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Abstract 

We present new channel routing algorithms and theory that consider the 
characteristic of net crossings. The routing strategy is basedon parallel bub- 
ble sorting and river routing techniques. A function named POTENTIAL, 
can be evaluated to indicate the required channel height for a given chan- 
nel without actually carrying out the routing steps. Non-Manhattan wires 
as well as overlapping wires are introduced. preliminary results show that 
a class of channel routing problems can be routed in height less than the 
Manhattan density. 

1 Introduction 
Channel routing is one of the most imponant phases of physical design of 
V U 1  chips as well as PC boards. Many breakthroughs [22.8, 17.5.4,2. 
19,10,15,20] in channel routing theory and algorithms have been reported. 
In this paper. we propose two new routing models, the mini-swap model and 
the overlapmodel are intlwluced. The routing strategy is very diffemt from 
the Manhattan approach. In particular, vertical constraints no longer exist. 
Furthermore. the solution produced by either model consists of a minimal 
set of net crossings which leads to a small number of vias. To characterize 
and to evaluate the performance of each model. a function called POTEN- 
TIAL is used. Intuitively. the POTENTIAL function measures the degree 
of difficulty for a given channel muting problem. Based on the performance 
analysis, we attempt to combine the svength of both models to form a new 
hybrid router. 

2 TheProblem 
A channel is a pair of vectors of nonnegative integers - TOP and BOT - of 
the same dimension. 

TOP= t ( l ) ,  t(2), ..... t(n) 
BOT = b ( l ) ,  b(2), ..... b(n) 

, We assume that these numbers are the labels of grid points located along 
the top and bottom edge of a rectangle. Points having the same positive label 
have to be interconnected, i.e. they definenets. A 100% routing completion 
is requiredand the objective is to minimize the channel area and the number 
of vias. 

A channel is dense if every grid point on the tq and bottom bound- 
aries is occupied by a terminal. Let {1,2, .... n} denote the set of nets. 
Then in a dense 2-terminal net channel, TOP and BOT are permutations 
of {1,2, .... n}. Withwtloss of generality, wemayassume thatnets arear- 
bitrarily ordered on the bottom and are naturally ordered on the top. This is 
stated as: 
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Definition 1 A dense 2-tenninal net (D2TN) channel routing problem ir 
speci/ied by: 

T O P = l , 2 . 3  ........ n 
BOT = aperwat ion of { 1,2,  .... n } 
We denote the top and bottom termids  of net i by ( i ,  q i ) .  

3 The Mini-swap Model 
3.1 Definition of the Mini-Swap Model 
The basic idea of the new model is to swap a pair of neighboring nets by 
two wires. one in the +45O direction, another in the -45O direction ( Figure 
1). We call such a swap a “mini-swap”. 

Routing of a D2TN channel can be viewed as a vertical stack of steps. A 
step is a unit-high horizontal sUip in which a set of mini-swaps is performed. 
If a net does not change position in a step, it simply propagates to the next 
track by a unit vertical wire. An example is shown in Figure 2. 
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Figure 1. A miai-swap Figure 2. In each step, a set of mhi-swaps 0- 

A solution for the M T N  channel routing problem in this model can be 
constructed in a bottom-to-top step-by-step fashion . The final channel 
height is equal to the number of steps required. Clearly, a D2TN chan- 
nel routing problem can have many possible solutions under the mini-swap 
model (Figure 3). In search of the optimum solution, the router must de- 
termine which pairs of nets to swap in each step so that the final solution is 
optimum. Theorem 1 states necessary optimality conditions. 
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Figure 3. Two realizations of the same channel 

Definition 2 The optimal solution of a two-terminal net channel routing 
problem under the mini-swap model is one that has 

(a) the minimum channel height and 
(b) the shortest total wire length 

Definition 3 Apairofnetsirsaidtobe”p1anar” i fd  ir inthenaturalorder 
on the bottom. Otherwise. it is said to be ” intersecting”. 

Theorem 1 A solution is optimal under the mini-swap d e l  if ir has the 
minimum nwnber of tracks andproperties I and2 hold: 

(property I )  planar pairs do not intersect and 
(property 2 )  intersecting pairs intersect only once 

Prool: For the sake of contradiction, assume a solution S, has the minimum 
number of tracks and some planar nets intersect twice. Then there exists a 
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new solution S' ( see Figure 4), which has the same number of tradts and 
no intersecting planar nets. . .  

1 j I j 
Figure 4. Solution S Solution S' 

Clearly S' has shoxter total wire length than S, which implies that S is 
not optimal. The proof for property 2 is similar. 

rn 

In other words, a router never needs to swap a pair of nets that are already 
in the natural order to obtain an optimum solution. This implies that the set 
of mini-swaps that leads to the solution corresponds to a minimal set of net 
crossings. 

3.2 The Routing Strategy 
We now describe a routing algorithm based on the parallel bubble sort [l]. 
In the fint step, nets located at odd grid points are compared with the net on 
their right. If the pair is an planar pair, the pair does not switch positions; 
otherwise, a mini-swap is performed (Figure 5). The second step is identical 
to the first one, except this time nets located at even grid points are compared 
with the net on their right These two steps are repeatedly performed in this 
order. The algorithm stops when for two consecutive steps. no pairs of nets 
switch places. Once the algorithm terminates, the nets are ordered in the 
natural order. 

1 2  
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Figure 5. 
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Figure (6a) An impossible situation 
(6b) A via is placed at the center of 

a vertical wire IO ensure d > 1 

Layer 1 is assignedto wires oriented in the +45 O angle; layer 2 is assigned 
to wires oriented in the - 4 5 O  angle. Vertical wires can be assigned to any 
layer since they do not cross any other wires. Vias are intruduced for layer 
changes between a +45 a wire and - 4 5 O  wire. Due to the cdd-even transpo- 
sition procedure, the situation shown in Figure 6a could never happen: the 
+45O wire of a net always conneds to a -45 O wire through a vertical seg- 
ment as shown in Figure 6b. We place a via at the midpoint of the vertical 
segment This ensures that the wires satisfy the design rule so that there is 
no need to magnify either the column spacing or the row spacing by a. 

Formally, let us denote the permutation of nets on track t by: 
At = (a t ( l ) ,a t (2)  ,..... at(.)) 

Then. A0 = (ao(l),ao(2), ..... ao(n)), whereao(i) = b(i) .  for all i .  We 
alsoassumethereis aninfinitenumber of auxiliarynets, representedby ........ 
a(-1). a(O), and a(n+l), a(n+2) ,...., where for all i 5 0 and t > 0, a t(i) = 
-m and for all i > n and t > 0. at(;) = +m. These auxiliary nets do 
not disturb the routing of regular nets at any time. For each track t 2 0 and 
each integer i ,  the net, at ( i ) ,  at the ith grid point at track t is given by: 

if (i + t) is even, at( ; )  = min(cyt-1)(i), a( t - l ) ( i  + 1)) 
if (i + t) is odd .at(;) = mat(a(,-l)(i  - I), a(t-l)(i)) 
The dynamic behavior of this routing scheme is the same as that of the 

parallel bubble sorter realized on a two-way infinite linear array. If, for 
evety i, at(;)  5 at(i  + 1) , then At is said to be sorted. The computing 
time of the parallel bubble system is the smallest t such that At is sorted. A 
router similar to ours has been developed independently by [6]. The main 
difference is that their method is based on the sequential bubble son. 

3.3 The POTENTIAL function 
We are interested in the computing time of a parallel bubble system which 
corresponds to the required height of the D2TN channel routing problem. 
A function called POTENTIAL, first introduced by [18]. p w e d  to be very 
useful in evaluating the Computing time of the bubble system. This section 
defines the POTENTIAL function and reviews the theorem proved by [ 181. 

Definition 4 For each (i j , t ) ,  where 1 5 i ,  j 5 n, and t >_ 0, and the set 
of nets, S, we &$ne: 

ORDER(ij,t,S) is the number of indices p E S such that i < p 5 j 
andat ( ; )  5 at(p) , orsuchthatj 5 p < i andat (p)  5 at(;) 

NOTORDER(i j,t,S) is the number of indices p E S such that i < p 5 
jandat(p) 5 at ( i ) ,orsuchthat j  < p < i a n d a t ( i ) <  at(p) 

MAXLT(i.t,S) = max(0 U { ORDER(i,p,t,S) - NOTORDER(i,p.t,S) + 1 
I P E S , P <  iandat(i)5 at(p1)) 

MAXGT(i,tS) = max(0 U { ORDER(i,p,tS) - NOTORDER(i,p.t,S) + 
I 1 P E S, i < p andat (p)  5 4) } ) 

Definition 5 For any position indexing i 5 n, andany t 2 0, thefunction 
POTENTIAL(i,t) is defined as: 

When NOTORDER(i,I ,is) = 0. 

0 When NOTORDER(i,n,tS) = 0, 

POTEWIAL.(i,t) = NOTORDER(i,n,t.S) + MAXGT(i.t.S) 

POTEhTlAL.(i.t) = NOTORDER(i,I .t.S) + MAXLT(i,t,S) 

POTENTlAL.(i,t) = NOTORDER(i.1 ,t,S) + NOTORDER(i.n,t,S) t 
max( 1, MAxLT(i,t,S), MAXGT(i,t,S) ) 

When NOTORDER(i,l ,IS) # 0 andNOTORDER(i,n,t,S) # 0, 

The POTENTIALfunctwn for the entire bubble system is dejined by: 
POTENTlAL(t) = max(POTENTlAL.(i,t) I 1 i 5 n ) 

From the above definition, it is clear that POTEh'TIAL(i, t) = 0 if and 
only if NOTORDER(;, 1, t ,  S) = NOTORDER(;, n, t ,  S) = 0. An immedi- 
ate consequence of this fact is that if POTENTIAL(t) = 0, then At is sorted. 
We now state the main theoran proved by [ 181. 

Theorem 2 If t 2 1 and At ir not sorted, then 
POTENTlwt+l) = POTENTIALit) - 1 

Corollary 2.1 The compu!ing time of the bubble system is POTENTIAUO) 
or POTENTIAL(O)+I. 

The salient feature of the bubble system is that the POTENTIAL value 
consistently decreases by 1 per step. In other words, when POTENTIAL(0) 
= k, the required height of the DZTN channel is k or k + 1. The value 
of POTENTIAL(0) is defined solely by the initial permutation A0 , without 
referring to the intermediate configurations At fort  > 0. The POTENTIAL 
function can be precisely evaluated to c a p u t e  the number of tracks require 
to route the DZTN channel without actually carrying out the routing steps. 
Another feature is that the decision of whether to swap a pair or not is local 
and does not depend on the locations of the rest of the nets. 'h is  feature 
makes this algorithm attractive in a parallel mode of operation. Also observe 
that the wiring path for each net is monotonic in the vertical direction. 

3.4 The Main Theorem 
The parallel bubble sort provides a simple routing strategy to produce a so- 
lution in the mini-swap model. Do better algorithms exist for which the 
POTENTIAL value decreases rapidly , say, by more than 1 per step ? In 
the following theorem, we prove a sufficient optimality condition for any 
algorithm under the mini-swap model. See [21] for detail of the proof. 

Theorem 3 Potential value decreases at most by I per net per step under 
the mini-swap d e l .  

The following theorem gives a lower bound on the POTENTIAL function. 

Theorem4 For each net i, we define the dirplacement(i) as the hor- 
izontal distance between its two terminals. Then POTENTIAL.(O) >_ 
maz({displacement(i) 11 5 i 5 n}). 
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35 Results and Comparison 
Routing results of two D2TN channels are shown in Figure 8 and 9. Can- 
pared to the Manhattan routers, OUT router has the following advantages: 

number of columns which is larger than the Manhattan density). SinceThe- 
orem 3 confirmed that we could not reduce the required channel height by 
cleverly selecting pairs to swap, the only alternative that may lead us to a 

There is no need to deal with vertical constraints 
The required channel height, POTENTIAL(0). can be precisely com- 

For D2TN channels that have a POTENTIAL(0) value less than the 
Manhattan density, our router can out-perform any Manhattan routers 
Extra c o l m s  outside the channel's span are never used 
Wirelength is expected to be shorter due to the use of diagonal wires 
Being a minimal crossing solution, we expect only a small number of 
vias is required. We observed that most nets require zero or one via. 
whereas Manhattan routing typically requires at least 2 vias per net. 
It is inherently suitable for parallel mode of operations. 
In standard cell design, it is very difficult to optimize the assignment of 
pins to feedthroughs when the objective function is the density. In our 
environment, one would want to minimize the maximum displacement 
of a net This can be easily done by linear assignment 

puted 

Figure 8. A channel is routed three models shown in (a), (b). and (c). 
(a) Manhattan model (b) M i ' s  diagonal model (c) mini-swap model 

. .  . .  . .  
3 5 1 7 2 4 6  

3 5 1 7 2 4 6  

vias 

71 42 28 

Figure 9. A channel with density = 7 is optimally 
routed in the mini swap model. 

The diagonal model channel router proposed by [14] can complete rout- 
ing of a D2TN channel in maz((dispdacement(i) I 1 5 i 5 n}) tracks. 
Although this number is smaller than the channel height required by our 
router (see theorem 4). the diagonal router [ 141 magnifies both the column 
spacing and row spacing by &, which implies that the channel area is dou- 
bled. Our router ensures that the wiring paths are design rule correct and 
does not magnlfy spacing in either direction. 

3.6 Concluding Remarks on the Mini-Swap Model 
A D2TN channel can be routed in the miniswap model by parallel bubble 
sort. The function POTENTIAL can be evaluated to compute the precise 
number of tracks required to route the channel. The function evaluation of 
POTENTIAL for a given channel can be obtained without refening to the 
intermediate routing steps. We have established necessary and sufficient 
optimality conditions for routing under the "mini-swap"mode1. The final 
routing solution has an unambiguous layer assignment and is design-de 
correct. Our results show that a class of dense tweterminal net channels 
can be routed in a height less than the Manhattan density. 

4 An Overlap Model 
Themini-swapmodelis goodforrouting channel whosePOTENTIALvalue 
is less than or equal to the Manhatran density. However, we need to over- 
come its deficency in routing channels with 'long" nets ( nets spanning a 

better solution is to relax the constraint of pair-wise transpositions. 

4.1 Algorithm for the Overlap Model 
The basic idea of the new scheme is to allow long nets to swap with more 
than one net while maintaining the integrity of net crossings. To improvethe 
results of the mini-swap model, the long nets must be given a better chance 
in swapping with other nets. At the same time, we want to keep the number 
of net crossings minimal so that the number of vias will not increase. 

The routing algorithm is based on the river routing technique. A dense 
2-terminal net channel routing problem is specified in Definition 1. A net is 
said to be a right net if i > qi; otherwise, it is said to be a lefr net (Figure 
12). 'Ihe basic idea of the overlap model is to divide the nets into two dis- 
joint subsets: SI = { r i g h  nets } and 52 = { Iefl nets } and route each set 
independently. A top level description of the algorithm is given below: 

step 1) Divide nets into two sets: S1= { right nets }; S2 = { left nets } 
step 2) Sort SI in decreasing order of their top terminals. Route SI. 

step 3) Sort S2 in decreasing order of their bottom terminals. Route S2. 

Figure 12 Piun 13. Routing m thc wcrlap rn& 

The solution for the D2TN channel routing problem is constructed in a 
bottom- to-top net-by-net fashion. Let us demonstrate the algorithm on the 
example shown in Figure 13. The right nets are sorted and routed sequen- 
tially in a river routing fashion. ?he procedure begins by constructing a 
rectilinear wiring path for the first right net. The path begins at the bottom 
terminal and ends at the top terminal. The wiring path for the second right 
net simply follows the path of the first right net and ends at its top termi- 
nal. This process continues until all  of the right nets are muted. All of the 
paths are monotonic in both the horizontal and veltical directions. Step 3 is 
identical to step 2, except that this time the left nets are routed. 

Layer assignment for the wiring paths is trivial. For the right (left) nets, 
the vertical segment attached to their bottom (top) terminals is assignedlayer 
2 (1) while the remaining wire segments are assigned layer 1 (2). see Figure 
13. A via is introduced for each layer change. Clearly. the routing paths 
for a pair of planar nets do not intersect and intersecting pairs intersect only 
once. This implies that the routing solution contains a minimal set of net 
crossings. 

4.2 Performance Analysis 
Suppose the D2TN channel routing problem is specified as a pair of vectors: 
TOP = { I, 2, .... n } and BOT = { b(l) ,  b(2), ... b(n) } . 
Theorem 5 The lower bound on the channel height under the arbilrary 
overlap model is nux{ NOTORDER(I,i,O,SI) + NOTORDER(i,n,O,S2) I 
1 5 i 5 n }. (Deailedproofcan be foundin [2I].) 

The above lower bound is derived by considering the permutation of the 
nets. It is not only a tighter bound than the Manhattan density, d. but also 
demonstratesthatd/(L- 1) r13.1 I] is notauniversallowerboundunderthe 
unrestricted overlapmodels, where L is the number of layers. The example 
in Figure 14 is muted by the overlap router in a height equal to the lower 
bound, which is half of the Manhattan density. We prove in the following 
theorem that, in contrast to the bubble system, the POTENTIAL value will 
decrease by more than 1 per track (amortizedly) under the overlap model. 

density = 8 
13 r$z!!l tracks = 4  

5 6 7 8 1 2 3 4  vias = O  
- 

Figure 14. 
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Theorem 6 The upper bound on the channel height lurder the arbitrary 
overlapmodel is POTENTIAL(0)  + 2. 

The essential implication of Theorem 3 and Theorem 6 is that when long 
nets are present in a channel routing problem. the POTENTIAL value of the 
channel is much larger than the density. This means that the overlap model 
works better than the mini-swap model. On the other hand, if all nets are 
"short", i.e. the POTENTIAL value of the channel is equal to or less than 
the density,the mini-swap model producesa slightly better solution than the 
overlap router. In section 5 we shall  combines the strengths of both models 
to form a hybrid router. 

The wiring path for eachnet is monotonic in both the horizontal and verti- 
cal direction. There are no detours in the final solution. This is a direct con- 
sequence of the muting algorithm. The overlap routing procedure has the 
distinct advantage of generating a small number of vias for D2TN channel 
routing problems. Given any D2TN channel muting problem. the overlap 
routing algorithm introduces at most one via per net. 

4.3 Concluding Remarks on the Overlap Model 
Unlike other overlap models [ 12.16.31 that used two or more vias per net, 
the routing solution produced by our router can be wired using two inter- 
conned layers so that at most one via is required per net Compared to the 
Manhattan model, the overlap model has the following advantages: 

There is no need to deal with vertical constraints 

For channels that have POTENTIAL(0) value less than the Manhattan 

Extra columns outside the channel's span are never used 

0 Because it is a minimal crossing solution, we expect only a smallnum- 

density, our model can out-perform any Manhattan routers 

ber of vias to be required 

The overlap model is bemr than the mini-swap model in two respects: 
(1) It yields a small channel area for channel with long nets. (2) Variable 
wire widths can be incorporated easily. However, overlapping wires may 
increase crosstalk between signals and unlike the mini-swap algorithm, the 
overlap algorithm is not suitable for parallel operations. 

5 The Hybrid Router 
We combine the advantages of the overlap and the miniswap models to form 
a new hybrid router. This router pre-routes long nets using the overlap al- 
gorithm so that the amount of overlapping wire is limited. The remaining 
nets, ie. relatively short nets, are muted by the miniswap algorithm. The 
user can spec@ the maximum amount of overlap allowed. 

5.1 Algorithm 
The basic idea is as follows: When the channel is routed solely by the min- 
iswaps. we know the channel height is POTENTIAL(0). Suppose we pick 
some long nets which would cause the mini-swap model to disgrace itself, 
and pre-route them using the overlap strategy. If the resulting channel height 
is better than before, we can choose more long nets and continue the pro- 
cess provided the maximum amount of overlap is not exceeded. A top level 
description of the algorithm is given below. ( See figure 17 for an example. 
) 

F o r i t  l t o n - l d o  
i) pre-route i longest nets by the overlap model 

amount of werlap = i. 
calculate current channel heighs t(i). 
t ( i )  = (tracks for p-routes ) + (POTENTIAL value of remain- 
ing channel) 

ii) compare height to last iteration: 
i f ( t ( i )  < t ( i  - l))and(maxoverlapisnotexceeded) 
r = i + l  
continue 
else stop 

185 15203 9 7 6 11138 141017121 194 162 

Figure 17. A channel is routed by the hybrid router in density. 

5.2 Performance Analysis 
Since the hybrid router is a combination of the mini-swap model and the 
overlap model, it should perform at least as well as either model in the worst 
case Given a channel routing problem, if the algorithm terminates in the 
first ((n - 1)th) iteration, the solution has purely mini-swaps (overlaps). 
Therefore, the mini-swap model and the overlap model can be considered 
special cases of the hybrid router. We summarize the performance bounds 
of the hybrid router in the following theorem. 

Theorem I The channel height required by the hybrid router has 
- Lower Bound - 

max(NOTORDER(i, l ,O,Sl) + N O T O R D E R ( i , l , n ,  52) 1 
1 5 i 5 n}) 

Upper Bound = POTENTIAL(0) + 1. 

6 Routing Results for 2-terminal Nets 
The hybrid router is implemmted in the C language on a DEC3100 running 
Ultrix Worksystem V2.1. Figure 18 shows the routing result of a channel 
with 48 nets. We have attempted to lun this example using other routers 
available [19.7. 91 but they either failed to complete routing or produced 
substantially worse results. Table1 lists the channels tested with 100% rout- 
ing completion in all cases. Several D2TN channels are routed in a height 
less than the density. 

Table 1. Experimental Results 

I 

Figure 18. Routing result of Ex4 

7 Multi-terminal Net Routing 
To extend the routing algorithm to handle multi-terminal nets. we partition 
each multi-terminal net into 2-terminal subnets and classlfy each subnet as 
a right net or a leji net A 2-terminal subnet with one terminal on TOP and 
the other on BOTTOM is said to be a 2-sided subnet; otherwise, it said to 
be a I -sided subnet The 2-sided subnets can be categorid as left or right 
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easily. However, the classification of 1-sided subnets is ambiguous and may 
affect the quality of solution. In the following lemmas. we show that not all 
1 -sided subnets can be classified either way. For detailed pmof.see [21]. 

Definition 6 Given I, a iwo-terminal I-sidedsubnet: 
I ir top-sided L$fboth terminah of I lie on TOP. 
I ir bottom-sided iff both terminals of I lie on BOTTOM. 

Lemma 1 Given a 1 &fedsubnet I ,  

i) I is top-sided andl intersects a right net 

ii) I is bottom-sidedundl intersects a le# net + I w f  be a right net. 
i i i )  I is top-sided andl iniersects another topsided subnet J =+ I and J can 

iv) I is bottom-sided and I intersects another bottom-sided subnet J =+ I 

I m i  be a left net. 

- 
not both be right nets. 

and J can not both be lefl nets. 

Most 1-sided nets in practical examples are classified as above. The clas- 
sification of the remaining 1-sided subnets is guided by local congestion 
analysis. The left subnets and right subnets then are s o d  independently 
by their terminal positions and routed in the rivering routing fashion as dis- 
cussed in sedon 5.1. Weobserve thatthis method for routingmulti-terminal 
nets is straight-forward but not necessarily optimal. Future work should in- 
vestigate better strategy for handling multi-terminal nets. 

In a channel routing problem, nets may exit the channel on either its left 
end or its right end. Routing of these so-called side nets is done by the 
following procedure (Figure 19): 
1 

1 
2 

6 

& 

2 
(I) fmd closest terminal to exit 

3- 2 4 _-._I”. 1 3  

I -.’- 1 leftnet 
1- 2 rightnet 
2 

(ii) Assign side netS to S1 or S2 

A 
fl” - 

2 4 
(iii) Anillcially extend Ihe channel and add pseudo-lenninals; 

Afta  routing completion. del.% b e  extended section. 
The analysis and theorems introduced for the D2TN channel routing 

problem in Section 5.2 can be general id  for the multi-terminal nets prob- 
lem by replacing nets with subnets in the equations. Figure 20 shows that 
the Deutsch’sdifficult channel is routed with 23 tracks and has 25%less vias 
than [5, 191. Figure 20. Difficult channel 

8 Conclusion and Future Work 
In this paper, we propose new methods which perform well on practical 
channels and attempt to provide accurate and formal analysis on the qual- 
ity of the solutions. Two new routing models, the mini-swap model and the 
overlap model are introduced. Non-Manhattan geometry as well as m i -  
linear wires are used. The routing strategy is based 6n the parallel sorting 
and river routing techniques and is very different from the Manhattan ap- 
proach. In particular. vertical constraints no longer exist. Fuahermore. the 

solution produced by either model consists of a minimal set of net cross- 
ings which leads to a small number of vias. To characterize and to evaluate 
the performance of each model, a function called POTENTIAL is used. In- 
tuitively, the POTENTIAL function measures the degree of difficulty for a 
given channel routing problem. Based on the performance analysis, we at- 
tempt to combine the strength of both models to form a new hybrid router. 
The routing solution produced by our router has unambiguous layer assign- 
ment and is design-de correct. Finally, a straight-forward extension to 
handle multi-terminal nets and and side-nets is proposed. Preliminary re- 
sults show that a class of two-terminal net channel routing problems can 
be routed in height less than the Manhattan density. Future work should 
optimize the extension to handle multi-terminal nets and multi-layers. 
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