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Abstract—Bayesian network (BN) classifiers with powerful reason-
ing capabilities have been increasingly utilized to detect intrusion
with reasonable accuracy and efficiency. However, existing BN
classifiers for intrusion detection suffer two problems. First, such
BN classifiers are often trained from data using heuristic methods
that usually select suboptimal models. Second, the classifiers are
trained using very large datasets which may be time consuming to
obtain in practice. When the size of training dataset is small, the
performance of a single BN classifier is significantly reduced due to its
inability to represent the whole probability distribution. To alleviate
these problems, we build a Bayesian classifier by Bayesian Model
Averaging(BMA) over the k-best BN classifiers, called Bayesian
Network Model Averaging (BNMA) classifier. We train and evaluate
BNMA classifier on the NSL-KDD dataset, which is less redundant,
thus more judicial than the commonly used KDD Cup 99 dataset.
We show that the BNMA classifier performs significantly better in
terms of detection accuracy than the Naive Bayes classifier and the
BN classifier built with heuristic method. We also show that the
BNMA classifier trained using a smaller dataset outperforms two
other classifiers trained using a larger dataset. This also implies that
the BNMA is beneficial in accelerating the detection process due to
its less dependance on the potentially prolonged process of collecting
large training datasets.

Keywords-Intrusion detection system, Bayesian network, Bayesian
Model Averaging, detection accuracy.

I. INTRODUCTION

The security of software applications, from web-based ap-
plications to mobile services, is always at risk because of the
open society of internet. As the amount of network throughput
increases and security threat intensifies, intrusion detection sys-
tems(IDS) have drawn much attention in recent years. An IDS
is a mechanism used to monitor system and network situations,
collect useful data such as suspicious activities and environmental
context, and analyze such data to detect malicious intentions. In
general, intrusion detection approaches are classified as either
Signature-based Intrusion Detection (SD) or Anomaly-based In-
trusion Detection (AD). SD is the process to compare signature
patterns of known attacks or threats against captured events for
recognizing possible intrusions. AD is the process to find deviation
from a known behavior, and construct profiles representing the
normal or expected behaviors derived from monitoring regular
activities, network connections, hosts or users over a period of
time [1].

Existing intrusion detection systems are divided into five dif-
ferent types by Deepa & Kavitha [2]. They are: Network-based
IDS, which monitors network traffic data; Host-based IDS, which
analyzes host activities like system calls, application logs and
so on; Stack-based IDS, which examines the packets as they go
through the TCP/IP stack; Protocol-Based IDS, which monitors
the protocol in use of the computing system; and Graph-Based
IDS, which concerns intrusions that involve connections between
many hosts or nodes.

The challenge of intrusion detection is to build effective predic-
tive models with low error rates by utilizing and integrating vari-
ous data resources. To achieve this goal, various approaches have
been proposed. These include statistic-based, pattern-based, rule-
based, state-based and heuristic-based approaches. As a statistic-
based approach, Bayesian network (BN) has been widely used in
intrusion detection field due to its robustness in modeling the joint
distribution of random variables and reasoning under uncertainty.

Amor et al. [3], Vijayasarathy er al. [4] and Altwaijry &
Algarny [5] built Naive Bayesian classifier, a type of simplified
BN, to identify possible intrusions. However, Naive Bayes needs
a strong assumption that the feature nodes in the model are
independent from each other given the root node, which is not
always the case in practice.

Kruegel et al. [6] proposed an event classification that makes
full use of BNs and allows the modeling of inter-feature-node
dependencies. They showed that these extensions improve the
quality of the decision process and significantly reduce false
alarms. Lu et al. [7] gave a two-stratum BNs-based anomaly
detection and decision model for IDS. Laskey et al. [8] created
an innovative human behavior model to model user queries
and detect situations and insider threats to information systems
using multi-entity BNs. In [9], An et al. used dynamic BNs to
model temporal environments and detect any privacy intrusions.
In these applications, the network model structures were manually
constructed from domain knowledge without utilizing the training
data that better reflects the real situation. To address this problem,
Wee et al. [10] performed model selection by learning the BN
structure from data. However, they conduct the model selection
using heuristic methods, which usually select suboptimal models.

Further, most of the classifiers were trained and evaluated by
the KDD Cup 99 dataset, which consists of about 0.5 million
records [11]. A classifier trained with such a huge training dataset
is usually capable of representing the probability distribution,
thus achieves very good performance. However, obtaining such
large-scale datasets can be challenging in practice, as it may take
an unreasonably long time to collect the data resources. When
the training dataset is small relative to the number of features
considered, it is usually hard to select a single classifier model
that properly represents the probability distribution of the model
space. In such a situation, using a single model may lead to poor
classification on future data.

To address the problems raised above, we built a Bayesian
classifier for intrusion detection by Bayesian Model Averaging
(BMA) over the k-best BN classifiers. Instead of selecting a single
BN classifier, we perform model selection to find the top & BN
classifiers according to a certain scoring metric. When future data
points are classified, the decision is made by averaging over the
prediction results of the k-best BN classifiers. The motivation
of doing this is that multiple BNs are better than one BN in



representing the probability distribution of the model space, thus
they offer better predictive power than one network, particularly
in the domain where only small training datasets are available.
To the best of our knowledge, this is the first attempt to employ
BMA method in intrusion detection.

The rest of the paper is organized as follows: In Section II,
we briefly introduce the concept of BN classifiers and BMA.
We then introduce Bayesian Network Model Averaging classifier,
which makes predictions by averaging over k-best BN classifiers.
In Section III, we describe the NSL-KDD dataset from which our
training and testing datasets are drawn. In Section IV, we outline
the construction and evaluation of our BNMA classifier. In Sec-
tion V, we illustrate the design of experiments and experimental
results. In Section VI, we conclude with some discussions and
ideas for future work.

II. BAYESIAN NETWORKS AND BAYESIAN MODEL
AVERAGING

A. Bayesian Network Classifier

A Bayesian network(BN) G is a probabilistic graphical model
that encodes a joint probability distribution over a set of variables
X = {X1, X, ..., X,,} based on conditional independencies [12].
It is a directed acyclic graph (DAG) where each node represents
a random variable and an edge denotes a direct probabilistic
dependency between the two connected nodes. For each node,
there is a conditional probability distribution (CPD) containing the
probabilities of the node taking different values given its parents’
value. Formally, the DAG structure asserts that each node is
conditionally independent of all non-descendants given its parent
nodes. By these assertions, the BN compactly represents the joint
probability distribution as

(X1, Xo,s oy X)) = HP(Xi\PaG(Xi))a ey
i=1
where Pag(X;) denotes the set of parent nodes of X; in GG, and
p(X;|Pag(X;)) specifies the conditional probability distribution
(CPD) of X; given Pag(X;).

Figure 1 gives a simple example of BN that portrays the
probabilistic relationships among binary variables Polution (P),
Smoker (S), Cancer (C), XRay (X) and Dyspnoea (D). The table
associated with each variable is called Conditional Probability
Table, encoding the CPD of the variable given its parents. The
joint probability distribution of the five variables can be written
as

p(P, 5,0, X, D) :p(P)P(S)p(O|P, S)p(X|C)p(D|C) (@)

As the CPD can be calculated from the joint probability, a BN
consisting of a class variable and feature variables is readily
applicable to the classification task. Take the lung cancer network
as an example, if we choose Cancer (C) as the class variable
(value unobserved), we can compute the probability of C' = T
given any observed value set (p, s, x,d) as

p(C=T|p,s,z,d)
_ p(C =T,p,s,x,d) ®)
- p(C=T,p,s,2,d) +p(C=F,p,s,z,d)
where p(C = T,p,s,z,d) and p(C = F,p,s,xz,d) can be
computed efficiently using Eq.(2). Similarly, we can compute

p(C = F|p, s, x,d). Then we decide the value of C by comparing
p(C = Flp,s,x,d) and p(C = T|p, s, z,d). Note that this is a
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Figure 1. A simple example of Bayesian network: Lung cancer network.

binary classification, easily generalized to multi-class classifica-
tion by comparing the conditional probabilities of all values of
the class variable.

The BN structure and its associated CPDs can be specified with
the help of domain knowledge, e.g., the lung cancer network.
However, in most cases, the network structures and CPDs are
unknown due to the lack of domain knowledge. In these cases, a
BN classifier can be learned from training data. The learning pro-
cess contains structural learning and CPD estimation. In structural
learning, a scoring metric is employed to evaluate the fitness of
a structure in relation to the training data. Then, a search method
is applied to find a good model [10] among possible structures.
Since the number of possible structures is super-exponential with
respect to the number of variables, finding the optimal structure is
NP-hard [13]. Thus, some heuristic or approximate methods, such
as greedy search, are used. However, the model structures selected
in this way are often suboptimal. After the structure is constructed,
the CPDs can be efficiently estimated using well-developed sta-
tistical methods such as Maximum Likelihood Estimation (MLE)
or Bayesian Estimation [14].

B. Bayesian Model Averaging of Bayesian Network Classifiers

Model selection suffers from the lack of distinguishability of
scoring metrics when the training data is sparse, i.e., the size of
the dataset is small relative to the number of variables. In this case,
there can be many distinct BNs fitting the training data equally
well. Thus, using a single BN potentially leads to poor predictions
on future data.

A promising solution to alleviate this problem is to employ
BMA, which provides a principled approach to the model-
uncertainty problem by integrating all possible models weighted
by their respective posterior probabilities. Formally, given a train-
ing dataset D and a future data point x (a realization of the
variable set X), we compute the posterior probability of observing
T as

pz|D) =Y p(z|G, D)p(G|D), 4)
G

where p(G|D) specifies the posterior probability of a BN G given
the training data D. p(G|D) can be computed from commonly
used scores such as BDe score [15]. Then, p(z|G, D) can be
computed by Eq. (2), as the network structure G is fixed in the
conditional setup.

Since computing Eq.(4) requires enumerating all possible net-
works, which is super-exponential with respect to the number of
variables, it is not of practical use. One solution is to approximate
this exhaustive enumeration by using a selected set of model
structures in G, i.e.,

N deg p($|G, D)p(G|D)
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Dash and Cooper [16] described an efficient solution to BMA
for prediction over a set of BN structures. However, this approach
is of limited applicability as it performs model averaging over
only a restricted class of BNs consistent with a particular partial
ordering and with bounded in-degree. Thus, only a small portion
of probability density can be accounted for. Tian et al. [17]
proposed to find the k-best BN structures and use them to
approximately compute p(h|D), i.e., the posterior probability of
any hyperthesis h. They implemented this idea to address the
problem of structure discovery in BNs, i.e., computing p(f|D),
the posterior probability of the presence of any structural feature
f. (e.g., an edge, in BN structures). They showed that the
approximation achieved reasonable accuracy and outperformed
the classical sampling methods such as MCMC [18] for structure
discovery in BNs.

In this study, we employ the k-best idea to address the problem
of model averaging for prediction (classification). We select the
k-best BNs G, ...,G*, and use them to approximately compute
p(z|D) as shown in Eq.(6),

Zf:l p(z|G*, D)p(G*|D)
YL p(GD)
Once p(z|D) is computed, we could build a classifier to predict
the value of any class variable as shown in Section II-A. When
k = 1, we select the best BN and use this single network to
build a classifier. Thus, it is a special case of BMA.The optimal
model selection is an NP-hard problem [13]. Thus, in existing
applications of BN classifiers, heuristic or approximate methods
are employed to find the models which are usually suboptimal.
Silander et al. proposed a dynamic programming (DP) algorithm
which is capable of finding the globally optimal BN in O(n2")
time [19]. Tian et al. [17] extended the DP algorithm to find the
top k BNs. They demonstrated the applicability of the algorithm
on networks with up to 20 variables. In this study, we employ
this algorithm to select the k-best BNs. We then estimate the
CPDs using Bayesian Estimation for each of the k-best networks
that result in k& discrete BN classifiers. Afterwards, we build our
BNMA classifier by averaging the prediction results over the k-

best BN classifiers.

p(z|D) = . 6)

III. DESCRIPTION OF NSL-KDD DATASET

In previous IDS research, KDD Cup 99 dataset has been widely
used to build and evaluate these systems [3] [10] [5] [20]. This
database contains a standard set of data to be audited, which
includes a wide variety of intrusions simulated in a military
network environment. However, KDD Cup 99 has two major
issues that highly affect the assessment of the performance of
evaluated systems [21]. The first deficiency is the huge number
of redundant records in the training dataset. This deficiency will
cause learning algorithms to be biased towards more frequent
records. The second deficiency is that the existence of repeated
records in the test set will cause the evaluation results to be
biased towards favoring the methods with better detection rates
on frequent records.

In our experiment, we use the NSL-KDD [21] dataset consisting
of selected records of the complete KDD Cup 99 dataset with
redundant and repeated records removed. As can be seen from
the literature [21], the original KDD Cup 99 dataset is skewed
and unproportionately distributed, training and testing directly on
it can result in relatively high accuracy rate for different methods,
making it difficult to effectively compare different classifiers.
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BNMA-IDS
Classifier

Compare Intrusion,
|Accuracy & AUC Prediction

Flowchart illusrating the training and evaluation of BNMA classifier

Figure 2.

Using this NSL-KDD dataset for evaluation is more objective
and judicial as it does not suffer from either of the two problems
mentioned above. The NSL-KDD dataset contains a training set
with 125,973 records and a testing set with 22,544 records. Each
of the datasets contain 41 attributes describing different features
of the connection and a class label assigned to each either as
attack or as normal.

IV. CONSTRUCTION AND EVALUATION OF BNMA
CLASSIFIER

BNMA can be used to train IDS based on intrusion dataset for
detecting various types of intrusions, such as Denial of Services,
User to Root attacks, Remote to Local attacks and so on. In this
section, we demostrate how we construct and evaluate the BNMA
classifier based on NSL-KDD dataset. Figure 2 illustrates the
process from data processing to classifier training and evaluation.
This BNMA classifier decides a data record to be normal or
intrusive without concerning specific types of attacks. The whole
process is elaborated in the following steps:

1) Select a subset out of a total 41 features from NSL-KDD
dataset as the variables for classifier building.

2) Randomly sample partial datasets of varying sizes from the
overall NSL-KDD training dataset as the training sets. The
whole NSL-KDD testing dataset is then used as the testing
set.

3) Perform data discretization on the continuous features
in training and testing datasets using the information-
preserving discretization method.

4) Find the k-best BN structures using the training dataset,
and estimate the CPDs for each networks using Bayesian
Estimation. This results in k independent BN classifiers.

5) Combine the k& BN classifiers into a Bayesian classifier
using BMA.

6) Apply the Bayesian classifier to the testing dataset, calculate
the accuracy and Area Under ROC (AUC).

7) Conduct four groups of experiments by repeating steps 2-6
using different training sets. The results for each classifier
and each configuration of different size are then averaged
over those four groups of experiments.

In the upcoming subsections, we give details on the process

of feature selection, data discretization, and classifier training and
evaluation.

A. Feature Selection

Feature selection is an indispensable pre-processing step be-
cause extraneous features not only add burden to the computation
but also confound the detection process. The NSL-KDD dataset



contains 41 features, some of which may be redundant and
contribute less than the others to the detection process. Feature
selection and feature deduction have been a very popular topic in
intrusion detection field for identifying important input features to
build computationally efficient and effective IDS. Singh & Silakari
[22] proposed an ensemble approach for feature selection of the
Cyber Attack dataset. Chebrolu ef al. [23] and Olusola et al. [24]
specifically analyzed the feature relevance on the KDD Cup 99
dataset. In [23], Markov blanket model was used to select the
feature set and it was shown that a selected set of 12 features can
achieve better predictive accuracy than when the whole set of 41
features is used. Our main focus in this paper is to compare the
methods based on the same datasets with the same feature set,
rather than to study the KDD data. And we are also particularly
interested in studying their performance using a carefully selected
representative subset rather than the full features. Therefore, in
our experiments we used the 12 features suggested in [23]. Those
features are described in the following Table I.

Table I
LIST OF SELECTED FEATURES

FEATURE DESCRIPTION TYPE

NAME

service network service on the destination, | Discrete
e.g., http, telnet, etc.

src_bytes number of data bytes from source | Continuous
to destination

dst_bytes number of data bytes from destina- | Continuous
tion to source

logged_in 1 if successfully logged in; O oth- | Discrete
erwise

count number of connections to the same | Continuous
host as the current connection in
the past two seconds

srv_count number of connections to the same | Continuous
service as the current connection in
the past two seconds

serror_rate % of connections with errors (refer | Continuous
to the same-host connection)

SrV_serror_rate % of connections with errors (refer | Continuous
to the same-service connection)

srv_diff_host_rate | % of connections to different hosts | Continuous

dst_host_count sum of connections to the same | Continuous
destination IP address

dst_host_srv_count| sum of connections to the same | Continuous
destination port number

dst_host_diff the percentage of connections | Continuous

_srv_rate to different services, among
the connections aggregated in
dst_host_count (32)

B. Data Discretization

As shown in Table I, some of the selected features take contin-
uous values. However, current implementation of BN classifiers
can only handle discrete values. Thus, continuous features need to
be discretized before being used to build a classifier. On the other
hand, discretization can often make continuous features easier
to understand and interpret, and produce faster learning models.
Many learning models have been shown to perform better by
discretizing continuous features [25]. Based on our knowledge,
there are two types of commonly used discretization methods in
many of the IDS [26] [24] [10], that is, the unsupervised dis-
cretization algorithms, e.g., equal intervals, equal frequencies, and
the supervised discretization algorithms, e.g., maximum entropy
discretization, X2 discretization, CAIM, etc. In our experiment, we
adopted a discretization algorithm named CACC [27], which was

a a static, global, incremental, supervised and top-down discretiza-
tion algorithm. This information-theoretic algorithm extended the
idea of contingency coefficient, combined with the greedy method,
and was empirically shown to be promising in terms of accuracy,
execution time, etc. Data discretized using such discretization
scheme have much less information loss, thus better represent
the distribution of original data compared to the ones discretized
using other unsupervised discretization methods.

C. Classifier Training and Evaluation

One purpose of this study is to evaluate the performance of
various classifiers with respect to varying sizes of the training
dataset. Thus, we prepare several training datasets containing
500, 1000, 2000, 5000, 10000, 20000, 30000, 40000 records,
respectively. We train and build a Bayesian classifier from each
of the training sets by BMA over the k-best BN classifiers as
described in Section II. For each training dataset, we build the
Bayesian classifier by setting k to various values. We then evaluate
the performance of the classifier with respect to these different &
values. When k = 1, the classifier is equivalent to a single BN
classifier. The larger k is, the more models are employed for model
averaging, which potentially leads to better predictive power.

We evaluate all classifiers on the same testing dataset. We
compute the accuracy as the percentage of correctly classified
records. Note that this is a binary classification problem, i.e.
an attack or normal. A record is classified as an attack if the
conditional probability of being an attack given the observation
of other features is greater than 0.5; it is classified as normal
otherwise. In addition to accuracy, we compute AUC as the
area under the Receiver Operating Characteristic (ROC) curve,
which is an estimate of the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative instance. Since AUC does not depend on the
classification threshold used, it is widely recognized as a better
measure than accuracy, which is based upon a single classification
threshold.

For comparison, we also build Naive Bayes classifiers and BN
classifiers, which are selected by using the greedy hill-climbing
search method. As described before, we repeated the experiment
four times on different training and testing data sets and reported
the average accuracy and AUC.

V. EXPERIMENTAL RESULTS

Figure 3 compares the detection accuracy of Naive Bayes (NB),
Bayes Network built using greedy search (BN-Greedy) and the
BNMA (k = 1) by size of the training dataset. First, we observe
that the accuracy is approximately a non-decreasing function
of training sample size. This is understandable since a larger
training sample usually produces a classifier with better predictive
power. The accuracies of NB and BN-Greedy are comparable to
each other, while the BNMA classifier built using the best BN
(k = 1) is significantly better than the two classifiers. Further,
the BNMA (k = 1) trained classifiers using a small training
set (2000) even outperforms the NB and BN-Greedy classifiers
trained using a very large training set (40000). The improvement
is also significant when AUCs are compared (see Figure 4). This
indicates that the BNMA classifier can achieve reasonably good
predictive power even when a small training dataset is used.

In another set of experiments, we evaluate the BNMA classifier
with respect to various k values. Table II compares the detection
accuracy by k value and training set size. Table III compares the
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Figure 4. Comparison of AUC by size of training set

AUC by k value and training set size. It is shown that with the
increase of k, both accuracy and AUC increase. AUC has a more
obvious increase than accuracy. However, this improvement is not
as significant as that in comparing BNMA (k = 1) with NB and
BN-Greedy. The most significant improvement is in Table III,
for sample size 500, where the AUC jumps from 0.9615 for
k =1 to 0.9733 for k = 200. With the increase of sample size,
the improvement decreases. This demonstrates that the BNMA is
particularly effective on small sample sizes.

Table 11
ACCURACY COMPARISON BY k VALUE AND SIZE OF TRAINING SET

k Value
k=1 k=10 k=50 k=100 k=200
500 92.40% | 92.40% | 92.40% | 92.40% | 92.40%
1000 95.43% | 95.43% | 95.43% | 95.56% | 95.43%
2000 93.92% | 93.97% | 93.97% | 93.97% | 93.97%
5000 96.06% | 96.14% | 96.11% | 96.14% | 96.16%
10000 | 96.43% | 96.43% | 96.44% | 96.47% | 96.46%
20000 | 96.86% | 96.86% | 96.87% | 96.87% | 96.87%
30000 | 96.86% | 96.86% | 96.85% | 96.86% | 96.92%
Table IIT

AUC COMPARISON BY k AND SIZE OF TRAINING SET

k Value

k=1 k=10 k=50 k=100 | k=200
500 0.9615 | 0.9706 | 0.9733 | 0.9733 | 0.9733
1000 0.9705 | 0.9718 | 0.9728 | 0.9728 | 0.9730
2000 0.9738 | 0.9738 | 0.9740 | 0.9744 | 0.9745
5000 0.9895 | 0.9898 | 0.9898 | 0.9900 | 0.9900
10000 | 0.9905 | 0.9905 | 0.9905 | 0.9908 | 0.9908
20000 | 0.9928 | 0.9928 | 0.9928 | 0.9928 | 0.9930
30000 | 0.9933 | 0.9933 | 0.9933 | 0.9933 | 0.9933

To investigate why the predictive power does not change very
much with respect to the variation of the k value, we examine the
structures of the top 10 networks produced using a training set
with size 10000. The network on the right in Figure 5 illustrates
the consensus structure for the 10 structures. It is surprising that
all 10 structures share the same skeleton with minor differences
in the direction of the edges. This indicates that the top structures
represent similar distribution, and thus make similar predictions
for new data points. We can speculate that the top 200 structures
may have very similar structure. For comparison, we also depict
the BN structure learned using greedy hill climbing search method
(the left network in Figure 5). It is easily observed that this
structure is significantly sparser (fewer edges) than the consensus
structure. This explains why the structure selected with heuristic
method is suboptimal, because it fails to identify many important
dependencies among the feature nodes which can be captured by
our method of using BNMA classifier. It also explains why the
best BN (k = 1) has significantly better predictive power than the
BN-Greedy classifier.

Figure 5. Comparison of BN models learned using heuristic method and
BMA. Left: Bayesian network trained on sample size 10000 using greedy
hill climbing search method. Right: a consensus network built from the top
10 networks trained on sample size 10000. The correspondences between the
nodes and the features are : O-service; 1-src_bytes; 2-dst_bytes; 3-logged_in;
4-count; 5-srv_count; 6-serror_rate; 7-srv_serror_rate; 8-srv_diff host_rate; 9-
dst_host_count; 10-dst_host_srv_count; 11-dst_host_diff_srv_rate; 12-class (intru-
sion or not intrusion). Note that the class variable is shadowed. Directed edges
existing in all 10 structures are depicted as solid arrows. The set of edges that
exist in all structures but with various directions are depicted as solid lines.

VI. CONCLUSION AND FUTURE WORK

We proposed a Bayesian classifier using BMA of k-best BN
classifiers, called BNMA classifier, for intrusion detection. Pre-
vious IDS using BN classifier has two problems. First, the BN
structure is selected using heuristic methods, which usually return
suboptimal models. Second, previous classifiers are trained and
evaluated using a very large training dataset, which is usually
hard to collect within a short time period. We used DP algorithm
to find the globally k-best structures to build a Bayesian classifier
by BMA. We showed that the BNMA classifier has significantly
better predictive power than Naive Bayes and BN classifier built
using heuristic method. Even the classifier trained using smaller
dataset outperforms the other two classifiers trained using larger
dataset. We conclude that our BNMA classifier is particularly
effective in detecting intrusions when only a few training records
are available.

We also show that with the increase of k, i.e., more BN
classifiers are used for model averaging, the better predictive
power it can achieve. However, this improvement is not that
significant, since the top structures actually share a very similar
structure. This means the problem size (12 feature variables) is
still not that large compared to the sample sizes examined. One
question that users may ask is, what is the k£ value we should



use? The answer is the larger, the better. However, it takes more
time to train and integrate over larger number of classifiers. In
this study, we consider 12 feature variables and &k = 100 is
already enough. The k value that should be selected depends on
the problem size, i.e., the number of feature variables used to build
the model. Thus, our future work is to select a larger set of feature
variables for model building. Since BN is able to inherently do
feature selection through its conditional dependency assertions,
using a larger set of features should not significantly impact the
performance. However, with a larger set of feature variables, it
may need larger k, i.e., integrating over more models to achieve
reasonably good predictive power.

Another area for future work is based on the observation that
intrusions happen in dynamic environments, thus they themselves
could be time-series data. An et al. [9] proposed to use dynamic
BN to model the temporal environment. However, the problems
faced by the static BN classifier persist in dynamic BNs. Thus,
it is a challenge to perform model averaging in the temporal
environment setup.

In summary, since it uses less data while still achieving com-
parable or better predictive power, our BNMA classifier can save
a huge amount of time on collecting training data records so that
it can catch the intrusion more promptly and more accurately to
avoid loss due to intrusion.
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