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Abstract—This paper proposes a built-in self-test/self-diagnosis
procedure at start-up of an on-chip network (NoC). Concurrent
BIST operations are carried out after reset at each switch, thus
resulting in scalable test application time with network size.
The key principle consists of exploiting the inherent structural
redundancy of the NoC architecture in a cooperative way, thus
detecting faults in test pattern generators too. At-speed testing
of stuck-at faults can be performed in less than 1200 cycles
regardless of their size, with an hardware overhead of less than
11%.

I. INTRODUCTION

On-chip interconnection networks are rapidly becoming
the reference communication fabric for multi-core computing
platforms both in high-performance processors and in many
embedded systems [7], [3]. As the integration densities and
the uncertainties in the manufacturing process keep increasing,
complementing NoCs with efficient test mechanisms becomes
a key requirement to cope with high defect rates [6], [11].
Above all, the NoC testing infrastructure should not be con-
ceived in isolation, but should be coherently integrated into a
reliability framework taking care of fault detection, diagnosis
and network reconfiguration and recovery to preserve yield
[9].

Moreover, wear-out mechanisms such as oxide breakdown,
electro-migration and mechanical/thermal stress become more
prominent in aggressively scaled technology nodes. These
breakdown mechanisms occur over time, therefore the method-
ology and the infrastructure used for production testing should
be designed for re-use during the system lifetime as well, thus
enabling graceful degradation of the NoC over time.

The detection and identification of failures is the foundation
of any reliability framework. Unfortunately, developing such
a testing infrastructure for a NoC is a serious challenge. The
controllability/observability of NoC links and sub-blocks is
relatively reduced, due to the fact that they are deeply embed-
ded and spread across the chip. Also, pin-count limitations
restrict the use of I/O pins dedicated for the test of the
different NoC components. A number of other concerns were
raised in [10] on the use of external testers for nanoscale chip
testing: lack of scalability of test data volumes, high cost for
full clock speed testing, poor suitability for the extension of
production testing to lifetime testing. As an effect, a migration
from external testers to built-in self-test (BIST) infrastructures
was envisioned in [10], and was later confirmed by the large
amount of works in the open literature targeting scalable BIST
architectures for NoC testing [2], [22], [17]. At the same time,
the limited fault coverage that functional and pseudo-random
testing can achieve on the control path of NoC switches when
test generators are outside the switch has further pushed the
adoption of BIST units at least for such control blocks [8].

In this direction, this paper relies on a full BIST strategy
for NoC testing. A key principle of our approach consists
of exploiting the inherent structural redundancy provided by
NoCs. Each switch is comprised of input ports, output ports,
arbiters and FIFOs that are duplicated for each channel. This
feature is used to develop a very effective test strategy which
consists of testing multiple identical blocks in parallel and
of cutting down on the number of test pattern generators.

This is done both at the abstraction level of the switch micro-
architecture (e.g., testing of the output port arbiters in parallel)
and of the NoC architecture (i.e., testing of all NoC switches
in parallel). The inherent parallelism of our BIST procedure
makes our testing infrastructure highly scalable and best suited
for large network sizes.

Four main features differentiate our testing framework from
most previous work. First, we take on the challenge of
generating deterministic test vectors on-chip at a limited area
overhead. At the same time, this enables us to report much
shorter test application times than typical pseudo-random
testing frameworks and larger fault coverage in the control path
than most functional testing frameworks for NoCs. Second,
we account for the tedious problem of faults affecting test
pattern generators (TPGs) and provide large coverage for
them. This is done without implementing more hardware
redundancy but fully exploiting the existing one by means
of a cooperative testing framework among switches. Third,
our testing framework targets double and triple stuck-at faults
from the ground up, and not as an afterthought, in addition
to an almost 100% coverage of single stuck-at faults. Fourth,
our framework is not limited to regular 2D meshes, but can
be applied to a much wider range of network topologies.

Our BIST procedure is suitable both for production and
for lifetime testing, and is complemented by a built-in self-
diagnosis logic distributed throughout the network architecture
able to pinpoint the location of detected faults in each switch.
This diagnosis outcome matches the reconfigurability require-
ments of logic-based distributed routing and is therefore the
stepping stone into a novel network reconfiguration strategy
that will be developed in future work.

II. PREVIOUS WORK

Considering the regular and modular structure of on-chip
networks, test strategies previously proposed for systems with
identical cores [14], [23] can be applied to the NoC. However,
both approaches incur a significant overhead for DfT structures
(full-scan and IEEE 1500 wrapped cores with registered I/O
pins).

It is showed in [13] that traditional full-scan and boundary
scan strategies like [18], [21], [15], [17] incur an hardly
affordable area overhead. [13] also proposes a partial scan
technique in combination with an IEEE 1500-compliant test
wrapper. Area overhead is greatly reduced, but test application
times amount to tens of thousands of clock cycles and test
pattern generation time does not scale.

As opposed to using scan paths and wrappers for test access,
[4] considers the case where test patterns are applied at the
border I/Os of the network. The method was then extended in
[5] to support fault diagnosis, while the DfT infrastructure was
developed in [8]. While very high fault coverage was achieved,
the time complexity of the test configurations is square with
respect to the rank of the NoC matrix. Moreover, in order to
apply test patterns from network boundaries at-speed, a large
number of test pins are necessary.

In [19], it is proposed to add dedicated logic to enable
analysis of response from each FIFO in the switch, however
no test data is presented. In [16] the possibility to repair the
NoC during testing is envisioned, however error information is978-3-9810801-7-9/DATE11/ c©2011 EDAA
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Fig. 1. Modular structure of the baseline switch architec-
ture. Not all connections are showed.

computed once for all and thus cannot handle situations where
the chip slowly degrades.

[20] proposes a built-in self-test and self-diagnosis architec-
ture to detect and locate faults in the FIFOs and in the MUXes
of the switches. Unfortunately, the control path is left out of
the framework.

In [2] an automatic go/no-go BIST operation is proposed at
start up of a 2D mesh NoC. Low fault coverage is achieved
for the switch controller, moreover the methodology applies
only to a 2D mesh. That idea is evolved in [12], where a fault
coverage close to 100% is documented with a few thousand
clock cycles. However, the area cost of the BIST architecture
is the main concern of this work.

The pattern based testing section from the more general
reliability framework presented in [9] reports a testing method-
ology relying on random test pattern generation and signature
analysis. Unfortunately, testing takes as large as 200000 cycles
with 10000 patterns per test.

With respect to previous work, we claim a more efficient
use of NoC structural redundancy for testing and diagnosis
purposes through the use of a cooperative testing framework.
With respect to scan-based approaches, we reduce area over-
head while at the same time detecting TPG faults. With respect
to functional testing solutions, we provide efficient testing of
the control path as well and provide better test time scalability.
With respect to pseudo-random testing, we cut down on the
test application time. We also take on the challenge pointed
by [2] of exploiting architecture behavior knowledge to come
up with a set of customized test patterns for NoC components.

III. TARGET ARCHITECTURE

Without lack of generality, we use the xpipesLite switch
architecture [1] to prove viability of our testing methodology
in a realistic NoC setting. The baseline switch architecture
is illustrated in Fig.1. It implements both input and output
buffering and relies on wormhole switching. The crossing
latency is 1 cycle in the link and 1 cycle in the switch itself.
Flit width assumed in this paper is 32 bits, but can be easily
varied. Without lack of generality, in this paper the size of the
output buffers is 6 flits, while it is 2 flits for the input buffers.

This switch relies on a stall/go flow control protocol. It re-
quires two control wires: one going forward and flagging data
availability (”valid”) and one going backward and signaling
either a condition of buffer filled (”stall”) or of buffer free
(”go”).

The switch architecture is extremely modular and exposes
a large structural redundancy, i.e., a port-arbiter, a crossbar
multiplexer and an output buffer are instantiated for each
output port, while a routing module is cascaded to the buffer
stage of each input port. This common feature to all switch
architectures will be intensively exploited in this work.

We implement distributed routing by means of a route
selection logic located at each input port. Forwarding tables are
usually adopted for this purpose, although they feature poor
area and delay scalability with network size [24]. The pos-
sibility to implement logic-based distributed routing (LBDR)
while retaining the flexibility of forwarding tables has been
recently demonstrated in [26]. In practice, LBDR consists of
a selection logic of the target switch output port relying on
a few switch-specific configuration bits (namely routing Rxy ,
connectivity Cz and deroute bits drt). The number of these

bits (14 in this case) is orders of magnitude less than the
size of a forwarding table, yet makes the routing mechanism
reconfigurable.

The core of LBDR logic is illustrated in Fig.2(a), illustrating
the conditions that select the output port north UN ′ for
routing. The pre-processed direction of packet destination
N ′/S′/W ′/E′ is an input together with the routing and the
connectivity bits. In some cases (see [26] for details), deroutes
are needed to properly route packets, and the associated logic
is reported in Fig.2(b).

LBDR supports the most widely used algorithms for irreg-
ular topologies and can be used on a 2D mesh as well as on
roughly 60% of the irregular topologies derived from a 2D
mesh, like in Fig.2(c). Its extension to fully irregular topolo-
gies with 12 more bits per switch is an ongoing work [25].
Irregularity of the connectivity pattern can be an effect of man-
ufacturing or wearout faults, but also of power management or
thermal control decisions or of virtualization strategies. Switch
configuration bits need to be updated whenever the topology
evolves from one connectivity pattern to another (e.g., when
a fault is detected).

Our testing and diagnosis framework has been conceived to
enable a network reconfiguration strategy leveraging the cost-
effective flexibility offered by the LBDR routing mechanism.
An algorithm is reported in [26] for computation of the switch
configuration bits given the topology connectivity pattern.
As an example, updated connectivity bits are illustrated in
Fig.2(c). This algorithm might be executed by a centralized
NoC manager and in practice needs the list of failed links
to recompute the configuration bits for correct routing with
the available communication resources. Failure of a switch
input or output port can be viewed as the failure of the
connected link. Our diagnosis strategy will therefore target this
requirement and will provide an indication of whether input
and output ports of a switch are operational.

IV. BUILT-IN SELF-TEST/DIAGNOSIS FRAMEWORK

The key idea of our BIST/BISD framework consists of
exploiting the inherent structural redundancy of an on-chip
network. We opt for testing the NoC switches in parallel,
thus making test application time independent of network size.
Communication channels between switches are tested as a part
of the switch testing framework.

Each switch can in turn test its manyfold internal in-
stances of the same sub-blocks (crossbar muxes, commu-
nication channels, port arbiters, routing modules) concur-
rently. In fact, all the instances are assumed to be identical,
therefore they should output the same results if there is
no fault. As a consequence, the test responses from these
instances are fed to a comparator tree. This makes the succes-
sive diagnosis much easier. There is a unique test pattern
generator (TPG) for all the instances of the same block, thus
cutting down on the number of TPGs. Although the principle
is similar to what has been proposed in [14], [22], [13], there
is a fundamental difference. If the TPG of a set of block
instances is affected by a fault, then the comparison logic will
not be able to capture this since all instances provide the same
wrong response. To avoid this, a cooperative framework is
devised, such that each switch tests the block instances of
its neighboring switches.

As an example, a switch tests the incoming communication
channels from its north/south/west/east neighbors (i.e., it feeds
their test responses to its local comparator tree), thus checking
the responses to distinct instances of the same TPG. This
way, a non-null coverage of TPG faults becomes feasible.
Fig.3(a) clearly illustrates the cooperative testing framework
for communication channels and the need for a single TPG
instance per switch to feed test patterns to all of its output
ports. Faults in the TPG, in the output buffer, in the link and
in the input buffer will be revealed in the downstream switch.
Each switch ends up testing its input links, while its output
links will be tested by their respective downstream switches.

The same principle can be applied for the testing of switch
internal block instances associated with each output port:
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(c) Connectivity bit setting because of failed
links.

Fig. 2. LBDR logic and requirements on the diagnosis outcome.

OUT

CHANNEL

COMPARATOR
TPG

TPG

TPG

TPG

LINK

BUF
IN

BUF

(a) Testing communication channels.

ARBITER
COMPARATOR

ARBITER
TPG

TPG

TPG

TPG

ARBITER

EAST

ARBITERSOUTH

NORTH ARBITER

WEST

(b) Testing output port arbiters.

COMPARATOR

LBDR
TPG

TPG

TPG

TPG

L
B
D
R

L
B
D
R

L B D R

L B D R

(c) Testing LBDR routing logic.

Fig. 3. The cooperative and concurrent testing framework saving TPG instances and covering their faults.

crossbar muxes and output port arbiters. Fig.3(b) shows the
case of port arbiters. The main requirement for testing these
instances is that the communication channels bringing test
responses to the comparators in the downstream switches are
working correctly. Clearly, testing these modules can only oc-
cur after communication channels have been tested. Therefore,
the procedures in Fig.3(a) and Fig.3(b) occur sequentially in
time. Should one communication channel result defective, this
would not be a problem, since it would not make any sense to
test and use a port arbiter when the corresponding port is not
operational. Crossbar multiplexers associated with each output
port are tested in the same way and are hereafter not illustrated
in Fig.3 for lack of space.

Finally, the methodology can be extended to test block
instances associated with each switch input port with some
modifications. This is the case of the LBDR routing block.
The key idea to preserve the benefits of cooperative and
concurrent testing is to carry test patterns rather than test
responses over the communication channels to neighboring
switches, where the LBDR instances are stimulated and their
responses compared (see Fig.3(c)). If the channel is not
working properly, than testing and use of the downstream
routing block is useless, since it is associated with an input
port which will not be used.

A BIST engine is embedded into each switch and regulates
the testing procedure. This latter is in fact split into four phases
in time:
- testing of communication channels
- testing of the crossbar
- testing of the arbiters
- testing of the LBDR routing blocks
The serial execution of test phases for the switch internal
components is dictated primarily by the limited flit width,
constraining the amount of test patterns that can be transmitted

at the same time over the communication channel, and also
by the limited availability of comparators, although in our
case the former effect comes into play first. As the flit width
increases, then we can perform more testing operations in
parallel, starting from those components that have a limited
amount of primary input/outputs (e.g., the arbiter with the
LBDR).

A fundamental difference with respect to a lot of previous
work is that we do not rely on pseudo-random testing (like
in [9]), which gives rise to large testing times. We use
deterministic test patterns instead, which are handcrafted for
the specific block under test by exploiting knowledge of the
architecture behavior. This way, the reduced number of test
patterns enables the serialization of test phases without making
test application time skyrocket (see section V-A).

On a cycle by cycle basis, comparator outputs are fed to
a diagnosis logic which identifies where exactly the fault
occurred. In our diagnosis framework, each switch checks
whether test responses from its input ports are correct or not.
As a consequence, the outcome of the diagnosis is coded in
only 5 bits, one for each input port of the current switch (they
would be of course doubled if a two-rail code is implemented
to protect them against stuck-at faults). A ’1’ indicates that
the port is faulty. In practice, the fault may be located either
in the input buffer or in the LBDR module, in the connected
communication link or even in the output buffer and associated
port arbiter and crossbar multiplexer of the upstream switch.
This further level of detail is not needed, since in any case the
meaning is that the link is unusable, and this is enough for a
global controller to recompute the reconfiguration bits for the
LBDR mechanism.

In the final implementation, other 5 bits will be needed to
code the diagnosis outcome because of practical implementa-
tion issues, as discussed in section IV-A.
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Common to most current NoC testing frameworks, the
underlying assumption for correct operation of our BIST/BISD
infrastructure is that the reset signal can be synchronously
deasserted in all switches of the network at the same time.

A. Testing communication channels
Communication channels include input/output buffers and

their intermediate links, as illustrated in Fig.4: all these ele-
ments are jointly tested by means of a single TPG and the test
patterns are handcrafted for them based on knowledge of their
behavior.

Our approach in this direction was to expand the finite state
machine (FSM) of the device under test (DUT) into all its
possible states. Therefore, we have defined a sequential test
pattern that drives the FSM to each of its states. In this way,
we can ensure that if the FSM reaches the expected state for
all the test patterns there are no faults inside the DUT. As
an example, the FSM of the buffers defines that if the Stall
signal is asserted and the buffer receives a set of valid flits,
the buffer has to store the flits that it receives until it becomes
full. One test pattern to check this behavior would fill up the
buffer by asserting the Stall signal, and would in the end check
whether the output buffer correctly asserts the Full signal. The
datapath is obviously much easier to test by means of only few
test patterns.

From an implementation viewpoint, there are several prac-
tical issues. On one hand, we had to make the stall input of
the output buffer directly controllable to the TPG to raise its
stuck-at fault coverage to almost 100% (see Fig.4).

On the other hand, the stall channel signal of the input
buffer, which lies in the downstream switch, should be driven
by the TPG as well. This would require an additional wire
in the switch-to-switch link. A similar concern is that the
stall out signal from the output buffer should be brought to
the comparators in the downstream switch, again requiring an
additional wire in the link.

To avoid the extra wires, we opted for the solution in
Fig.4: stall channel is driven by the TPG of the downstream
switch, while stall out is brought to the comparator tree in the
upstream switch. From the testing viewpoint nothing changes,
since all channel TPGs inject the same patterns synchronously,
and so do the comparators. The only difference lies in the fault
coverage of TPG faults, which is likely to be decreased a bit. In
fact, those (upstream) TPG faults that can be detected by only
monitoring stall out will not be detected, since all the stall out
signals brought to the local comparators will be driven by the
same TPG. Similarly, some faults in the (downstream) TPG
will not be detected, since the comparators compare responses
to stall channel signals generated by the same faulty TPG:
the responses will look like the same. These implementation
variants, needed to adapt the conceptual testing scheme to
the constraints of the real implementation, will be proven in
section V-A to only marginally decrease fault coverage of the
TPGs, while leaving fault coverage for the communication
channel obviously unaffected.

The only major implication is that the fault detection frame-
work becomes even more collaborative: some (very few) faults
in the channel and/or TPGs are now detected in the upstream
switch comparators instead of the downstream ones. Therefore,
other 5 additional diagnosis bits are needed, flagging a fault in
the output port of a switch. The global controller will combine
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Fig. 5. TPG for communication channels.

this (OR operation) with the faults detected at the input port
of the downstream switch to get the complete indication of a
fault across the entire channel.

B. TPG for communication channels
A test pattern can be easily generated in hardware by using

a clock cycle counter and some logic to generate the values of
the input signals for the DUT. In order to extend this approach
to a TPG able to generate all the test patterns for a given
DUT, we can include an additional counter. This latter will
indicate the current test pattern within the test sequence. Figure
5 depicts the resulting conceptual scheme for the channel
TPG. The actual gate-level implementation depends on the
logic synthesis tool and on the synthesis constraints. The two
counters act as a FSM driving the control signals of two
levels of multiplexing: the first one selects the current test
pattern, while the second one selects the current clock cycle
and associated input vector for the buffer.

It is however possible to easily compact the combinational
logic, because there are a lot of test patterns that include other
test patterns. For instance, by checking the response not only
at the end of the test pattern, but also somewhere in the middle,
it is often possible to detect another fault. This perfectly
matches with the capability of our BIST framework, which
even performs check response at each clock cycle. Therefore,
it is possible in our implementation to perform a compaction
of test patterns by generating in hardware only those patterns
including a subset of the other ones, thus largely saving test
time and TPG area.

C. Testing Other Internal Switch Modules
A similar process is followed to generate deterministic test

patterns for the port arbiters, the LBDR modules and the
crossbar. Also the implementation of their TPGs is identical,
and so are the optimization techniques.

Again, the most relevant practical implementation issue
concerns the communication of test patterns or responses
across the switch-to-switch links for the crossbar and LBDR
module. The crossbar outputs 34 bits in response to a test
vector: 32 data bits, 1 valid bit and 1 stall bit. The commu-
nication channel can only carry 32 bits (the valid bit of the
channel needs to be permanently set to 1 during test vector
transmission, while the stall signal travels in the opposite
direction). The two remaining crossbar signals (valid and
stall) which do not fit into the link can be either transmitted
by means of additional lines used only during testing, or
alternatively checked by local comparators, similarly to what
has been done for the communication channel. We took the
latter approach, and the results in section V-A again confirm
the marginal coverage reduction on TPG faults. Fault coverage
of the crossbar is not affected at all by this choice.

Unlike other modules, test vectors for the LBDR modules
should be transmitted across the link, and they take 31 lines
(the primary inputs of the LBDR module). So, they perfectly
match with the current flit width, provided the number of
network destinations does not exceed 64. From there on,
the test vector width starts growing logarithmically with the
number of destinations, and additional lines may be required
on the link.



In contrast, the use of a larger flit width in the network (e.g.,
64 bits) would automatically solve the problem. In that case,
the test patterns of the LBDR block and the test responses
of the arbiter could even be communicated at the same time
over the link. Also, since LBDR module and arbiters have
only few outputs, their response checking could be performed
at the same time on the available tree of comparators, thus
cutting down on the test application time (see section V-A).

D. Fault detection and diagnosis

The core of the diagnosis unit is given by comparators
which can be implemented in two different ways, by:
- using a level of XORs and an OR gate to provide a single
output encoding of the equality test;
- using a two-rail checker TRC (with the second word which
is negated);
We opted for the TRC approach, which achieves the self-
testing and fault-secure properties [27] although leading to a
more complex circuit.

In the diagnosis unit we use 10 different comparators to
compare data from all the possible pairs of switch input ports.
A smaller number of comparators could be used. Unless time
multiplexing is exploited, this would trade cost for diagnosis
capability. The maximum number of usable comparators also
depends on the number of switch I/O ports. In what follows,
we will focus on the internal switches of a 2D mesh for the
sake of simplicity (featuring 5 I/O ports, including the local
connection to the network interface), however all irregular
topologies supported by LBDR and making use of switches
with at least 3 I/O ports are suitable for our methodology.
Obviously, the lower the number of ports, the lower the
diagnosis capability.

If we denote two faults in different ports under comparison
as equivalent if they produce the same output sequence in
response to the same input stimuli, then our comparator and
diagnosis logic is able to:
- diagnose the correct position of 1 or 2 faulty channels
affected by equivalent or non-equivalent faults;
- diagnose the correct position of 3 faulty channels affected
by non-equivalent faults; 1

- detect the presence of 4 and 5 faulty channels. Anyway, since
a 5x5 switch affected by 4 or 5 faults has to be discarded, we
don’t distinguish between these two scenarios.

One might argue that when a communication channel fails,
then the following testing phases have less inputs available and
diagnosis capability reduces. In practice, this effect plays only
a minor role, since a fault on a communication channel means
that also (say) the arbiter of that channel should be considered
faulty (unusable). So, the diagnosis capability reduces, but also
the number of input ports to be checked reduces as well.

When a switch features only three I/O ports, then the detec-
tion and diagnosis capabilities change as follows. Single stuck-
at faults can be diagnosed while double faults can be detected,
provided they are not equivalent. If they are equivalent, then
diagnosis fails. However, when two faults are detected in two
ports out of three, the switch should be discarded anyway.

As regards the possible presence of faulty comparators, let
us first note that any input vector producing less than four
ones corresponds to faults in less than four comparators (we
are neglecting the case where all 5 channels are faulty and
4 of them have equivalent faults, which is very unlikely). In
case the number of faulty comparators is larger than 3, some
configuration exists which may produce a wrong diagnosis.
Let us note, however, that it is sufficient to have a single
test vector (not a test sequence) featuring less than four ones
to immediately recognize the presence of faulty comparators
because no combination of faulty channels may produce such
response.

1The probability that more than two faulty channels produce the
same output sequence in response to the same input stimuli is here
neglected.
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Fig. 7. Area overhead for BIST implementation as a
function of target speed.

E. BIST-enhanced switch architecture
The switch architecture enriched with the BIST infrastruc-

ture is illustrated in Fig.6. Only one section is reported. The
figure is necessarily at a high abstraction level, and signal-
level connection details previously illustrated in sections IV-A
and IV-C are purposely omitted.

A test wrapper consisting of multiplexers can be clearly
seen, which enables test pattern injection of TPGs in the
modules they test. At the output of the input buffer, test
patterns are directly fed to the LBDR module, since they
are carried by the communication channel as normal network
traffic. A multiplexer in front of each output buffer selects
between the switch datapath, the test patterns from the LBDR
TPG (feeding the LBDR module of the downstream switch),
the channel TPG (directly feeding the channel) and the arbiter
test responses (checked in the downstream switch). A BIST
engine drives the 4 phases of the testing procedure by acting
upon the control signals of the test wrapper.

During the first three phases (communication channel, cross-
bar, arbiter testing), outputs of the input buffers are selected
to feed the comparator tree, while in the last phase (LBDR
testing), all LBDR outputs are selected. Test response check
and diagnosis are performed at each clock cycle, and result
in the setting of 10 bits, indicating whether each input/output
port is faulty or not.

V. EXPERIMENTAL RESULTS

We performed placement-aware logic synthesis and
place&route of a 5x5 switch on an industrial 65nm tech-
nology library. The baseline switch architecture of Fig.1 is
compared with its BIST-enhanced counterpart. Synthesizing
for maximum performance gives approximately the same
maximum (post-layout) operating speed of 700 MHz for both
architectures, thus proving that our BIST-enabled switch is
capable of at-speed testing.

Fig.7 shows the area overhead for BIST implementation as
a function of the target speed. Area overhead is 11%, which
peaks at 21% when maximum performance is required. In this
latter case, the multiplexers on the critical path are primary
targets for delay optimization in exchange for more area.
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Fig. 8. Coverage of TPG faults.

Switch sub-block Test patterns Test vectors Coverage
Comm. channel 58 464 99.4%

Arbiter 82 328 97.1%
Crossbar 72 72 99.8%
LBDR 240 240 98.7%

TABLE I

Coverage for single stuck-at faults.

When considering the BIST infrastructure in isolation (at
700 MHz) most of the overhead comes from the on-chip gen-
eration of test patterns (almost 31%) and from the multiplexers
(44%) of the test wrapper. Interestingly, although arbiters
and LBDR require less test vectors than the communication
channel, their TPGs are far more complex due to higher
irregularity of their test patterns.

A. Fault Coverage
Tab.1 reports the total number of deterministic test patterns

(and test vectors) generated for each tested module, and the
associated coverage. This latter was derived by means of an
in-house made gate-level fault simulation framework: (one or
more) faults are applied to any or selected gate inputs, then
our testing procedure is run on the affected netlist and the
diagnosis outcome is compared with the expected one.

It can be seen that in all cases the coverage for single
stuck-at faults closely tracks 100%. The number of test vectors
provides the test application time (in clock cycles). A network
with a flit width of 32 bits, as assumed so far, would therefore
take 1104 clock cycles for testing, regardless of the network
size. If we assume 64 bit flits, then LBDR testing occurs in
parallel with arbiter testing and total test time reduces to 864
cycles.

These numbers compare favorably with previous work, as
Tab.2 shows. Only [20] and [8] in some cases do better.
However, [20] does not test the control path while [8] reports
320 cycles for a 3x3 mesh (made of a simplified switch
architecture) which however grow linearly with network size.
Also, this latter approach makes additional use of BIST logic
for the control path not accounted for in the statistics.

We feel that area overhead is hardly comparable with
previous work since whenever numbers are available, features
of the testing frameworks are very different (e.g., control path
not tested [20], test patterns generated externally [21], [13],
diagnosis missing [21], [12], [13], [22], lack of similar test
time scalability [4], [8], NoC architecture with overly costly
links [12]). Moreover, the impact of synthesis constraints is
never discussed.

Test Cycle Coverage
Our 864 - 1104 99.3%
[20] 3.88 x 102 - 2.89 x 103 97.79%
[21] 4.05 x 105 95.20%
[12] 2.74 x 103 99.89%
[13] 9.45 x 103 - 3.33 x 104 98.93%
[22] 5 x 104 - 1.24 x 108 N.A.
[8] 320 99.33%
[9] 200 x 103 full (no exact numbers)

TABLE II

Test application time and coverage of different testing
methods.

Multiplicity of Fault Injection 2 3 4 5
Coverage 99.2% 96.4% 96.6% 96.6%

TABLE III

Coverage for multiple random stuck-at faults.

Fig.8 reports the coverage of TPG faults. While single stuck-
at faults in the allocator and channel TPGs feature a coverage
of roughly 95%, worse results are obtained for the LBDR
and especially for the crossbar TPGs. We verified that their
lower coverage is a direct consequence of the low number
of test patterns they generate. The designer can then choose
whether increasing crossbar TPG area and having it generate
more patterns or dedicating a separate test phase to TPGs.
Also, when comparing real vs ideal coverage of channel and
crossbar TPGs, it is possible to assess the marginal reduction
of TPG fault coverage as an effect of the local (instead of
remote) check of some signals of these modules in the switch
they belong to (see section IV-A and IV-C).

Since our BIST infrastructure targets multiple stuck-at faults
from the ground up, we characterized fault coverage for
multiple faults as well. We have injected multiple faults
randomly in the gate-level netlist of the switch and checked
the diagnosis response. Fault multiplicity was 2,3, 4 and 5
and fault injections for a given multiplicity were repeated
1000 times, as in [9]. As Tab.3 shows, the proposed BIST
framework provides a higher than 96% coverage in every
scenario. Interestingly, the coverage saturates with 4 and 5
faults since the probability to inject errors in a module already
affected by an error becomes high.

VI. CONCLUSIONS

This work develops a scalable built-in self-test and self-
diagnosis infrastructure for NoCs taking full advantage of
their structural redundancy through a cooperative testing and
diagnosis framework. Table-less logic based distributed rout-
ing is the foundation of our approach, and enables network
reconfiguration with only 10 diagnosis bits per switch. We
prove the achievement of standard fault coverage targets at an
affordable area overhead. However, we do more than that: we
quantify coverage for multiple faults and aim at the coverage
of faults affecting TPGs as well. This latter is a key step
forward to make the move from scan-based approaches to
scalable BIST approaches viable.

ACKNOWLEDGEMENTS

This work has been partially supported by the NANOC
European Project (FP7-ICT-248972).

REFERENCES
[1] S.Stergiou et al., ”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”, DAC, pp.559-564,

2005.
[2] K.Petersen, J.Oberg, ”Utilizing NoC Switches as BIST-Structures in 2D Mesh Network-on-Chip”, Future

Interconnects and Network on Chip Workshop, 2006.
[3] D.Wentzlaff et al., ”On-Chip Interconnection Architecture of the Tile Processor”, IEEE Micro, vol.27, no.5, pp.15-31,

2007.
[4] J.Raik, V.Govind, R.Ubar, ”An External Test Approach for Network-on-a-Chip Switches”, Proc. of the IEEE Asian

Test Symposium 2006, pp.437-442, Nov. 2006.
[5] J.Raik, V.Govind, R.Ubar, ”Test Configurations for Diagnosing Faulty Links in NoC Switches”, Proc. ETS, 2007.
[6] M. Mishra and S. Goldstein, ”Defect tolerance at the end of the roadmap”, in ITC, pages 1201-1211, 2003.
[7] D. A. IIitzky, J. D. Hoffman, A. Chun and B. P. Esparza, ”Architecture of the Scalable Communications Core’s

Network on Chip”, IEEE MICRO, 2007, pp. 62-74.
[8] J.Raik, V.Govind, R.Ubar, ”DfT-based External Test and Diagnosis of Mesh-like NoCs”, IET Computers and Digital

Techniques, October 2009.
[9] V.Bertacco, D.Fick, A.DeOrio, J.Hu, D.Blaauw, D.Sylvester, ”VICIS: A Reliable Network for Unreliable Silicon”,

DAC 2009, pp.812-817.
[10] Y.Zorian, ”Testing the monster chip”, IEEE Spectrum, pp.54-60,1999.
[11] Y.Zorian, ”Embedded Memory Test and Repair: Infrastructure IP for SoC Yield.”, International Test Conference,

pp.340-349,2002.
[12] K.Peterson, J.Oberg, ”Toward a Scalable Test Methodology for 2D-mesh Network-on-Chip”, DATE 2007, pp.75-80,

2007.
[13] A.M. Amory, E.Briao, E.Cota, M.Lubaszewski, F.G.Moraes, ”A Scalable Test Strategy for Network-on-Chip Routers”,

Proc. of ITC 2005.
[14] K.Arabi, ”Logic BIST and Scan Test Techniques for Multiple Identical Blocks”, IEEE VLSI Test Symnposium,

pp.60-68, 2002.
[15] C.Grecu, P.Pande, B.Wang, A.Ivanov, R.Saleh, ”Methodologies and Algorithms for Testing Switch-Based NoC

Interconnects”, IEEE DFT 2005, pp.238-246, 2005.
[16] B.Vermeulen, J.Delissen, K.Goossens, ”Bringing Communication Networks on a Chip: Test and Verification

Implications”, IEEE Communications Magazine, vol.41-9, pp.74-81, 2003.
[17] R.Ubar, J.Raik, ”Testing Strategies for Network on Chip”, in Book: ”Network on Chip”, edited by A.Jantsch and

H.Tenhunen, Kluwer Academic Publisher, pp.131-152, 2003.
[18] C.Aktouf, ”A Complete Strategy for Testing an on-Chip Multiprocessor Architecture”, IEEE Design and Test of

Computers, vol.19-1, pp.18-28, 2002.
[19] Panda et al., ”Design, Synthesis and Test of Networks on Chips”, IEEE Design and Test of Computers, vol.22,

issue 8, pp.404-413, 2005.
[20] S.Y.Lin, C.C.Hsu, A.Y.Wu, ”A Scalable Built-In Self-Test/Self-Diagnosis Architecture for 2D-mesh Based Chip

Multiprocessor Systems”, IEEE Int. Symp. on Circuits and Systems, pp.2317 - 2320, 2009
[21] M.Hosseinabady, A.Banaiyan, M.N.Bojnordi, Z.Navabi, ”A Concurrent Testing Method for NoC Switches”, DATE,

pp.1171 - 1176, 2006
[22] C.Grecu, P.Pande, A.Ivanov, R.Saleh, ”BIST for Network-on-Chip Interconnect Infrastructures”, VLSI Test

Symposium, page 6, 2006.
[23] Wu, Y. and MacDonald, P., ”Testing ASICs with Multiple Identical Cores”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 22-3, 2003, pp. 327-336.
[24] S.Rodrigo, S.Medardoni, J.Flich, D.Bertozzi, J.Duato, ”Efficient Implementation of Distributed Routing Algorithms

for NoCs”, IET-CDT, pp.460-475, vol.3, issue 5, 2009.
[25] Submitted paper under review
[26] S.Rodrigo, J.Flich, A.Roca, S.Medardoni, D.Bertozzi, J.Camacho, F.Silla, J.Duato, ”Addressing Manufacturing

Challenges with Cost-Effective Fault Tolerant Routing”, NOCS 2010, pp.35-32, 2010.
[27] P.K. Lala, ”Self-checking and fault tolerant Digital Design”, MK Publishers 2001.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


