

}

void accumulate(float* a, const float& b){

*a = *a + b;

}

void send(const float& delta, const vector<int>& data, 

vector<pair<int, float> >* output){

int size = (int) data.size();

float outdelta = delta * 0.8 / size;

for(vector<int>::const_iterator it=data.begin(); it!=data.end(); it++){

int target = *it;

output->push_back(make_pair(target, outdelta));

}

}

}

Figure 4: PRIterateKernel implementation.

class PRTermChecker : public TermChecker<int, float> {

double prev_prog = 0.0;

double curr_prog = 0.0;

double estimate_prog(LocalTableIterator<int, float>* statetable){

double partial_curr = get_sum_v(statetable);

return partial_curr;

}

bool terminate(list<double> local_sums){

curr_prog += get_sum_v(local_sums);

if(abs(curr_prog - prev_prog) < term_threshold){

return true;

}else{

prev_prog = curr_prog;

return false;

}

}

}

Figure 5: PRTermChecker implementation

In PRTermChecker, users specify the estimate prog inter-
face and the terminate interface. The implementation code
is shown in Fig. 5. In estimate_prog, users compute the
summation of v value in local state table. The estimate prog
function is invoked after each period of time. The resulted
local sums from various workers are sent to the global ter-
mination checker, and then the terminate operation in the
global termination checker is invoked. In terminate, based
on these received local sums, users compute a global sum,
which is considered as the iteration progress. It is compared
with the previous iteration’s progress to calculate a progress
difference. The asynchronous DAIC is terminated when the
progress difference is smaller than a pre-defined threshold.

7. EVALUATION
This section evaluates Maiter with a series of experiments.

7.1 Frameworks For Comparison
Hadoop [2] is an open-source MapReduce implemen-

tation. It relies on HDFS for storage. Multiple map tasks
process the distributed input files concurrently in the map



phase, followed by that multiple reduce tasks process the
map output in the reduce phase. Users are required to sub-
mit a series of jobs to process the data iteratively. The
next job operates on the previous job’s output. Therefore,
two synchronization barriers exist in each iteration, between
map phase and reduce phase and between Hadoop jobs. In
our experiments, we use Hadoop 1.0.2.
iMapReduce [40] is built on top of Hadoop and pro-

vides iterative processing support. In iMapReduce (iMR),
reduce output is directly passed to map rather than dumped
to HDFS. More importantly, the iteration variant state da-
ta are separated from the static data. Only the state data
are processed iteratively, where the costly and unnecessary
static data shuffling is eliminated. The original iMapReduce
stores data relying on HDFS. iMapReduce can load all data
into memory for efficient data access and can store the inter-
mediate data in files for better scalability. We refer to the
memory-based iMapReduce as iMR-mem and the file-based
iMapReduce as iMR-file.
Spark [38] was developed to optimize large-scale iterative

and interactive computation. It uses caching techniques and
operates in-memory read-only objects to improve the perfor-
mance for repeated operations. The main abstraction in S-
park is resilient distributed dataset (RDD), which maintains
several copies of data across memory of multiple machines
to support iterative algorithm recovery from failures. The
read and write of RDDs is coarse-grained (i.e., read or write
a whole block of RDD), so the update of RDDs in iterative
computation is coarse-grained. Besides, in Spark, the itera-
tion variant state data can also be separated from the static
data by specifying partitionBy and join interfaces. The
applications in Spark can be written with Java or Scala. S-
park is open-source and can be freely downloaded. In our
experiments, we use Spark 0.6.2.
PrIter [39] enables prioritized iteration by modifying iMapRe-

duce. It exploits the dominant property of some portion of
the data and schedules them first for computation, rather
than blindly performs computations on all data. The com-
putation workload is dramatically reduced, and as a result
the iteration converges faster. However, it performs the pri-
ority scheduling in each iteration in a synchronous manner.
PrIter provides in-memory version (PrIter 0.1) as well as
in-file version (PrIter 0.2). We refer to the memory-based
PrIter as PrIter-mem and the file-based PrIter as PrIter-file.
Piccolo [32] is implemented with C++ and MPI, which

allows to operate distributed tables. The iterative algorithm
can be implemented by updating the distributed tables iter-
atively. The intermediate data are shuffled between workers
continuously as long as some amount of the intermediate da-
ta are produced (fine-grained write), instead of waiting for
the end of iteration and sending them together. The current
iteration’s data and the next iteration’s data are stored in
two global tables separately, so that the current iteration’s
data will not be overwritten. Piccolo can maintain the glob-
al table both in memory and in file. We only consider the
in-memory version.
GraphLab [37] supports both synchronous and asyn-

chronous iterative computation with sparse computational
dependencies while ensuring data consistency and achieving
a high degree of parallel performance. It is also implement-
ed with C++ and MPI. It first only supports the computa-
tion under multi-core environment exploiting shared mem-
ory (GraphLab 1.0). But later, GraphLab supports large-

Table 2: Comparison of Distributed Frameworks

name
sep in fine-g async pri
data mem update iter sched

Hadoop × × × × ×
iMR-file X × × × ×
iMR-mem X X × × ×
Spark X X × × ×

PrIter-file X × × × X
PrIter-mem X X × × X

Piccolo X X X × ×
GraphLab-Sync X X X × ×
GraphLab-AS-fifo X X X X ×
GraphLab-AS-pri X X X X X

Maiter-Sync X X X × ×
Maiter-RR X X X X ×
Maiter-Pri X X X X X

scale distributed computation under cloud environment (GraphLab
2.0). The static data and dynamic data in GraphLab can be
decoupled and the update of vertex/edge state in GraphLab
is fine-grained. Under asynchronous execution, several schedul-
ing policies including FIFO scheduling and priority schedul-
ing are supported in Graphlab. GraphLab performs a fine-
grained termination check. It terminates a vertex’s compu-
tation when the change of the vertex state is smaller than a
pre-defined threshold parameter. The GraphLab framework
provides both synchronous execution engine (GraphLab-
Sync) and asynchronous execution engine. Moreover, un-
der the asynchronous execution engine, GraphLab support-
s both fifo scheduling (GraphLab-AS-fifo) and priority
scheduling (GraphLab-AS-pri).

To evaluate Maiter with different scheduling policies, we
consider the round robin scheduling (Maiter-RR) as well
as the priority scheduling (Maiter-Pri). In addition, we
manually add a synchronization barrier controlled by the
master to let these workers perform DAIC synchronously.
We call this version of Maiter as Maiter-Sync.

Table 2 summarizes these frameworks. These framework-
s are featured by various factors that help improve perfor-
mance, including separating static data from state data (sep
data), in-memory operation (in mem), fine-grained update
(fine-g update), asynchronous iteration (async iter), and the
priority scheduling mechanism under asynchronous iteration
engine (pri sched).

7.2 Preparation
Experimental Cluster. The experiments are performed

on a cluster of local machines as well as on Amazon EC2
Cloud [1]. The local cluster consisting of 4 commodity ma-
chines is used to run small-scale experiments. Each machine
has Intel E8200 dual-core 2.66GHz CPU, 3GB of RAM, and
160GB storage. The Amazon EC2 cluster involves 100 medi-
um instances, each with 1.7GB memory and 5 EC2 compute
units.

Applications and Data Sets. Four applications, in-
cluding PageRank, SSSP, Adsorption, and Katz metric, are
implemented. We use Google Webgraph [5] for PageRank
computation. We also generate synthetic massive data set-
s for PageRank and other applications. We generate syn-
thetic massive data sets for these algorithms. The graphs
used for SSSP and Adsorption are weighted, and the graphs



800

1000

1200

T
im

e
 (

s)

Hadoop

iMR-file

iMR-mem

Spark

PrIter-file

PrIter-mem

0

200

400

600

T
im

e
 (

s)

PrIter-mem

Piccolo

GraphLab-Sync

GraphLab-AS-fifo

GraphLab-AS-pri

Maiter-Sync

Maiter-RR

Maiter-Pri

Figure 6: Running time of PageRank on Google Webgraph
on local cluster.

for PageRank and Katz metric are unweighted. The node
ids are continuous integers ranging from 1 to size of the
graph. We decide the in-degree of each node following log-
normal distribution, where the log-normal parameters are
(µ = −0.5, σ = 2.3). Based on the in-degree of each node,
we randomly pick a number of nodes to point to that node.
For the weighted graph of SSSP computation, we use the log-
normal parameters (µ = 0, σ = 1.0) to generate the float
weight of each edge following log-normal distribution. For
the weighted graph of Adsorption computation, we use the
log-normal parameters (µ = 0.4, σ = 0.8) to generate the
float weight of each edge following log-normal distribution.
These log-normal parameters for these graphs are extracted
from a few small real graphs downloaded from [5].

7.2.1 Termination Condition of the Experiments
To terminate iterative computation in PageRank exper-

iment, we first run PageRank off-line to obtain a resulted
rank vector, which is assumed to be the converged vector
R∗. Then we run PageRank with different frameworks. We
terminate the PageRank computation when the L1-Norm
distance between the iterated vector R and the converged
vector R∗ is less than 0.001 ·N , where N is the total num-
ber of nodes, i.e.,

∑
j(|R

∗
j − Rj |) < 0.001 ·N . For the syn-

chronous frameworks (i.e., Hadoop, iMR-file, iMR-mem, S-
park, PrIter-file, PrIter-mem, Piccolo, and Maiter-Sync), we
check the convergence (termination condition) after every it-
eration. For the asynchronous frameworks (i.e., Maiter-RR,
and Maiter-Pri), we check the convergence every termination
check interval. For GraphLab variants, we set the parameter
of convergence tolerance as 0.001 to terminate the computa-
tion. Note that, the time for termination check in Hadoop
and Piccolo (computing the L1-Norm distance through an-
other job) has been excluded from the total running time,
while the other frameworks provide termination check func-
tionality. For SSSP, the computation is terminated when
there is no update of any vertex. For Adsorption and Katz
metric, we use the similar convergence check approach as
PageRank.

7.3 Running Time to Convergence
Local Cluster Results. We compare different frame-

works on running time in the context of PageRank compu-
tation. Fig. 6 shows the PageRank running time on Google
Webgraph on our local cluster. Note that, the data loading
time for the memory-based systems (other than Hadoop,
iMR-file, iMR-mem) is included in the total running time.
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Figure 7: Running time of PageRank on 100-million-node
synthetic graph on EC2 cluster.

By using Hadoop, we need 27 iterations and more than 800
seconds to converge. By separating the iteration-variant s-
tate data from the static data, iMR-file reduces the running
time of Hadoop by around 50%. iMR-mem further reduces
it by providing faster memory access. Spark, with efficient
data partition and memory caching techniques, can reduce
Hadoop time to less than 100 seconds. PrIter identifies the
more important nodes to perform the update and ignores the
useless updates, by which the running time is reduced. As
expected, PrIter-mem converges faster than PrIter-file. Pic-
colo utilizes MPI for message passing to realize fine-grained
updates, which improves the performance.

GraphLab variants show their differences on the perfor-
mance. GraphLab-Sync uses a synchronous engine and com-
pletes the iterative computation within less than 100 sec-
onds. GraphLab-AS-fifo uses an asynchronous engine and
schedules the asynchronous updates in a FIFO queue, which
consumes much more time. The reason is that the cost of
managing the scheduler (through locks) tends to exceed the
cost of the main PageRank computation itself. The cost of
maintaining the priority queue under asynchronous engine
seems even much larger, so that GraphLab-AS-pri converges
with significant longer running time.

The framework that supports synchronous DAIC, Maiter-
Sync, filters the zero updates (∆R = 0) and reduces the run-
ning time to about 60 seconds. Further, the asynchronous
DAIC frameworks, Maiter-RR and Maiter-Pri, can even con-
verge faster by avoiding the synchronous barriers. Note that,
our priority scheduling mechanism does not result in high
cost, since we do not need distributed lock for scheduling
asynchronous DAIC. In addition, in priority scheduling, the
approximate sampling technique [39] helps reduce the com-
plexity, which avoids high scheduling cost.

EC2 Results. To show the performance under large-
scale distributed environment, we run PageRank on a 100-
million-node synthetic graph on EC2 cluster. Fig. 7 shows
the running time with various frameworks. We can see the
similar results. One thing that should be noticed is that
Maiter-Sync has comparable performance with Piccolo and
PrIter. Only DAIC is not enough to make a significant per-
formance improvement. However, the asynchronous DAIC
frameworks (Maiter-RR and Maiter-Pri) perform much bet-
ter. The result is under expectation. As the cluster size in-
creases and the heterogeneity in cloud environment becomes
apparent, the problem of synchronous barriers is more seri-
ous. With the asynchronous execution engine, Maiter-RR
and Maiter-Pri can bypass the high-cost synchronous barri-
ers and perform more efficient computations. As a result,
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Maiter-RR and Maiter-Pri significantly reduce the running
time. Moreover, Maiter-Pri exploits more efficient priori-
ty scheduling, which can achieve 60x speedup over Hadoop.
This result demonstrates that only with asynchronous exe-
cution can DAIC reach its full potential.
To show that Maiter can support more applications, we al-

so run other applications on EC2 cluster. We perform SSSP,
Adsorption, and Katz metric computations with Maiter-
Sync, Maiter-RR, and Maiter-Pri. We generate weighted/un-
weighted 100-million-node synthetic graphs for these ap-
plications respectively. Fig. 8 shows the running time of
these applications. For SSSP, the asynchronous DAIC SSSP
(Maiter-RR and Maiter-Pri) reduces the running time of
synchronous DAIC SSSP (Maiter-Sync) by half. For Ad-
sorption, the asynchronous DAIC Adsorption is 5x faster
than the synchronous DAIC Adsorption. Further, by priori-
ty scheduling, Maiter-Pri further reduces the running time of
Maiter-RR by around 1/3. For Katz metric, we can see that
Maiter-RR and Maiter-Pri also outperform Maiter-Sync.

7.4 Efficiency of Asynchronous DAIC
As analyzed in Section 3.4, with the same number of up-

dates, asynchronous DAIC results in more progress than
synchronous DAIC. In this experiment, we measure the num-
ber of updates that PageRank and SSSP need to converge
under Maiter-Sync, Maiter-RR, and Maiter-Pri. In order to
measure the iteration process, we define a progress metric,
which is

∑
j Rj for PageRank and

∑
j dj for SSSP. Then,

the efficiency of the update operations can be seen as the
ratio of the progress metric to the number of updates.
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Figure 9: Number of updates vs. progress metric.

On the EC2 cluster, we run PageRank on a 100-million-
node synthetic graph and SSSP on a 500-million-node syn-
thetic graph. Fig. 9a shows the progress metric against
the number of updates for PageRank. In PageRank, the
progress metric

∑
j Rj should be increasing. Each R0

j is in-
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Figure 10: Scaling performance as the number of workers
increases from 20 to 100.

tialized to be 0 and each ∆R1
j is initialized to be 1−d = 0.2

(the damping factor d = 0.8). The progress metric
∑

j Rj

is increasing from
∑

j R
1
j =

∑
j(R

0
j + ∆R1

j ) = 0.2 · N to

N , where N = 108 (number of nodes). Fig. 9b shows the
progress metric against the number of updates for SSSP. In
SSSP, the progress metric

∑
j dj should be decreasing. Since

dj is initialized to be ∞ for any node j ̸= s, which cannot
be drawn in the figure, we start plotting when any dj < ∞.
From Fig. 9a and Fig. 9b, we can see that by asynchronous
DAIC, Maiter-RR and Maiter-Pri require much less updates
to converge than Maiter-Sync. That is, the update in asyn-
chronous DAIC is more effective than that in synchronous
DAIC. Further, Maiter-Pri selects more effective updates to
perform, so the update in Maiter-Pri is even more effective.

7.5 Scaling Performance
Suppose that the running time on one worker is T . With

optimal scaling performance, the running time on an n-
worker cluster should be T

n
. But in reality, distributed ap-

plication usually cannot achieve the optimal scaling perfor-
mance. In order to measure how asynchronous Maiter s-
cales with increasing cluster size, we perform PageRank on
a 100-million-node graph on EC2 as the number of workers
increases from 20 to 100. We consider the running time on a
20-worker cluster as the baseline, based on which we deter-
mine the running time with optimal scaling performance on
different size clusters. We consider Hadoop, Maiter-Sync,
Maiter-RR, and Maiter-Pri for comparing their scaling per-
formance.

Fig. 10 shows the scaling performance results of Hadoop,
Maiter-Sync, Maiter-RR, and Maiter-Pri. We can see that
the asynchronous DAIC frameworks, Maiter-RR andMaiter-
Pri, provide near-optimal scaling performance as cluster size
scales from 20 to 100. The performance of the synchronous
DAIC framework Maiter-Sync is degraded a lot as the cluster
size scales. Hadoop splits a job into many fine-grained tasks
(task with 64MB block size), which alleviates the impact of
synchronization and helps improve scaling performance.

In order to measure how Maiter scales with increasing in-
put size, we perform PageRank for a 1-billion-node graph
on the 100-node EC2 cluster. Maiter runs normally without
any problem. Figure 11 shows the progress metric against
the running time of Hadoop, Maiter-Sync, Maiter-RR, and
Maiter-Pri. Since it will take considerable long time for
PageRank convergence in Hadoop and Maiter-Sync, we only
plot the progress changes in the first 2000 seconds. Maiter-
Sync, Maiter-RR, and Maiter-Pri spend around 240 seconds
in loading data in memory before starting computation. The
PageRank computations in the asynchronous frameworks
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on a 1-billion-node synthetic graph.

(Maiter-RR and Maiter-Pri) converge much faster than that
in the synchronous frameworks (Hadoop and Maiter-Sync).
In addition, to evaluate how large graph Maiter can process
at most in the 100-node EC2 cluster, we continue to increase
the graph size to contain 2 billion nodes, and it works fine
with memory usage up to 84.7% on each EC2 instance.

7.6 Comparison of Asynchronous Framework-
s: Maiter vs. GraphLab

In this experiment, we focus on comparing Maiter with
another asynchronous framework GraphLab. Even though
GraphLab support asynchronous computation, as shown in
Fig. 6, it shows poor performance under asynchronous exe-
cution engine. Especially for priority scheduling, it extreme-
ly extends the completion time.
GraphLab relies on chromatic engine (partially asynchronous-

ly) and distributed locking engine (fully asynchronous) for
scheduling asynchronous computation. Distributed locking
engine is costly, even though many optimization techniques
are exploited in GraphLab. For generality, the scheduling
of asynchronous computation should guarantee the depen-
dencies between computations. Distributed locking engine is
proposed for the generality, but it becomes the bottleneck of
asynchronous computation. Especially for priority schedul-
ing, the cost of managing the scheduler tends to exceed the
cost of the PageRank computation itself, which leads to very
slow asynchronous Pagerank computation in GraphLab. Ac-
tually, GraphLab’s priority scheduling policy is designed for
some high-workload applications, such as Loopy Belief Prop-
agation [18], in which case the asynchronous computation
advantage is much more substantial.
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Figure 12: Running time and number of updates of PageR-
ank computation on GraphLab and Maiter.

To verify our analysis, we run PageRank on Maiter and
GraphLab to compare the running time and the number
of updates. The experiment is launched in the local cluster,
and the graph dataset is the Google Webgraph dataset. Fig.

12 shows the result. In GraphLab, the number of performed
updates under asynchronous engine (both fifo scheduling
and priority scheduling) is less than that under synchronous
engine, but the running time is longer. Under asynchronous
engine, the number of updates by priority scheduling is sim-
ilar to that by fifo scheduling, but the running time is ex-
tremely longer. Even though the workload is reduced, the
asynchronous scheduling becomes an extraordinarily costly
job, which slows down the whole process.

On the contrary, asynchronous DAIC exploits the cumu-
lative operator ‘⊕’, which has commutative property and
associative property. This implicates that the delta values
can be accumulated in any order and at any time. Therefore,
Maiter does not need to guarantee the computation depen-
dency while allows all vertices to update their state total-
ly independently. Round-robin scheduling, which performs
computation on the local vertices in a round-robin manner,
is the easiest one to implement (i.e., with low overhead).
Further, priority scheduling identifies the vertex importance
and executes computation in their importance order, which
can accelerate convergence. Both of them do not need to
guarantee the global consistency and do not result in seri-
ous overhead. As shown in Fig. 12, round-robin scheduling
and priority scheduling first reduce the workload (less num-
ber of updates), and as result shorten the convergence time.

7.7 Communication Cost
Distributed applications need high-volume communication

between workers. The communication between workers be-
comes the performance bottleneck. Saving the communica-
tion cost correspondingly helps improve performance. By
asynchronous DAIC, the iteration converges with much less
number of updates, and as a result needs less communica-
tion.
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Figure 13: Communication cost.

To measure the communication cost, we run PageRank
on a 100-million-node synthetic graph on the EC2 cluster.
We record the amount of data sent by each worker and sum
these amounts of all workers to obtain the total volume of
data transferred. Figure 13 depicts the total volume of da-
ta transferred in Hadoop, Piccolo, Maiter-Sync, Maiter-RR,
and Maiter-Pri. We choose Hadoop for comparison for it-
s generality and popularity. Hadoop mixes the iteration-
variant state data with the static data and shuffles them in
each iteration, which results in high volume communication.
Piccolo can separate the state data from the static data and
only communicate the state data. Besides, unlike the file-
based transfer in Hadoop, Piccolo communicates between
workers through MPI. As shown in the figure, Piccolo re-
sults in less transferred volume than Hadoop. Maiter-Sync
utilizes msg tables for early aggregation to reduce the total
transferred volume in a certain degree. By asynchronous



DAIC, we need less number of updates and as a result less
amount of communication. Consequently, Maiter-RR and
Maiter-Pri significantly reduce the transferred data volume.
Further, Maiter-Pri transfers even less amount of data than
Maiter-RR since Maiter-Pri converges with even less num-
ber of updates. Maiter-RR and Maiter-Pri run significantly
faster, and at the same time the amount of shuffled data is
much less.
In Figure 13, we also show the average bandwidth that

each worker has used for sending data. The worker in Maiter-
RR and Maiter-Pri consumes about 2 times bandwidth than
that in Hadoop and consumes only about 20% more band-
width than the synchronous frameworks, Piccolo and Maiter-
Sync. The average consumed bandwidth in asynchronous
DAIC frameworks is a little higher. This means that the
bandwidth resource in a cluster is highly utilized.

8. RELATED WORK
The original idea of asynchronous iteration, chaotic itera-

tion, was introduced by Chazan and Miranker in 1969 [13].
Motivated by that, Baudet proposed an asynchronous iter-
ative scheme for multicore systems [7], and Bertsekas pre-
sented a distributed asynchronous iteration model [8]. These
early stage studies laid the foundation of asynchronous it-
eration and have proved its effectiveness and convergence.
Asynchronous methods are being increasingly used and s-
tudied since then, particularly so in connection with the
use of heterogeneous workstation clusters. A broad class
of applications with asynchronous iterations have been cor-
respondingly raised [16, 30], such as PageRank [28, 24] and
pairwise clustering [36]. Our work differs from these previ-
ous works. We focus on a particular class of iterative al-
gorithms and provide a new asynchronous iteration scheme,
DAIC, which exploits the accumulative property.
On the other hand, to support iterative computation, a se-

ries of distributed frameworks have emerged. In addition to
the frameworks we compared in Section 7, many other syn-
chronous frameworks are proposed recently. HaLoop [10],
a modified version of Hadoop, improves the efficiency of it-
erative computations by making the task scheduler loop-
aware and employing caching mechanisms. CIEL [31] sup-
ports data-dependent iterative algorithms by building an
abstract dynamic task graph. Pregel [27] aims at support-
ing graph-based iterative algorithms by proposing a graph-
centric programming model. REX [33] optimizes DBMS re-
cursive queries by using incremental updates. Twister [15]
employs a lightweight iterative MapReduce runtime system
by logically constructing a reduce-to-map loop. Naiad [29]
is recently proposed to support incremental iterative com-
putations.
All of the above described works build on the basic as-

sumption that the synchronization between iterations is es-
sential. A few proposed frameworks also support asynchronous
iteration. The partial asynchronous approach proposed in
[20] investigates the notion of partial synchronizations in it-
erative MapReduce applications to overcome global synchro-
nization overheads.GraphLab [37] supports asynchronous it-
erative computation with sparse computational dependen-
cies while ensuring data consistency and achieving a high
degree of parallel performance. PowerGraph [17] forms the
foundation of GraphLab, which characterizes the challenges
of computation on natural graphs. The authors propose
a new approach to distributed graph placement and rep-

resentation that exploits the structure of power-law graph-
s. GRACE [35] executes iterative computation with asyn-
chronous engine while letting users implement their algo-
rithms with the synchronous BSP programming model. To
the best of our knowledge, our work is the first that proposes
to perform DAIC for iterative algorithms. We also identify a
broad class of iterative algorithms that can perform DAIC.

9. CONCLUSIONS
In this paper, we propose DAIC, delta-based accumulative

iterative computation. The DAIC algorithms can be per-
formed asynchronously and converge with much less work-
load. To support DAIC model, we design and implement
Maiter, which is running on top of hundreds of commodi-
ty machines and relies on message passing to communicate
between distributed machines. We deploy Maiter on local
cluster as well as on Amazon EC2 cloud to evaluate its per-
formance in the context of four iterative algorithms. The
results show that by asynchronous DAIC the iterative com-
putation performance is significantly improved.
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11. APPENDIX
In the appendix, we provide the proofs of Theorem 1,

Theorem 2, and Theorem 3 in the TPDS manuscript.

11.1 Proof of Theorem 1
In this section, we will show four lemmas to support our

proof of Theorem 5 in the TPDS manuscript. The first two
lemmas show the formal representations of a vertex state by
synchronous DAIC and by asynchronous DAIC, respectively.
The third lemma shows that there is a time instance when
the result by asynchronous DAIC is smaller than or equal to
the result by synchronous DAIC. Correspondingly, we show
another lemma that there is a time instance when the result
by asynchronous DAIC is larger than or equal to the result
by synchronous DAIC. Once these lemmas are proved, it is
sufficient to establish Theorem 5.

Lemma 1. By synchronous DAIC, vj after k iterations
is:

vkj = v0j ⊕∆v1j ⊕
k∑

l=1

⊕
( ∏

{i0,...,il−1,j}∈P (j,l)

⊕g{i,j}(∆v1i )
)
,

(11)

where∏
{i0,...,il−1,j}

⊕g{i,j}(∆v1i ) = g{il−1,j}(. . . g{i1,i2}(g{i0,i1}(∆v1i0 )))

and P (j, l) is a set of l-hop paths to reach node j.

Proof. According to the update functions shown in E-
quation (2) in the TPDS manuscript, after k iterations, we
have

vkj =v0j ⊕∆v1j ⊕
( n∑

i1=1

⊕g{i1,j}(∆v1i1 )
)
⊕

( n∑
i1=1

⊕g{i1,j}
( n∑
i2=1

⊕g{i2,i1}(∆v1i2 )
))
⊕ . . .⊕

( n∑
i1=1

⊕g{i1,j}
( n∑
i2=1

⊕g{i2,i1}
(
. . .

n∑
ik=1

⊕g{ik,ik−1}(∆v1ik )
)))

.

The lth term of the right side this equation corresponds to
the received values from the (l + 1)-hop away neighbors.
Therefore, we have the claimed equation.

In order to describe asynchronous DAIC, we define a con-
tinuous time instance sequence {t1, t2, . . . , tk}. Correspond-
ingly, we define S = {S1, S2, . . . , Sk} as the series of subsets
of vertices, where Sk is a subset of vertices, and the propa-
gated values of all vertices in Sk have been received by their
direct neighbors during the interval between time tk−1 and
time tk . As a special case, synchronous updates result from
a sequence {V, V, . . . , V }, where V is the set of all vertices.



Lemma 2. By asynchronous DAIC, following an activa-
tion sequence S, v̌j at time tk is:

v̌kj = v0j ⊕∆v1j ⊕
k∑

l=1

⊕
( ∏

{i0,...,il−1,j}∈P ′(j,l)

⊕g{i,j}(∆v1i )
)
(12)

where P ′(j, l) is a set of l-hop paths that satisfy the following
conditions. First, i0 ∈ Sl. Second, if l > 0, i1, . . . , il−1

respectively belongs to the sequence S. That is, there is 0 <
m1 < m2 < . . . < ml−1 < k such that ih ∈ Sml−h .

Proof. We can derive v̌kj from Equation (6) in the TPDS
manuscript.

Lemma 3. For any sequence S that each vertex perform-
s the receive and update operations an infinite number of
times, given any iteration number k, we can find a subset

index k′ in S such that |v∗j − v̌k
′

j | ≥ |v∗j − vkj | for any vertex
j.

Proof. Based on Lemma 1, we can see that, after k iter-
ations, each node receives the values from its direct/indirect
neighbors as far as k hops away, and it receives the values
originated from each direct/indirect neighbor once for each
path. In other words, each node j propagates its own initial
value ∆v1j (first to itself) and receives the values from its
direct/indirect neighbors through a path once.
Based on Lemma 2, we can see that, after time tk, each

node receives values from its direct/indirect neighbors as far
as k hops away, and it receives values originated from each
direct/indirect neighbor through a path at most once. At
time period [tk−1, tk], a value is received from a neighbor
only if the neighbor is in Sk. If the neighbor is not in Sk,
the value is stored at the neighbor or is on the way to other
nodes. The node will eventually receive the value as long as
every node performs receive and update an infinite number
of times.
As a result, v̌kj receives values through a subset of the

paths from j’s direct/indirect incoming neighbors within k
hops. In contrast, vkj receives values through all paths from

j’s direct/indirect incoming neighbors within k hops. v̌kj
receives less values than vkj . Correspondingly, v̌kj is further

to the converged point v∗j than vkj . Therefore, we can set
k′ = k and have the claim.

Lemma 4. For any sequence S that each vertex perform-
s the receive and update operations an infinite number of
times, given any iteration number k, we can find a subset

index k′′ in S such that |v∗j − v̌k
′′

j | ≤ |v∗j − vkj | for any vertex
j.

Proof. From the proof of Lemma 3, we know that vkj
receives values from all paths from direct/indirect neighbors

of j within k hops away. In order to let v̌k
′′

j receives al-
l those values, we have to make sure that all paths from
direct/indirect neighbors of j within k hops away are acti-
vated and their values are received. Since in sequence S each
vertex performs the update an infinite number of times, we
can always find k′′ such that {S1, S2, . . . , Sk′′} contains all
paths from direct and indirect neighbors of j within k hops

away. Correspondingly, v̌k
′′

j can be nearer to the converged

point v∗j than vkj , or at least equal to. Therefore, we have
the claim.

Based on Lemma 3 and Lemma 4, we have Theorem 5.

Theorem 5. If vj in (2) converges, v̌j in (9) converges.
Further, they converge to the same value, i.e., v∞j = v̌∞j =
v̌∗j .

11.2 Proof of Theorem 2
Theorem 6. Based on the same update sequence, after k

subsequences, we have v̌j by asynchronous DAIC and vj by
synchronous DAIC. v̌j is closer to the fixed point v∗j than vj
is, i.e., |v∗j − v̌j | ≤ |v∗j − vj |.

Proof. In a single machine, the update sequence for asyn-
chronous DAIC is a special S, where only one vertex in Sk

for any k and any vertex is appeared once and only once in
{S(k−1)n+1, S(k−1)n+2, . . . , S(k−1)n+n} for any k, where n is
the total number of vertices. Based on Lemma 2, we have

v̌knj = v0j ⊕∆v1j ⊕
kn∑
l=1

⊕
( ∏

{i0,...,il−1,j}∈P ′(j,l)

⊕g{i,j}(∆v1i )
)
,

(13)

The values sent from any k-hop-away neighbors of j will
be received during time period [t(k−1)n, tkn], i.e., the sen-
t values from {S(k−1)n+1, S(k−1)n+2, . . . , S(k−1)n+n} are re-

ceived. Further, v̌knj receives more values from further hops

away, as far as kn-hop-away neighbors. Therefore, v̌knj is

nearer to the converged point v∗j than vkj , i.e., |v∗j − v̌knj | ≤
|v∗j − vkj |.

11.3 Proof of Theorem 3
We first pose the following lemma.

Lemma 5. By asynchronous priority scheduling, v̌′j con-
verges to the same fixed point v∗j as vj by synchronous iter-
ation converges to, i.e., v̌′∞j = v∞j = v∗j .

Proof. There are two cases to guide priority scheduling.
We only prove the case that schedules vertex j that results
in the largest (v̌j ⊕ ∆v̌j − v̌j). The proof of the other case
is similar.

We prove the lemma by contradiction. Assume there is
a set of vertices, S∗, which is scheduled to perform update
only before time t∗. Then the accumulated values on the
vertices of S∗, v̌S∗ , will not change since then. While they
might receive values from other vertices, i.e., ||v̌S∗ ⊕∆v̌S∗ −
v̌S∗ ||1 might become larger. On the other hand, the other
vertices (V −S∗) continue to perform the update operation,
the received values on them, ∆v̌V −S∗ , are accumulated to
v̌V −S∗ and propagated to other vertices again. As long as
the iteration converges, the difference between the results
of two consecutive updates, ||v̌V −S∗ ⊕ ∆v̌V −S∗ − vV −S∗ ||1
should decrease “steadily” to 0. Therefore, eventually at
some point,

||v̌S∗ ⊕∆v̌S∗ − v̌S∗ ||1
|S∗|

> ||v̌V −S∗ ⊕∆v̌V −S∗ − v̌V −S∗ ||1.

(14)
That is,

max
j∈S∗

(v̌j ⊕∆v̌j − v̌j) > max
j∈V −S∗

(v̌j ⊕∆v̌j − v̌j). (15)

Since the vertex that has the largest (v̌j⊕∆v̌j−v̌j) should be
scheduled under priority scheduling, a vertex in S∗ should
be scheduled at this point, which contradicts with the as-
sumption that any vertex in S∗ is not scheduled after time
t∗.



Then, with the support of Lemma 5 and Theorem 5, we
have Theorem 7.

Theorem 7. By priority scheduling, v̌′j in (9) converges
to the same fixed point v∗j as vj in (5) converges to, i.e.,
v̌′∞j = v∞j = v∗j .


