
T.S. Dillon et al. (Eds.): Advances in Web Semantics I, LNCS 4891, pp. 130–175, 2008.
© IFIP International Federation for Information Processing 2008

Extraction Process Specification for Materialized
Ontology Views

Carlo Wouters1, Tharam S. Dillon2, Wenny Rahayu1, Robert Meersman3,
and Elizabeth Chang2

1 Department of Computer Science and Computer Engineering
La Trobe University, Bundoora, Victoria 3086, Australia

{cewouter,wenny}@cs.latrobe.edu.au
2 Digital Ecosystems and Business Intelligence Institute,

Curtin University of Technology,
Perth, Australia

tharam.dillon@cbs.curtin.edu.au,
elizabeth.chang@cbs.curtin.edu.au

3 STARLab, Department of Computer Science
Vrije Universiteit Brussel, Brussel, 1050, Belgium

Robert.Meersman@vub.ac.be

Abstract. The success of the semantic web relies heavily on ontologies. How-
ever, using ontologies for this specific area poses a number of new problems.
One of these problems, extracting a high quality ontology from a given base on-
tology, is currently receiving increasing attention. Areas such as versioning, dis-
tribution and maintenance of ontologies often involve this problem. Here, a
formalism is presented that enables grouping ontology extraction requirements
into different categories, called optimization schemes. These optimization
schemes provide a way to introduce quality in the extraction process. An over-
view of the formalism is discussed, as well as a demonstration of several exam-
ple optimization schemes. Each of these optimization schemes meets a certain
requirement, and consists of rules and algorithms. Examples of how the formal-
ism is deployed to reach a high-quality result, called a materialized ontology
view, are covered. The presented methodology provides a foundation for further
developments, and shows the possibility of obtaining usable ontologies in a
highly automated way.

ACM Subject Descriptors (’98): H.3.5 [INFORMATION STORAGE AND
RETRIEVAL]: Web-based services; I.1.2 [SYMBOLIC AND ALGEBRAIC
MANIPULATION]: Algorithms; I.2.4[ARTIFICIAL INTELLIGENCE]: Se-
mantic networks --- Representation languages.

Additional Keywords: Ontology Extraction.

1 Motivation

In recent years, the unstructured storage of data, especially on the World Wide Web,
and the difficulties experienced with retrieving relevant data with the existing search

 Extraction Process Specification for Materialized Ontology Views 131

engines, have triggered new research aimed at ameliorating information retrieval and
storage. New ways of storing information meant for the Internet were developed, such
as XML [W3C 1999], HTMLa [Fensel, Decker et al. 1998], DTD and RDF. These lan-
guages provide a tool to store the information in a structured way, but with that another
problem arose; everyone was free to develop there own taxonomy of how they want to
categorize their information, e.g. [Heflin, Hendler et al. 1999; Van Harmelen and Fensel
1999]. It is clear that widely accepted standards should be used as metadata to define
how the actual information is split up, no matter what language or syntax is used to im-
plement this. These widespread standards are formulated as ontologies.

The first wave of ontology applications and researchers mainly concentrated on get-
ting an effective system up, solving the apparent issues that had been holding back
knowledge acquisition from the Internet and related resources. A number of these have
turned out to be beneficial, without any of them clearly standing out, and no single stan-
dard has been agreed upon [Hovy 1998]. Since then we have seen merging of some of
the standards – e.g. OIL incorporating elements of OKBC, XOL and RDF [Fensel, Hor-
rocks et al. 2000], Ontolingua using KIF [Genesereth 1991; Genesereth and Fikes 1992;
Gruber 1992], DAML and OIL into DAML-OIL [Berners-Lee and Al 2001] (currently
being reworked into OWL [W3C 2002c]) – and diversification of others.

Now that the first generation of ontology applications has settled in, more compli-
cated issues and considerations have reared their heads, such as the quality of ontolo-
gies in all its facets [Colomb and Weber 1998; Hahn and Schnattinger 1998; Kaplan
2001; Guarino and Welty 2002; Holsapple and Joshi 2002; Wouters, Dillon et al.
2002b]. Improvements need to be made to the systems that are already in place, and
theoretical and practical modifications have to be made to cater for versioning, main-
tenance and distribution of ontologies [Klein, Fensel et al. 2002]. Furthermore, a fur-
ther integration of different existing systems is needed [McGuinness, Fikes et al. 200;
Noy, Sintek et al. 2001].

The ontologies used also tend to grow larger, to a point where ideally the entire
world is modeled in one super-ontology (through the use of upper ontologies [Lenat
1995]), providing great compatibility and consistency across all sub-domains, but
practically it introduces the new problem of being too vast to be used in its entirety by
any application. Considering the internet as a data repository, it seems clear that users
with a very slow or costly connection to this repository might opt to get a local, modi-
fied copy of the repository to base views upon, and to query in other ways. It seems
highly unlikely that someone will be able to copy the entire contents of the World
Wide Web to a local repository, and even more unlikely that all this data will be actu-
ally used in whatever application the user might intend it to be used for. If a business
just needs access to information on the share market, it would not benefit from all the
other information that their local copy would contain. This is just one of the many
reasons why a complete ontology might not be a valid structuring option for certain
users. Another reason can be found in varying levels of security and confidentiality –
not necessarily every user of an ontology has the same access rights, and using a
smaller ontology, merely containing the appropriate parts of the base ontology might
enable local copies. Efficiency of querying repositories might be another reason for
having a simplified, local version of an ontology, and there are many more.

It is imperative that when an ontology view is derived, the quality of the resulting
ontology is as high as possible. First of all, the intentions of the ontology engineer

132 C. Wouters et al.

should obviously be satisfied, and the resulting design should be a consistent, cohe-
sive, complete and well-formed ontology. Secondly, the result should be further
pruned, i.e. is the obtained solution one of the most efficient, flexible, simple, versa-
tile, etc. solutions (varying with the specific needs of the ontology engineer).

The resulting ontology should be usable as the base for an independent system, i.e.
be an ontology in its own right. This article aims to identify the processes involved in
this extraction. It is set up in such a way that the theoretical definitions and processes
can also be readily transformed and applied to other new research, such as versioning
and distribution of ontologies [Wouters, Dillon et al. 2002a]. While establishing the
details of the sub-processes used for the extraction, great care is taken to obtain a re-
sult that adheres to the quality assurance issues raised before. Finally, a brief outline
of future research will be given, eventually leading up to an integrated transformation
environment for ontologies, interfacing with existing international standards.

2 Defining the Ontology

Although different standards have emerged, and none of them has achieved the status
of the ultimate ontology definition, this does not pose a huge problem. The use of
wrappers, which can be used to extract data – and semantic information – from a cer-
tain type of ontology definition and implementation, and translate it to another, helps
with this. Another way in which wrappers can be used is in trying to transform the
normal natural language, textual information resources on the web to more structured
resources [Muslea 1999].

None of these approaches however, provides a consistent, reliable solution towards
the future. There is a clear need to steer towards a more solid foundation in terms of
theoretical definitions and international standards.

2.1 Overview of Ontology Definitions

A problem that occurs when doing any research in the field of ontologies is that no
single definition for an ontology exists that can be completely utilized in Information
Technology. Definitions have been modified, and diversified over the last couple of
years, but the problems remain; either a proposed definition is too general to have any
practical value [Gruber 1993; Fensel 2001], or the definition provides enough pre-
ciseness, but only suits a small number of models and systems in use today [Noy and
Hafner 1997]. In practical applications this sometimes is overcome by introducing
several ‘layers’ for ontologies, for example the ontological commitments in [Spyns,
Meersman et al. 2002]. It is not within the scope of this article to produce a final solu-
tion to this problem, but there is still the necessity for clarifying what definitions will
be used throughout this article. The initial definition will be extended as new defini-
tions are introduced, incorporating stricter requirements for an ontology.

The first definition clarifies what cardinalities are used. Please refer to Appendix A
for the multiplication table of these cardinalities.

Definition 1

The set of cardinalities card≡{0, 1, m} (1)

 Extraction Process Specification for Materialized Ontology Views 133

Definition 2

ϑ≡{The set of all ontologies} (2)

Definition 3. Let an ontology O be a six tuple (<C, A, attr, B, Ma, Mb>),consisting of
a non-empty, finite set of concepts C, a finite set of attributes A, a mapping attr, a set
of binary relationships B, an attribute cardinality mapping Ma, and a relationship map-
ping Mb, with attr the mapping of concepts onto elements of A, B the disjoint union of
the binary associative relationships Bs, the binary inheritance relationships Bi, and the
binary aggregate relationships Bagg.

O∈ϑ ⇔ O≡<C, A, attr, B, Ma, Mb >

with

C = finite ∧ C≠∅

A = finite

attr:CÆA

B⊆C×C ∧ B= Bs∪Bi∪Bagg

Ma:attrÆcard2

Mb:BÆcard4

(3)

Intuitively, ontologies conceptually represent a perceived world through concepts,
attributes and relationships. Concepts may represent the different higher-level com-
ponents of this world, and each component may have attributes. These attributes may
be derived from the characteristics of components of the world. Relationships may
also hold between these concepts.

For practical reasons, only binary relationships are considered here. Note that binary
relationships occur most frequently in current modeling. Unary models are not modeled,
since these are taken care of by forming subtypes. N-ary relationships are not consid-
ered as transformation of this type of relationship to binary relationships is possible. For
a more comprehensive treatment of arity of relationships see [Halpin 1995].

Some useful notations are given here to enhance readability throughout the rest of
the article.

Notation 1

Given an ontology O=<C, A, attr, B, Ma, Mb > and an attribute mapping
t=(c,a), with c∈C, a∈A

we denote

π1(t)=c,

π2(t)=a,

attr(c)={a∈A| ∃t∈attr :t=(c,a)}

(4)

134 C. Wouters et al.

Notation 2

Given an ontology O=<C, A, attr, B, Ma, Mb > and a binary relationship
b=(c1, c2), with c1, c2 ∈C

we denote

π1(b)=c1

π2(b)=c2

(5)

Notation 3

Given an ontology O=<C, A, attr, B, Ma, Mb > and

An attribute cardinality m=(n1, n2) for an attribute mapping t∈attr

with n1, n2 ∈ card, and t the attribute mapping for attribute a

we denote

m(t)=m(a)=(n1, n2)

mmin(t)= mmin(a)=n1

mmax(t)= mmax(a)=n2

(6)

Notation 4

Given an ontology O=<C, A, attr, B, Ma, Mb > and

a relationship cardinality m=(n1, n2, n3, n4) for a binary relationship b

with n1, n2, n3, n4 ∈ card

we denote

m(b)=(n1, n2, n3, n4)

mmin1(b)=n1

mmax1(b)=n2

mmin2(b)=n3

mmax2(b)=n4

(7)

Figure 1 gives an example of a UML diagram, and how this can be interpreted using
the notations defined above, is shown in Table 1.

Fig. 1. Example UML Diagram

 Extraction Process Specification for Materialized Ontology Views 135

Table 1. Mapping from UML Diagram to Defined Notation

Statement in UML Notation
Race is attribute Race ∈ A

Race has cardinality [0..1] m(race) = (0,1)
mmin(race) = 0
mmax(race) = 1

‘undertakes’ is relation-
ship

undertakes ∈ B

Brain and Action are the
connected concepts

undertakes = (Brain, Action)
π1(undertakes) = Brain

π2(undertakes) = Action
undertakes has cardinal-

ities 0..* and 0..*
m(undertakes) = (0, n, 0, n)

mmin1(undertakes) = 0
mmax1(undertakes) = 1
mmin2(undertakes) = 0
mmax2(undertakes) = 1

Obviously, the minimum cardinality for an attribute mapping should never be more
than the maximum cardinality, so an additional rule always applies:

Transformation Rule 1

Given an ontology O=<C, A, attr, B, Ma, Mb >

∀m∈ Ma:m min(t)≤ mmax(t), with t∈attr

∀m∈ Mb:m min1(t)≤ mmax1(t), with t∈attr

∀m∈ Mb:m min2(t)≤ mmax2(t), with t∈attr

(8)

Following [Spyns, Meersman et al. 2002] the ‘semantics’ of an ontology is the range
of interpretation mapping of an application environment onto an ontology. Note that
the semantics of the real world problem are replaced by an ontology. Some examples
of an application environment are RDBMS, software applications, documents, web-
site, etc. Whilst it is recognized that there are important differences between an ontol-
ogy, and a conceptual model, for the purpose of deriving sub-ontologies these are
immaterial. Frequently, a conceptual model can be considered to be an ontology ex-
pressed in a chosen syntax. However, this syntax should not impact the definitions
and theorems presented, so for the purpose of this paper this difference is irrelevant.

Throughout this paper UML [Rumbaugh, Jacobson et al. 1999] is sometimes used
to graphically represent an ontology, but it is not the intention to show the suitability
of UML for the modeling of ontologies. UML is merely a convenient modeling nota-
tion that for practical reasons was chosen to highlight aspects of ontologies. There
should be no confusion as to the difference of the ontology and the modeling notation
used to represent it, and by no means is it the intention of the authors to promote this
modeling notation to a higher status. UML is used to represent object oriented mod-
els, and as our definition of an ontology (section 2) has concepts (similar to classes),
attributes and relationships, it was found convenient to use this easy to read data
model to illustrate aspects of semantics of ontologies. One could, however, choose

136 C. Wouters et al.

any alternative notation such as semantic nets [Feng, Chang et al. 2002] to illustrate
the issues. This does not distract from the methodologies in this paper.

2.2 Concepts in Detail

What is referred to as ‘concept’ in the definition is a very broad ontological element. It
can be defined in a variety of ways, potentially providing a lot of additional information
about itself, and its relationships (and topological proximity) to other elements. Through
an inheritance structure concepts can be made specializations and generalizations of
other concepts. The conventions used for a ‘concept’ are exactly the same as what is
labeled a ‘class’ in OWL [W3C 2002c]. Instead of ‘definition’ of a concept, such decla-
rations of a concept are called ‘axioms’1. An example of an axiom defining a concept
(labeled ‘owl:class’) is given in Figure 2, where a “Wildcard” is axiomatically defined
as the result of Boolean operations on subsets of other classes.

Fig. 2. Example OWL statements in RDF for axioms2 [W3C 2002b]

Note in Figure 2 that a restriction results in a concept, which is here unnamed, as it
is only used as a mechanism to define another (labeled) concept.

2.3 Attributes and Relationships in Detail

Both Attributes and Relationships can be regarded as properties that belong to a con-
cept. In fact, in [W3C 2002a; W3C 2002b] the naming convention used is indeed
“Property” for both these terms. However, it is not uncommon to make a further

1 Note that throughout the rest of this article the term ‘axiom’ is used as specified in the OWL

definition W3C (2002c). OWL Web Ontology Language 1.0 Reference. W3C Working Draft.
However, readers with a background in A.I. and mathematics should be aware of the broader
meaning of this term here, otherwise it could lead to erroneous interpretation of the definitions
and theorems presented.

2 As the final syntax of OWL still has to be finalized, this example should be taken as an indi-
cation of a possible representation, rather than an exact OWL RDF file example.

 Extraction Process Specification for Materialized Ontology Views 137

distinction between the two types of properties. For example, [W3C 2002a] groups
the properties in “DatatypeProperties” (i.e. attributes) and “ObjectProperties” (i.e.
relationships). Because of the distinction in semantic meaning between these two
types of properties, the names “Attribute” and “Relationship” were preferred, as they
clearly indicate the semantic meaning, and relate closer to the naming convention as
used in Object Oriented Model, and Relational Database Management Schemas.

2.4 Restrictions to Obtain Practical Ontology Definition

The formal definition as proposed above is at too high a level of abstraction to be
practically usable. To make the ontology definition more practical, a couple of re-
finements are introduced.

The first restriction that is made, which is an integral part of the ontology defini-
tion is the fact that an attribute that is a part of an ontology should at least belong to
one concept. This is given in the following extension to the definition of an ontology.

Definition 4

∀O∈ϑ : O=<C, A, attr, B, Ma, Mb > ⇒ ∀a∈A, ∃c∈C: a∈ attr(c) (9)

This definition extension ensures that there is always a semantic meaning of the at-
tribute in relation to the rest of the ontology. Note that some standards do not have
this restriction (e.g. OWL [W3C 2002c]). Here it is important to regard the ontology
as semantically interlinked, as this provides a solid lower boundary for algorithms.

Furthermore, the boundaries of a single ontology need to be established, i.e. when
does one ontology cease to be one ontology, and become multiple ontologies. The
following definitions aim to support the notion of a well-formed ontology.

Definition 5. Let a graph G consist of a set of vertices V, and a set of edges E, with an
edge defined by two vertices in V.

G≡<V, E>

with

V = finite ∧ V≠∅

E⊆V×V

(10)

This is just a standard definition of a graph [Biggs, Lloyd et al. 1976], and is merely
given to facilitate the consequent definitions and theorems. For more information on
Graph Theory, a number of sources are readily available (e.g. [Von Staudt 1847;
Biggs, Lloyd et al. 1976]).

Definition 6

Given a graph G=<V, E>

we define

G’ an island in G ⇔ G’≡<V’, E’>

(11)

138 C. Wouters et al.

with

V’≠∅

V’⊆V

E’⊆E

G’≠G

∀v∈V’, ∀v’∈V\V’:(v,v’)∉E

An island is another term for what is called ‘proper component’ of a graph [Biggs,
Lloyd et al. 1976], with slight modification to suit our purposes. Next, an Ontology
Graph is defined. Ontology graphs will aid in the more ‘geographical’ or ‘topological’
characteristics of an ontology, and their implications.

Definition 7

Given an ontology O=<C, A, attr, B, Ma, Mb >

We define

GO is an Ontology Graph for O ⇔ GO≡<VO, EO>

with

VO=C

EO=B

GO has no islands

(12)

It is important to note here that a valid Ontology Graph cannot contain an island.
Through an extension to the definition of a (valid) ontology, this requirement for an
Ontology Graph becomes a requirement for an ontology as well.

Definition 8

∀O∈ϑ⇒∃ an Ontology Graph GO for O (13)

This definition says that an ontology is not considered valid unless there is an Ontol-
ogy Graph that can be associated with it. Because an Ontology Graph cannot have an
island, this means that a valid ontology has to have a corresponding graph representa-
tion without islands.

For completeness, the full definition for an ontology is given here, i.e. the addition
of Definition 4 and Definition 8 to Definition 3.

Definition 9

Given a set of concepts C

We define

An ontology over C, O∈ϑ⇔ O≡<C, A, attr, B, Ma, Mb >

(14)

 Extraction Process Specification for Materialized Ontology Views 139

with

C = finite ∧ C≠∅

A = finite

Attr:CÆ2A

B⊆C×C ∧ B= Br∪Bi∪Bagg

Ma:attrÆcard2

Mb:BÆcard4

∀a∈A, ∃c∈C: a∈ attr(c)

∃ an Ontology Graph GO for O

2.5 Ontology Complement Theorem

In order to define a complement of an ontology for a given base ontology, first the
notion of subsets needs to be defined. The following two definitions indicate a subtle
but important difference; not all subsets are ontologies, the subsets that are ontologies
in their own right are called sub-ontologies.

Definition 10

Given an ontology O=<C, A, attr, B, Ma, Mb>

we define

a six tuple S is a subset of O ⇔ S≡< C1, A1, attr1, B1, Ma1, Mb1>

with

C1⊆ C

A1⊆ A

attr1⊆ attr

B1⊆ B

Ma1⊆ Ma

Mb1⊆ Mb

(15)

Notation 5

Given an ontology O=<C, A, attr, B, Ma, Mb> and a subset S of O

we denote

S⊆ O

(16)

The definition of a subset is expanded to incorporate the requirements for a valid on-
tology. Although ‘a subset that is a valid ontology’ is sufficient for a definition, we

140 C. Wouters et al.

will expand the definitions into the individual requirements, and combine them into
one more detailed definitions for a sub-ontology.

Definition 11

Given an ontology O

we define

O’ is a sub-ontology of O ⇔ O’∈ϑ ∧ O’⊆O

(17)

Notation 6

Given an ontology O and a sub-ontology O’ of O

we denote

O’⋐ O

(18)

Two very basic Ontologies, O1 and O2 are presented in Figure 3. The ontology to the
right (O2) is a sub-ontology of the ontology to the left (O1), i.e. it is a valid ontology
in its own right, as well as being a subset of O1.

Fig. 3. Two simplified base ontologies (left: O1, right: O2)

Definition 12

Given ontologies O1=<C1, A1, attr1, B1, Ma1, Mb1>, O2=<C2, A2, attr2, B2,
Ma2, Mb2>

with

O2⋐ O1

We define

O1\O2≡< C1 \C2, A1\A2, attr1\attr2, B1\B2, Ma1 \Ma2, Mb1\Mb2 >

(19)

In this definition the characteristics of the complement of a sub-ontology are pre-
sented. An interesting issue is raised by this definition, namely is the complement
(O1\O2) always a valid ontology, or not ? The answer to this question is negative, as
following example illustrates a complement that is not a valid ontology.

Looking back at Figure 3, the first thing to note is that the basic requirement (ante-

cedent of formula (19)) is fulfilled, and that O2 is a sub-ontology of O1 (O2⋐O1).
Secondly, in this simplified form, O1 counts 7 elements (or 7 that matter in the

 Extraction Process Specification for Materialized Ontology Views 141

example), being 4 concepts and 3 relationships. On the other hand, O2 only has 3; 2
concepts and 1 relationship.

Looking at the complement of O2 (O1\O2), it can easily be visually verified in Fig-
ure 4 that there is an invalid relationship.

Fig. 4. The resulting graphical representation of set o1\o

The relationship between ‘Author’ and ‘Book’ is an element of the binary relation-
ship set of O2. From the definition this set B2 is a subset of C2×C2, but one of the
concepts connected by the relationship is an element of C1, and from this definition
cannot be an element of C2, hence O1\O2 is not an ontology.

The obvious question to answer now is when this complement would be an ontol-
ogy. The following theorem provides the key to solving this problem.

Theorem

Given an ontology O=<C, A, attr, B, Ma, Mb>, and its corresponding ontol-
ogy graph GO=<V, E> (with V=C, E=B)

∀O1∈ϑ:O1⋐O⇒O\O1∉ϑ

(20)

Proof

1. O1=O

⇒ O\ O1= O\O=∅

∧ ∅ ∉ ϑ (C≠∅ for valid ontology)
⇒ O\O1∉ϑ

2. O1≠O

We give a proof by contradiction. Following statement is proven wrong:

∃O1∈ϑ:O1⋐O ⇒ O\O1∈ϑ
Let Od = O\O1

If Od∈ϑ then, per definition (of ontology) there exists an ontology graph
Gd=<C\C1, B\B1>. Let Vd= C\C1, Ed= B\B1

We now show that Gd is an island in GO, which is not permitted (see section 2.4).
Indeed, let vd∈Vd and be v∈V1 arbitrary
Clearly;
Either
(vd, v)∈Ed - not permitted because v∈V1(=C1), so v∉Vd(=C\C1)
or (vd, v)∈E1 - not permitted because vd∈Vd(=C\C1), so vd∉V1(=C1)
or (vd, v)∉E - Only remaining option (E=Ed∪E1), so must be this

142 C. Wouters et al.

In other words, there is no edge that can be found that has a vertex in Vd and one in
V1. This means that the two corresponding graphs have no connection, and are thus
separate islands. Thus GO(=G1∪Gd) itself would consist of two islands, and thus is in
conflict with the definition of ontology graphs (section 2.4).

The above proof shows that it is true that the complement of an ontology and one of
its sub-ontologies is never an ontology.

2.6 Materialized Ontology Views

The result of an extraction process is not just simply referred to as an extracted ontol-
ogy, but rather an extracted materialized ontology view. This section will discuss the
term ‘materialized ontology view’, and why it is used to describe the result of the ex-
traction process.

In the extraction process, no new information should be introduced (e.g. adding a
new concept). However, it is possible that existing semantics are represented in a dif-
ferent way (i.e. a different view is established). This is similar to the use in the data-
base area, where views do exactly that [Chen 1976; Date 2000], and thus the notion of
an ontology view can be obtained by an analogy to the database view definition, with
some minor modifications.

Definition 13

A Materialized Ontology View of a base ontology is a (valid) ontology
that consists solely of projections, copies, compressions, and/or com-
binations of elements of the base ontology, presenting a varying
and/or restricting perception of the base ontology, without introducing
new semantic data.

(21)

Intuitively, the definition states that – starting from a base ontology – elements can be
left out and/or combined at will, as long as the result is a valid ontology again. In the
process, no new elements should be introduced (unless the new element is the combina-
tion of a number of original elements, i.e. the compression of other elements).

A materialized ontology view is required, as the resulting ontology should be an
independent ontology, i.e. be a valid ontology, even if the base ontology is taken
away. This requires a materialization of the result, as opposed to leaving it as virtual,
which would result in a dependent view.

3 The Ontology Extraction Process

The main issues covered in the introduction concerning current research on ontology
transformations, such as versioning, distribution, evolution, bear numerous similari-
ties. For instance, an existing ontology (from now on referred to as “base ontology”)
is present and used as a starting point, and through some changes a new ontology
needs to be established. It is vital to identify the different elements of this process, so
that one can concentrate on the appropriate issues in the research which need to be
resolved.

 Extraction Process Specification for Materialized Ontology Views 143

Naturally, there are certain requirements and constraints that a derived ontology or
materialized view must abide by. One of the constraints that comes to mind as being
of great importance in versioning and distribution is backward compatibility, or com-
patibility in general [Heflin and Hendler 2000; Klein and Fensel 2001; Kim 2002].
Some of the lower level requirements to serve purposes like compatibility are ex-
plored here. Before these can be explored it is necessary to introduce a labeling of an
Ontology here.

3.1 Labeling an Ontology

In this section, a new six tuple <C’, A’, attr’, B’, Ma’, Mb’> is constructed by applying
a labeling to the base ontology, and then only using elements with certain labels. In
other words, every element of the ontology receives a certain label, and this label de-
termines whether it will be a part of the new six tuple or not. There are three main
reasons for introducing such a labeling throughout the extraction process. Firstly, this
labeling facilitates user manipulation of the extraction process, as it provides a way
for the user to specify key elements.

Secondly, in the optimization step this labeling is also re-applied (modification of
present labeling) by every optimization scheme. This is the standard way that different
components of the extraction process can communicate with each other. Every optimi-
zation scheme is able to read in a labeling, incorporate it into its algorithms, and modify
the labeling according those algorithms. The next optimization scheme in line uses this
modified labeling as its input. This means that the changes one optimization scheme
wants to make effectively are communicated to the next optimization scheme.

Thirdly, the labeling is also used to produce a final result. As indicated previously,
this is done by constructing a new six tuple through the use of a label filter.

A few necessary definitions are given next, followed by the automated way of la-
beling the attribute mapping that is assumed in examples throughout this paper.

Definition 14

 the selection set S is defined as

S≡{selected, deselected, void}

(22)

From the previous definition it can be noted that there are three possible labels that
are used; selected, deselected and void.

Definition 15

 A labeling of an ontology O=<C, A, attr, B, Ma, Mb> is a mapping σ
such that

σ (O)= σ (<C, A, attr, B, Ma, Mb>)=<C’, A’, attr’, B’, Ma‘, Mb‘>

with

C’=σC(C)={c∈C|σC(c)≠’deselected’},

A’=σA(A)={a∈A|σA(a)≠’deselected’},

(23)

144 C. Wouters et al.

attr’=σattr(attr)={t∈attr|σattr(t)≠’deselected’},

B’=σB(B)={b∈B|σB(b)≠’deselected’},

Ma’=σ Ma (Ma)= Ma and Mb’=σ Mb (Mb)= Mb

This labeling is crucial in the interaction between humans and algorithms, and algo-
rithms amongst themselves. An algorithm might optimize a solution set in a certain
way, and needs to pass this on to the next algorithm. Often there are practical subjective
influences that cannot be translated in an algorithm, and the labeling allows a user to
express his/her wishes. For instance, certain information might not be made available to
the materialized view, and thus by using this labeling system, this requirement can read-
ily be communicated to the system. In this case, the unavailable elements would be de-
selected, so that for an undesirable ontological element e, σ (e)=deselected.

Some further definitions are needed to enable quick reference to a certain set of on-
tological elements. As the definitions for all the sets in the ontology six tuple are very
similar, one generic definition is given (rather than six slightly varying ones):

Definition 16

Given an ontology O=<C, A, attr, B, Ma, Mb >

σX:XÆS

with
X∈{C, A, attr, B, Ma, Mb}

(24)

Next we demonstrate how the previous definitions are applied in the ontology extrac-
tion process. This is done by giving a small example. The labeling will reoccur in
many examples throughout this paper, as it is an essential aid in the extraction proc-
ess, and serves multiple purposes (as discussed previously).

Fig. 5. UML Representation of University Example (Simplified)

When a university decides to develop a search system for its students, they use a
certain library ontology as a basis, i.e. the library ontology is the base ontology for
their materialized ontology view. The data they use comes from their own library
which also uses the library ontology. However, the library notifies them that certain

 Extraction Process Specification for Materialized Ontology Views 145

types of data will not be available, as that would infringe the privacy of the library
members. Specifically, a concept named “Borrower” is off limits for the university. Al-
though the university still wants the optimization algorithms to decide what a good on-
tology is to use, they now have to make this requirement clear to the algorithms, and the
labeling does exactly that. By applying the labeling σC(“Borrower”)=deselected the
algorithms have the appropriate information to further process the transformation.

3.1.1 Automation of attr Labeling
Although not necessary, it is convenient to use an automatic labeling of the attr map-
ping. Here we will examine all the possible combinations of the related concept-
attribute pair, and give a desired labeling for the attribute relationship between them.
Afterwards these results are summarized in a couple of rules.

given an ontology O=<C, A, attr, B, Ma, Mb >
∀t∈attr:

1) σC(π1(t))= selected ∧
a. σA(π2(t))= selected

⇒ σattr(t)= selected
b. σA(π2(t))= deselected

⇒ σattr(t)= deselected
c. σA(π2(t))= void

⇒ σattr(t)= void

2) σC(π1(t))= deselected ∧
a. σA(π2(t))= selected

⇒ σattr(t)= deselected
b. σA(π2(t))= deselected

⇒ σattr(t)= deselected
c. σA(π2(t))= void

⇒ σattr(t)= deselected

3) σC(π1(t))= void ∧
a. σA(π2(t))= selected

⇒ σattr(t)= void
b. σA(π2(t))= deselected

⇒ σattr(t)= deselected
c. σA(π2(t))= void

⇒ σattr(t)= void

The previous list gives the desired automated mapping result for each individual

case, and now we give a more comprehensive set of rules that have the same effect.

Attribute Mapping Automation Rule 1

given an ontology O=<C, A, attr, B, Ma, Mb >

∀t∈attr: σC(π1(t))=selected ∧ σA(π2(t))=selected ⇔ σattr(t)= selected

(25)

146 C. Wouters et al.

Attribute Mapping Automation Rule 2

given an ontology O=<C, A, attr, B, Ma, Mb >

∀t∈attr: σC(π1(t))= deselected ∨ σA(π2(t))= deselected ⇔ σattr(t)= deselected

(26)

Attribute Mapping Automation Rule 3

given an ontology O=<C, A, attr, B, Ma, Mb >

∀t∈attr: (σC(π1(t))= void ∧ σA(π2(t))≠deselected) ∨ (σC(π1(t))≠ deselec-

ted ∧ σA(π2(t))=void)⇔ σattr(t)= void

(27)

Note that the last rule follows directly from the two previous rules. As there are only
three mapping possibilities, if the first two don’t apply, it has to be the third mapping.
Thus, with only the first two rules a full mapping can be established (if we assume a
default ‘void’ labeling), but the third rule was added for reasons of completeness.

Fig. 6. Attribute Mapping before (a) and after (b) Automated Labeling

Some examples of these labeling rules are demonstrated in Figure 6. The concept
“Car” is selected, and it has three attributes with different labels. Note that a missing
indication means that the element has a “void” label, while a “+” means selected, and
a “-“ stands for deselected. The specific notation used is irrelevant for now, but will
be discussed in another example (see Figure 10). For “Serial No” the first rule applies,
as both concept and attribute are selected. In (b) it can be seen that the connection
between these two also receives the “selected” label. The connection between “Brand

 Extraction Process Specification for Materialized Ontology Views 147

Name” and “Car” receives a “deselected” label, as one of the elements (i.e. “Brand
Name”) is deselected. Finally, nothing is changed to the connection between “Car”
and “Model Name” (i.e. it keeps its “void” label), as the two first rules do not apply
here. Alternatively, it can be said that the third rule applies.

3.2 Optimization Criteria Related to Quality of an Ontology

There are many possible optimization schemes that seek to optimize one or more cri-
teria that are related to the quality of the ontology. However at the outset it is neces-
sary to make precise the notion of the quality of an ontology and the related criteria
that might be used in any optimization scheme to achieve this quality. Generally one
can note that quality of an ontology is multifaceted and the emphasis that one might
give to a particular facet will be subjective.

We have identified the following facets related to the quality of the materialized
ontology view. Namely:

(i) Consistency of the Ontology with the Requirements
(ii) Well Formedness of the Ontology

(iii) Semantic Completeness of the Ontology
(iv) Overall Simplicity of the Ontology

Each of these facets will separately be used as an optimization criterion and lead to an
optimization scheme that optimizes with respect to this criterion and these are dis-
cussed in turn below, in the remainder of this section. The list presented is not a full
list, as it is possible to construct new optimization schemes according to specific
needs that might not be catered for through a combination of any of the existing opti-
mization schemes.

The goal is to arrive at an ontology that is optimized for a certain application (or
group of applications). To achieve this, first a number of optimization schemes are
presented, i.e. the separate components for specifying what is considered an opti-
mized ontology in a particular case. These components are then applied on the base
ontology in the specified order. This means that they work as a chain, one scheme
taking the output from a previous scheme as its input. Obviously these separate com-
ponents have to be able to communicate with each other, and the labeling introduced
in section 3.1 is used for this.

Because of the labeling (providing a standard language for communication) and the
independence of the optimization schemes (as each optimization scheme can function
on its own) it is easy to integrate new optimization schemes. The optimizations
schemes presented here are intended to be used on the ontology standards as defined
previously. Note that other standards (such as DAML-OIL, or OWL) can reuse many
of the optimization schemes presented here, as well as future ones developed for vari-
ous standards (although sometimes with small modifications). Next we discuss the
optimization schemes with respect to the above four criteria in turn.

3.2.1 Requirement Consistency Optimization Scheme (RCOS)
This optimization scheme ensures that the requirements as expressed by a user or optimi-
zation scheme (through the applied labeling) are consistent, i.e. there are no contradicting

148 C. Wouters et al.

statements in the labeling. If contradicting statements are present, there is no way for an
algorithm – or human user for that matter – to determine what the intention is.

Here, a number of rules will be specified to ensure that a solution set is consistent
in its requirements.

RC Rule 1

Given an ontology O=<C, A, attr, B, Ma, Mb > with a labeling σ applied to O

∀b∈B: σC(π1(b))=deselected ∨ σC(π2(b))= deselected ⇒ σB(b)≠ selected

(28)

A binary relationship provides additional meaning to how two concepts relate to each
other. Having σB(b)= selected indicates that this meaning has to be used in the ‘target’
ontology. However, if both concepts that are related to each other by b are deselected,
this is saying that no information about these concepts should be present in the ‘tar-
get’ ontology. RC rule 1 sets out how these two statements are utilized in develop-
ment of the optimized ontology.

Fig. 7. UML Representation of an Ontology (Small Part)

A small example of the rule in practice is given through Figure 7. Applying two
sets of labels – given in Table 2 – produces a valid and invalid combination according
to this rule.

Table 2. Valid and Invalid Labeling for RCOS Rule 1

Valid Labeling
(void labels not shown)

Invalid Labeling
(void labels not shown)

σC(Brain)=deselected
σB(commands)=deselected

σC(Brain)=deselected
σB(commands)=selected

RC Rule 2

Given an ontology O=<C, A, attr, B, Ma, Mb > with a labeling σ applied to O

∀t∈attr: σC(π1(t))=deselected ∨ σA(π2(t))= deselected ⇒ σattr(t)≠ selected

(29)

This transformation rule is the equivalent to RC Rule 1, applied to the special rela-
tionship between concepts and their attributes, which is represented in the mapping
attr.

 Extraction Process Specification for Materialized Ontology Views 149

RC Rule 3

Given an ontology O=<C, A, attr, B, Ma, Mb > with a labeling σ applied to O

∀t∈attr: σA(π2(t))= selected ⇒ σattr(t)≠ deselected

(30)

Here the more specific characteristic of the attribute-concept relationship is consid-
ered. No contradicting statements between the attribute and the connection are al-
lowed, and this transformation rule together with the previous one ensures this.

Before the next rule can be given, first the notion of a path needs to be introduced
and defined. Paths are very important in the specification of ontology views, as they
introduce new relationships that are semantically linked to the original relationships.

Definition 17
Given an ontology O=<C, A, attr, B, Ma, Mb>

we define

a path p of O ⇔ p≡b1, b2, …, bn ∈B+, with n∈ℕ0
such that

π1(bi)=π2(bi-1), with i∈[2, n]

(31)

Definition 18
Given an ontology O

We define
Path(O)≡{set of all possible paths in O}

(32)

Notation 7

Given an ontology O=<C, A, attr, B, Ma, Mb>

And a path p∈Path(O), with p= b1, b2, …, bn ∈B+ (n∈ℕ0)

we denote

π1(p)=π1(b1)

π2(p)=π2(bn)

(33)

Definition 19

Given an ontology O=<C, A, attr, B, Ma, Mb> and

a labeling σ applied to O

we define

a proper path p⇔ p≡ b1, b2, …, bn ∈B+ (n∈ℕ0)

with

p∈Path(O)

σc(π2(p))≠’deselected’

σB(bj)≠’deselected’, with j∈[1,n]

(34)

150 C. Wouters et al.

Definition 20
Given an ontology O

We define
PPath(O)≡{set of all possible proper paths in O}

(35)

The additional definition for a more restricted set of paths PPath(O) is given as these
are the types of paths that are considered mostly for the concatenation and replace-
ment cases, which will be discussed further on.

From the previous definitions it follows that the PPath(O) is a subset of Path(O)
(PPath(O)⊂Path(O)).

To give a couple of examples of valid and invalid types of paths, a labeled ontol-
ogy graph is presented in Figure 8.

Fig. 8. Example Labeled Ontology Graph

Table 3 gives a number of paths and indicates why certain paths are invalid. Note
that although not present in this table, it is possible for a valid proper path to connect
a vertex (i.e. concept) that is deselected, as long as it is not the last vertex in the chain.

Table 3. Example Valid and Invalid Paths

Path Validity Description
b7b6b5b1b3b8 Invalid path π(b1) ≠π(b3) ÆNo concept that is connected by b1 is

connected by b3.
B7b6b5b1b2b4 Valid path
B7b6b5b1b2b4 Invalid Proper Path σB(b7)=σB(b6)=σB(b2)=deselected ÆSome relation-

ships in the path are labeled ‘deselected’.
b5b4b3 Invalid Proper Path π2(b3)=c6=deselected Ætarget concept is deselected.

b3b4b5b1 Valid Proper Path

Now that the definitions for a path and a proper path have been given, the final
RCOS rule can be presented. This rule specifies that if an attribute is selected, but the
concept is deselected, i.e. there will be a need for distributing the attribute, there

 Extraction Process Specification for Materialized Ontology Views 151

should be a proper path to a concept that is not deselected (so the attribute can poten-
tially be placed there).

RC Rule 4

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

∀t∈attr, ∃p∈PPath(O):

σA(π2(t))=‘selected’ ∧ σC(π1(t))=‘deselected’

⇒σC(π2(p))≠’deselected’ ∧ π1(p)= π1(t)

(36)

An example of the combination described in the antecedent is presented in Figure 9,
where the concept “Writer” is deselected, while one of its attributes (“genre”) is se-
lected. To adhere to the rule, a proper path p needs to exist that has its final concept
not deselected, and that starts from the concept “Writer”.

In this particular example there are two possible proper paths that can be used, and
they are given below. Which one of these paths will eventually be utilized (or may be

Fig. 9. Example Labeled UML Representation for RCOS Rule 4

152 C. Wouters et al.

even another possible solution might arise) is not important at this stage, merely that
is possible to find at least one solution to the problem.

The first proper path that can be identified starts with the inheritance relationship
between “Writer” and “Author”. Because “Author” is deselected, this is not a valid
end result for a path, but if the next inheritance relationship is included in the path
(from “Author” to “Person”), a valid proper path is obtained, as none of the relation-
ships is deselected, nor is the target concept (“Person”). Another possibility is the path
that starts at “Writer”, then goes to “Committee”, and then crosses to “Jury”. There
are more possibilities (e.g. by extending the two paths already obtained), but as it is
known for certain now that there is at least one proper path, the rule is satisfied.

3.2.2 Well Formedness Optimization Scheme (WFOS)
It might be clear what the intentions are of a certain labeling, but there possibly are
statements that inevitably lead to a solution set that is not a valid ontology. The
WFOS contains the proper rules to prevent this from happening.

Effectively, all the separate criteria as given in section 2 are interpreted here. It
would suffice to say that per definition the set consisting of the selected elements of O
(according to labeling σ) has to be a valid ontology, but here we want to establish the
rules that will not only ensure this, but also are written in relation to the original on-
tology, i.e. the complete labeling.

A first, basic requisite for an ontology was C≠∅. In the specific case for the solu-
tion set we get:

σC(C)≠∅
⇒ ∃c∈C: σC(c)=’selected’ ∨ σC(c)=’void’ (Definition σC(C))

⇒ ∃c∈C: σC(c)≠’deselected’ (Definition S)

Intuitively, as there are only three possibilities for the mapping, of which the solution
set contains two, and following from the criterion that there has to be one concept in
the solution set for it to be a valid, well formed ontology, it is clear that at least one
concept has to have a mapping that is other than ‘deselected’.

This result is left as such and put into a first rule:

WF Rule 1

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

∃c∈C: σC(c)≠‘deselected’

(37)

Another requirement that is present in the definition for an ontology is ∀a∈A, ∃c∈C:
a∈ attr(c), stating that every attribute must belong to a concept. Starting from the
adapted version a rule that could be postulated is:

∀a∈σA(A), ∃c∈σC(C): a∈σattr(attr)(c)
⇒ ∀a∈σA(A), ∃c∈σC(C), ∃t∈σattr(attr): t(c)=a (def. Ontology)
⇒ ∀a∈A, with a=t(c) and t∈ attr, c∈ C: (def σ (O))

¬(σA(a)=deselected) ⇒ ¬(σC(C)=deselected) ∧ ¬(σattr(t)=deselected)
⇒ σC(c)=deselected ∨ σattr(t)=deselected ⇒ σA(a)=deselected
 (*)

 Extraction Process Specification for Materialized Ontology Views 153

However this rule is not in satisfactory form as an additional requirement must also
be considered. This additional requirement will then be combined with the above un-
satisfactory rule to develop a basis for the additional rules.

The other requirement for the ontology that will be used next is Attr:CÆ2A.
Adapted to the well formedness of a solutions set, this gives;

σattr(attr): σC(C)Æ2σC(A)
⇒ Given an attribute mapping t=(c, a) with c∈C, a∈A

¬(σattr(t)=deselected) ⇒ ¬(σC(c)=deselected) ∧ ¬(σA(a)=deselected)
⇒ σC(c)=deselected ∨ σA(a)=deselected ⇒ σattr(t)=deselected

(**)

Combining the above two results we obtain:

(*) ∧ (**)
⇒ 1) σC(c)=deselected ⇒ σattr(t)=deselected

2) σA(a)=deselected ⇒ σattr(t)=deselected
3) σC(c)=deselected ⇒ σA(a)=deselected
4) σattr(t)=deselected ⇒ σA(a)=deselected

1) ∧ 3) ⇒ σC(c)=deselected ⇒ σA(a)=deselected ∧ σattr(t)=deselected
2) ∧ 4) ⇒ σA(a)=deselected ⇔ σattr(t)=deselected

These last statements are taken as the rules for the well formedness optimization
scheme, thus:

WF Rule 2

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

∀t∈attr:σC(π1(t))=deselected ⇒ σA(π2(t))=deselected ∧ σattr(t)=deselected

(38)

WF Rule 3

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

∀t∈attr:σA(π2(t))=’deselected’ ⇔ σattr(t)=’deselected’

(39)

In Figure 10 an example of these two rules is shown. As the attribute mapping is not
explicitly catered for in UML (it is not a link, but a container, i.e. attributes are con-
tained inside a class), a different notation (semantic net notation [Feng, Chang et al.
2002]) for the example was used. The concept “Person” is deselected, and so is ac-
cording to the antecedent of WF Rule 2. The attribute “surname” is selected (and its
connection to “Person” has no indication, so it’s the default label, i.e. “void”), and
that is invalid for WF Rule 2. The attribute “first_name” and its attribute mapping are
both deselected, giving a valid case for WF Rule 2. As “Document” has the default –
void – label, the antecedent is not met, so every case including that concept is valid
according to WF Rule 2.

However, WF Rule 3 says both attributes and attribute mappings for the concept
“Document” result in invalid combinations, as both the attribute as its attribute

154 C. Wouters et al.

Fig. 10. WFOS Valid and Invalid Cases in Semantic Net Notation [Feng, Chang et al. 2002]

mapping should be deselected (if one of them is deselected). Looking at the attributes
for concept “Person”, both of them are valid. The attribute “surname” does not trigger
WF Rule 3, and “first_name” does, but is a valid combination.

The next requirement for an ontology as given in the definition is B⊆C×C. Put in
the proper context this can be stated as:

σB(B)⊆ σC(C) × σC(C)
⇒ given a binary relation b=(c1, c2) with c1, c2 ∈C

σB(b)≠’deselected’ ⇒ σC(c1)≠’deselected’ ∧ σC(c2)≠’deselected’
⇒ σC(c1)=’deselected’ ∨ σC(c2)=’deselected’ ⇒ σB(b)=’deselected’
⇒ (1) σC(c1)=’deselected’ ⇒ σB(b)=’deselected’

(2) σC(c2)=’deselected’ ⇒ σB(b)=’deselected’

(1) and (2) are now used to define the next rule which is as follows:

WF Rule 4

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

1) ∀b∈B:σC(π1(b))=’deselected’ ⇒ σB(b)=’deselected’

2) ∀b∈B:σC(π2(b))=deselected’ ⇒ σB(b)=’deselected’

(40)

Additional rules could be provided here for the n-ary relationship, but through trans-
formations of the design n-ary relationships can be written as binary relationships, so
the same rules would apply to these relationships.

To be complete, the ontology graph requirement for an ontology is repeated here,
although it is not developed into another rule, but rather kept in its original form.

WF Rule 5

Given an ontology O with a labeling σ applied to O

∃ an ontology graph Gσ (O) for σ (O)

(41)

An example of an invalid ontology is given in Figure 11. Although it may not be clear
immediately (consider the difficulty if not impossibility of visually recognizing

 Extraction Process Specification for Materialized Ontology Views 155

Fig. 11. UML Representation of Invalid Ontology

Fig. 12. Ontology Graph Representation of the Ontology (Invalidity Unclear)

a similar situation in real – complex – ontologies), even not when looking at the cor-
responding ontology graph (in Figure 12), this ontology is invalid as its ontology
graph contains an island (or proper component in graph theory terms). This becomes
clear when the vertices from the ontology graph are rearranged (no information
changed, just the visual coordinates).

The fifth WFOS Rule clearly requires a valid ontology graph, and a valid ontology
graph according to its definition cannot contain any islands. An alternative representation
of the ontology graph is shown in Figure 13. They boxed gray area is a clear separate
island, and so the resulting ontology graph (that is obtained from the ontology) is invalid,
and so the ontology is invalid as well (not well formed, i.e. not adhering to WF Rule 5).

156 C. Wouters et al.

Fig. 13. Ontology Graph Representation of the Ontology (Invalidity Clear)

This optimization scheme, together with the previous one, ensures the minimal
quality that is necessary for any materialized ontology view (that it is in fact a valid
ontology, and that the criteria for the optimization are clear). Any meaningful extrac-
tion process should always include these two optimization schemes.

3.2.3 Semantic Completeness Optimization Scheme (SCOS)
The previous schemes were obvious, and are the minimal schemes that will be applied
(except maybe in some rare cases), but the following optimization schemes, starting
with the SCOS are not always wanted, or even possible concurrently. Not all the
schemes are given here, and it is possible to introduce new schemes for new needs,
however, the schemes given demonstrate clearly the manner in which quality – or
optimization – is introduced in the extraction process.

The SCOS considers the completeness of the concepts, i.e. if one concept is de-
fined in terms of another concept, the latter cannot be omitted without losing some
semantic meaning of the former concept. Including these defining elements is not
always required, but in those cases this optimization scheme should not be selected,
as the ordered list of optimization schemes can be freely composed by an ontology
engineer.

Firstly, some additional definitions need to be made to specify what is meant by
‘defining elements’. In the definition for an ontology the set of binary relationships
was further split up in different types of relationships. For some of these sets the di-
rection of the relationship is important, so now a more detailed function π is intro-
duced to serve the purpose of distinguishing between the linked concepts.

Additional information on the notation of some general concepts such as sub-super
classes, whole-part aggregation, etc. is given next to facilitate further discussion.

 Extraction Process Specification for Materialized Ontology Views 157

Notation 8

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B = Bi ∪ Bagg ∪ Br, ∀c1, c2 ∈ C
We denote

c1 is a subconcept of c2
⇔ ∈b∈Bi: π1(b)=c1 ∧ π2(b)=c2

(42)

Notation 9

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B = Bi ∪ Bagg ∪ Br, ∀c1, c2 ∈ C
We denote

c1 is a superconcept of c2
⇔ ∈b∈Bi: π1(b)=c2 ∧ π2(b)=c1

(43)

In the example shown in Figure 14 (a) “Tree” is the sub-concept (π1(b1)), while
“Plant” is the super-concept (π2(b1)).

Notation 10

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B = Bi ∪ Bagg ∪ Br, ∀c1, c2 ∈ C
We denote

c1 is a part of c2
⇔ ∈b∈Bagg: π1(b)=c1 ∧ π2(b)=c2

(44)

Notation 11

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B = Bi ∪ Bagg ∪ Br, ∀c1, c2 ∈ C
We denote

c1 contains c2
⇔ ∈b∈Bagg: π1(b)=c2 ∧ π2(b)=c1

(45)

This aggregation relationship is shown in UML notation in Figure 14(b). The concept
“Computer” is the whole-concept (π2(b2)), while “CPU” is the part-concept (π1(b2))

Notation 12

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B = Bi ∪ Bagg ∪ Br, ∀c1∈C, ∀a1∈A
We denote

a1 is a defining attribute for c1
⇔ ∃t∈ attr: t=(c1, a1) ∧ ∃m∈ card : ¬(mmin(t)=0)

(46)

Figure 14(c) shows an example of a defining attribute. A “Person” has to have at least
(here exactly) one “surname”.

158 C. Wouters et al.

Fig. 14. Example Semantic Essential Elements

Because ontologies allow for such a diverse way of defining new elements (e.g. a
new class that is the union of two existing concepts), a simplified approach is taken
here. Although we will show only a limited number of ways for developing rules,
extending this basic set is straight forward. As mentioned before, optimization
schemes can also be constructed for various standards.

The first defining way considered here is the super-concept of another concept.

SC Rule 1

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

∀b∈B:σC(π1(b))=selected ⇒ σC(π2(b))=selected ∧ σB(b)=selected
(47)

This rules states that whenever a concept is retained for a view, the superconcepts of
it, and the actual inheritance relationship stating this are required as well to be seman-
tically complete.

The following rule does the same for the part relationship, i.e. when a concept is re-
quired (mapped to ‘selected’) then part concepts of this concepts are retained as well.

SC Rule 2

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O,
and a binary aggregation relationship b∈B

σC(π2(b))=selected ⇒ σC(π1(b))=selected ∧ σB(b)=selected

(48)

Finally, also a rule is given here for the ‘not null’ attributes of a concept, as they pro-
vide information that according to the ontology specification should always be there
(an empty field is not possible). Although ‘defining’ might be too strong a word for
these attributes, they are nonetheless required for there to be a semantically complete
ontology view.

SC Rule 3

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O,
an attribute mapping t, and a cardinality m for t

σC(π1(t))=selected ∧ mmin≠0 ⇒ σA(π2(t))=selected ∧ σattr(t)=selected

(49)

 Extraction Process Specification for Materialized Ontology Views 159

3.2.4 Total Simplicity Optimization Scheme (TSOS)
The TSOS is an applied and modified version of Kruskal’s Algorithm [Kruskal 1956]
for minimal spanning trees. Applying this optimization scheme will result in the
smallest possible solution that is still a valid ontology (starting from a certain solution
set). This optimization scheme is included as an example of how certain requirements
(smallest possible solution) are translated in an optimization scheme. Furthermore, it
clearly shows as well that not all optimization schemes are desirable in every situa-
tion. Sometimes the most versatile solution is sought, not the smallest, and thus the
TSOS would not be applied. The choice of what is considered important or high qual-
ity is represented by the selection of optimization schemes, and the order in which
they are applied.

To get to a solution for the TSOS, a new labeling is introduced. This labeling only
applies to the element previously labeled ‘void’. When the methods of achieving this
optimization scheme are discussed, the reasoning behind the additional labeling will
be clarified. First, definitions for different sets are given to aid in the readability of the
following rules and definitions.

Definition 21

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B’≡{b∈B | σB(b)=void}

C’≡{c∈C | σC(c)=void}

A’≡{a∈A | σA(a)=void}

(50)

Definition 22

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O

B”≡{b∈B | σB(b)=selected}

C”≡{c∈C | σC(c)=selected}

A”≡{a∈A | σA(a)=selected}

(51)

For the new labeling that is needed, the labeling σ could be extended, but as not all
targets are necessary, and for clarity in notation, a new labeling δ is introduced here.

Definition 23

T≡{accepted, rejected} (52)

The set of possible labels contains merely two elements, but these are on top of the δ
labeling.

Definition 24

δC’: C’Æ T

δB’: B’Æ T
(53)

160 C. Wouters et al.

Definition 25

Ba’≡{b∈B’ | δB’(b)=accepted}

Br’≡{b∈B’ | δB’(b)=rejected}

Ca’≡{c∈C’ | δC’(c)=accepted}

Cr’≡{c∈C’ | δC’(c)=rejected}

(54)

Now that the differently labeled elements have been grouped in sets, the rules that
follow become more readable. These rules represent what is understood by a total
simplified solution. As mentioned before, Kruskal’s Algorithm for minimal spanning
trees is taken as a starting point, but as no weights are present, labels are used to re-
place them. Some of these labels – ‘selected’ and ‘deselected’ – have to be treated as
fixed by the optimization scheme used, and so the best solution is sought by labeling
the ‘void’ elements so that all of the following rules are adhered to.

TS Rule 1
Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling δ applied to O,

<Ca’∪C”, Ba’∪B”> is a valid ontology graph (55)

This rule can be considered a rule that gives the lower bound, as it limits the number
of elements that can be rejected. The elements accepted by the algorithm, together
with the earlier labeled ‘selected’ elements still have to form a valid ontology graph.

An example of a seemingly valid ontology, but which is in reality invalid (because
it has an invalid ontology graph), was shown in Figure 11, Figure 12 and Figure 13.

The next rule, on the other hand, determines the upper bound, stating that elements that
have been labeled ‘accepted’ should always be necessary to have a valid ontology graph.
If not, they should have been labeled ‘rejected’ instead, as the resulting valid ontology
graph (after they are rejected) represents a smaller – i.e. more simplified – solution.

TS Rule 2

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling δ applied to O,
And an ontology graph GO=<V,E> for O

∀V’⊆Ca, E’⊆Ba, O1∈ϑ: <V\V’, E\E’> is not a valid ontology graph for O1
with

V’≠∅

(56)

At first, this rule seems a bit complicated, but intuitively, it states that the obtained
two tuple (<V\V’, E\E’>) is not a valid ontology graph for any ontology (O1). In other
words, the two tuple does not conform to all the requirements set out in the definition
for an ontology graph. It is straight forward to convert elements of V\V’ to concepts,
and elements of E\E’ to relationships. This lack of validity could be due to; i) the two
tuple is not a valid graph, or ii) the two tuple is a valid graph, but contains islands
(proper components).

The second case speaks for itself, but the first case needs clarification. From the ele-
ments we have in the sets an invalid graph can be obtained if at least one edge connects
at least one vertex that is not an element of V\V’ (∃e∈E\E’:e=(v1,v2) ⇒ v1 ∨ v2 ∉V\V’).

 Extraction Process Specification for Materialized Ontology Views 161

Fig. 15. Two Valid Graphs with Accepted and Selected Elements Exclusively

An example of applying this rule is demonstrated with the aid of Figure 15, show-
ing two graphs with the same selected elements, but graph b) introduces a number of
additional accepted elements. It is clear that graph a) is simpler than graph b), and so
graph b) is not optimal and therefore not a solution (assuming they both aim to pro-
vide a solution for the same base ontology in the same extraction process). The previ-
ous rule can be applied, and so any combination of accepted elements can be sought,
then taken away from the graph, and if the result is a possible valid ontology graph,
the starting graph does not adhere to the rule. For graph a), there are only three ac-
cepted (so 6 possible combinations, i.e. {(b1), (b2), (c2), (b1c2),(b1b2),(b2c2)}, as the
order is irrelevant). For graph b) however, a lot more combinations are possible, and
an example can be found of a combination of accepted elements that – when they are
left out – leaves a valid ontology graph. An example is the set of elements {b1,b2,c2},
or {b3,b4,b5,c4,c5}. Both these sets can be left out and the result would still be a valid
ontology graph (for a certain ontology).

The last rule is a very short and strict rule, ensuring the simplest solution. It elimi-
nates the possibility of having an attribute still labeled as a ‘void’. The ‘void’ label
would indicate that it is still undecided what will happen to the attribute, but as the sim-
plest solution is sought, all the attributes that were undecided should be deselected now,
as they are not necessary, and thus not part of the simple solution that is the goal.

TS Rule 3

Given an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O,

∀a∈A:¬(σA(a)=void
(57)

Note that potentially more than one solution is possible for a given solution set. Looking
back at the non optimal ontology graph presented in Figure 15 (graph b), two different

162 C. Wouters et al.

sets were given, both of which could be left out to result in a still valid and optimal re-
sult. The two outcomes of these operations are both possible solution sets. Through a
weighting system a more efficient connection can be preferred (see Appendix A for a
more detailed discussion of possible weights of relationships), but then it is still possible
that multiple potential results have the same total sum of the weights, and thus can be
considered equally optimized solutions. A practical example of this selection of best
paths can be found in [Wouters, Dillon et al. (to appear December 2003)].

TSOS is different from previous optimization schemes in that it leaves a completely
decided solution set, i.e. one without ‘void’ elements. It is only useful to put such an
optimization scheme once in a sequence of optimization schemes, and only towards the
end, as it would not leave an undecided element for the next optimization scheme to
work with. A practical example of such a sequence of optimization schemes (called
priority list) can be found in [Wouters, Dillon et al. (to appear December 2003)].

3.3 Dynamic Rules Necessary for Algorithmic Development

The previous sections set out the key definitions and the rules which define what has
to be achieved in deriving optimized materialized ontology views from a base ontol-
ogy. To facilitate automation of the process of extraction of materialized ontology
views we need to develop algorithms which carry out the implementation of the rules.
In other words, they set the ‘how’ rather than the ‘what’ of materialized ontology
view extraction. As a prelude to actually working out the algorithms, we will specify
a set of rules that provide the basis for the algorithms. The rules given here have a
more dynamic character than the ones given in the previous section. The dynamic
transformation of what replacements, modifications and even extensions can be made
to achieve the static requirements is the main focus of this section.

An example is the attribute riddance rule given before. It just states that no more
‘void’ labels are allowed for the attributes. How we should go about achieving this is
demonstrated by algorithms, such as in this case; “replace all the ‘void’ labels with
‘deselected’ labels for the TSOS”.

First of all, three general rules are given in their most generic form. Further on,
these rules will be utilized in algorithms.

3.3.1 Mapping Modification
This generic definition shows how the mapping in general can be modified, and thus
has no impact on the actual ontology. The ontology remains exactly as it was before,
i.e. there is no transformation from an ontology O to an ontology O’, but only from a
mapping σ to a mapping σ’. As in the case of the other rules, this rule is also defined
as a transformational function with certain input parameters.

Mapping Modification Definition

Given
an ontology O=<C, A, attr, B, Ma, Mb> with a labeling σ applied to O,
X∈{C, A, attr, B},
s1, s2∈S,
x∈X, and
σX(x)=s1

(58)

 Extraction Process Specification for Materialized Ontology Views 163

we define
ξXσ (x, s2) = σ’ =(σ\{σX(x)})∪ σX’(x)

with
σX’(x)=s2

Intuitively, this definition specifies that an existing mapping can be modified, result-
ing in a new mapping. The modification only needs an element and a label, and the
resulting mapping is the same as the original, except that the label for the specified
element has been changed to the new label.

3.3.2 Attribute Distribution
There already has been a mention of the necessity for redistributing attributes to ob-
tain an optimized result (section 3.2.1). The definition of how this transformation is
done is given here.

Attribute Distribution Definition

Given
an ontology O=<C, A, attr, B, Ma, Mb>,
t∈attr,
b∈B

with
π1(t)=π1(b)(1) ∨ π1(t)=π2(b)(2)

we define
ξA

O(b, t)≡O’≡<C’, A’, attr’, B’, Ma’, Mb’>
with

A’=A
C’=C
B’=B
Mb’=Mb
(1) π1(t)=π1(b)

attr’=(attr\{t})∪{t’}
with t’=(π2(b), π2(t))

Ma’=(Ma\{m(π2(t))})∪{m’(π2(t))}
with m’(π2(t))=(mmin(π2(t))*mmin1(b),mmax(π2(t))*mmax1(b))

(2) π1(t)=π2(b)
attr’=(attr\{t})∪{t’}

with t’=(π1(b), π2(t))
Ma’=(Ma\{m(π2(t))})∪{m’(π2(t))}

with m’(π2(t))=(mmin(π2(t))*mmin2(b),mmax(π2(t))*mmax2(b))

(59)

This definition specifies how attributes can ‘travel’ across a binary relationship, and
what the consequences are for the cardinality of the concerned attribute.

3.3.3 Relationship Concatenation
Often it is required to drop a certain concept from a solution, but still the semantic link it
provides to relationships that bridge two other concepts might be relevant. The notion of
a path, which was introduced previously, is essential to the concatenation rule.

164 C. Wouters et al.

Relationship Concatenation Definition

Given
an ontology O=<C, A, attr, B, Ma, Mb>,

a path p= b1, b2, …, bn ∈B+ (n∈ℕ0)
we define

ξB
O(p)≡O’≡<C’, A’, attr’, B’, Ma’, Mb’>

with

A’={a∈A|a=π2(t) ∧ π1(t)≠π1(bi), with t∈attr, i∈[2,n]}

attr’={t∈attr|π1(t)≠π1(bi), with i∈[2,n]}

C’= {c∈C|c≠π1(bi), with i∈[2,n]}

B’={b∈B|b≠ bi, with i∈[2,n]}
Ma’={m∈ Ma|m(a)=(n1, n2), with a∈A’, n1, n2∈card}
Mb’={m∈ Mb|m(b)=(n1, n2, n3, n4), with b∈B’, n1, n2, n3, n4∈card}∪ {m(b’)}

with

b’=(π1(p), π2(p)) ∧
m(b’)=(mmin1(b1)*mmin1(b2)*…*mmin1(bn),

mmax1(b1)*mmax1(b2)*…*mmax1(bn),
mmin2(b1)*mmin2(b2)*…*mmin2(bn),
mmax2(b1)*mmax2(b2)*…*mmax2(bn))

(60)

Having a valid path as an input, the resulting ontology replaces the linking concepts and
relationships by a new one, calculates the cardinality for the new relationship, and dis-
cards all the attributes of the replaced concepts. The multiplication table for the cardi-
nality set has to be specified, otherwise results cannot be calculated (see Appendix A).

4 Development of the Algorithms

The previous sections have shown what the requirements for different optimization
schemes are, and what transformations we are allowed to use to modify a labeled on-
tology so that it complies with the requirements. This section links those two together,
and for the relevant optimization schemes algorithms are given that show step by step
how an application – with minimal human interaction required – can arrive at an ade-
quate result for an optimization scheme.

4.1 Requirement Consistency Optimization Scheme

The rules set out for the RCOS ensure there is no contradiction between statements in
the input user requirements. In other words, this optimization scheme checks for
combinations of labels that lead to a situation that is dubious or ambiguous for the
system, and that cannot be resolved without more clarification. This clarification
needs to come from the user. Note that this clarification process can be automated as
well, by having a rule system that can be applied in cases of inconsistency.

 Extraction Process Specification for Materialized Ontology Views 165

An example of such an automation can be that in case of inconsistency, elements
labeled as ‘selected’ always take preference over elements labeled as ‘deselected’.
In case of RC rule 1 we could have a relationship b with a ‘selected’ labeling, but
with π1(b) labeled as ‘deselected’. In other words, the end result should definitely
have the relationship, but it should not contain one of the concepts that is being re-
lated to another by the relationship. Clearly there is no solution that satisfies both of
these, so the requirements are inconsistent. Without any further information an
automated system would not be able to resolve this inconsistency, but if we take
into account the preference rule that was added, the inconsistency can be easily
resolved.

Note that this optimization scheme always is the first to be applied, and all the
other optimization schemes rely on the fact that there are no inconsistencies in the
requirements anymore.

The first three rules of the RCOS require algorithms that are very similar to algo-
rithms for rules of other optimization schemes. For this reason they are not given
here, but by slightly modifying other algorithms the necessary algorithms are readily
obtainable.

The fourth rule needs a more complex and unique algorithm to enforce it. It uses
the notion of a proper path discussed earlier.

4.1.1 RC Rule 4
1. Loop through all c∈C

1.1. if (σC(c)== ‘deselected’)
1.1.1. loop through all attributes a∈A that have an attributemapping to c

1.1.1.1. if (σA(a)== ‘selected’)
1.1.1.1.1. if FIND_PROPER_PATH(c) returned false
 // no proper path was found

1.1.1.1.1.1. NO SOLUTIONS
1.1.1.1.1.2. exit algorithm

Although seemingly very brief here, this is only because the sub algorithm
FIND_PROPER_PATH was used. The particular algorithm for finding such a proper
path is not given here, but an indication of how it operates can be found in the exam-
ple given in Figure 9.

4.2 Well Formedness Optimization Scheme Algorithm

The algorithm shows how an ontology and mapping are checked and modified to
comply with the WFOS. Every rule is sequentially visited to get to the final result,
and the rules are identified in the algorithm as well, for improved understandability of
the algorithm. Some input ontologies and mappings have no solutions that adhere to
all requirements given by the WFOS. In the algorithm these cases are indicated as we
come across them. To resolve these cases, a similar solution to the one discussed in
the previous section can be used sometimes, but are not considered here.

166 C. Wouters et al.

In the algorithm it will indicated if certain cases are not considered because they
are not present thanks to the prerequisite of the RCOS – remember that RCOS is a
prerequisite to most optimization schemes, including WFOS.

4.2.1 WF Rule 1

1. if (σC == ∅)
1.1. NO SOLUTIONS (all the concepts are deselected, so the end result will be

empty)

4.2.2 WF Rule 2

1. While (∃t∈attr: σC(π1(t)) == ’deselected’ ∧ (σA(π2(t))≠’deselected’ ∨

 σattr(t)≠’deselected’))
1.1. if there is no proper path p from π1(t) to another concept c1 that is not ‘dese-

lected’ (σC(c1)≠’deselected’)
1.1.1. if (σA(a) == ‘void’) // never ‘selected’ because RC4

1.1.1.1. σ ξA
σ (a, ‘deselected’)

1.2. else (there is one (p) or more ({p1, p2, …, pn}) proper paths)
1.2.1. if multiple paths

1.2.1.1. p  BEST_PATH({p1, p2, …, pn})
1.2.2. loop i from 1 to n // with p=b1b2…bn

1.2.2.1. O  ξA
O(bi, t)

1.2.2.2. t  t’ // t’ is constructed in Attribute Distribution Rule

In step 1.2.1.1 another algorithm BEST_PATH is called. This algorithm determines
the ‘best’ path that is available. What is considered a good or strong path is an extensive
topic, and the algorithm used here is given in Appendix A. Note that this is only one
possible solution, and it is not the intention of the authors to claim this is the best or only
solution. In reality it will depend on what preferences are emphasized, and a good solu-
tion for that particular case can be found, but no general ‘best’ solution. The algorithm
for BEST_PATH supplied in the appendices suited our needs, and thus is provided
merely as an example of one possibility amongst many.

Note that the algorithms that are given here are not meant to be the most efficient
ones. The algorithms here serve the purpose of demonstrating how they resolve en-
countered problems, not how they can (or should) be implemented most efficiently.

4.2.3 WF Rule 3
2. Loop through all t∈attr

2.1. if (σA(π2(t)) == ’deselected’ ∧ σattr(t) == ’void’)
// never σattr(t)=‘selected’ because RC2

2.1.1. σ  ξattr
σ (t, ‘deselected’)

2.2. else

2.2.1. if (σattr(t) == ’deselected’ ∧ σA(π2(t)) == ’void’)
 // never σA(π2(t))=’selected’ because RC3

2.2.1.1. σ  ξA
σ (π2(t), ‘deselected’)

 Extraction Process Specification for Materialized Ontology Views 167

As previously mentioned, not all possible cases are considered here, as the RCOS is a
requirement, rendering some cases from not occuring here. The appropriate rules have
been stated.

4.2.4 WF Rule 4
1. loop through all b∈B

1.1. if (((σC(π1(b)) == ’deselected’ ∨ σC(π2(b)) == ’deselected’) ∧ σA(π2(t)) ==
’void’)

1.1.1. σ  ξB
σ (b, ‘deselected’)

4.2.5 WF Rule 5
The main requirements for this rule (WF rule 5) are always correct, as they are just an
assignment of certain elements to a new set. However, the third, "no islands in the
graph" requirement is important here.

1. if (ISLANDS_EXIST(σ (O)) == true)
1.1. NO SOLUTIONS (a ‘deselect’ labeling prevents an ontology graph from

being constructed)

The ISLANDS_EXIST algorithm uses Kruskal’s algorithm to try to get to a mini-
mal spanning tree, and if such a minimal spanning tree cannot be accomplished, there
is an island. The algorithm attempts to find a minimal spanning tree, and such a tree
has an interesting characteristic that is used here; if successful, the number of vertices
is always equal to the number of edges plus one. As the resulting graph is acyclic (a
minimal spanning tree cannot be cyclic), we know that there are never going to be
more edges than the amount of vertices minus one. The third possibility is that there
are less edges than the number of vertices minus one, indicating there must be at least
two islands (if there’s only one island, it is the entire ontology, logically). A simple
example of these three cases is shown in Figure 16.

For a more thorough explanation of these characteristics of graphs, please refer to
[Biggs, Lloyd et al. 1976], as these characteristics are taken here in a matter-of-fact
manner, without explanations or proofs.

Fig. 16. The Three Cases for an Ontology Graph

168 C. Wouters et al.

4.3 Semantic Completeness Optimization Scheme Algorithm

As in the previous algorithm every rule taken from the requirements is visited and re-
ceives its own algorithm. In all the cases it is possible that through a ‘deselected’ label
of a certain element no semantic completeness can be obtained. A mention of this par-
ticular case is made in the algorithms. It does not lead to an exit from the loop, but an
indication that the ideal solution was not possible. In other words, if the ideal solution is
not possible, the algorithm will inform the system of this, but it will still continue, so
that the final result is as close to the ideal solution as possible (given the input labeling).
The same type of preference rules as the one shown in section 4.1 can be used here, but
to focus on that here would distract from the main focus of this paper.

4.3.1 SC Rule 1
1. Btemp  Bi // Bi is set of all binary inheritance relationships

2. while (Btemp≠∅)
2.1. btemp Btemp[0]
2.2. bsub FIND_SUB(Btemp, π1(btemp))

2.3. while (bsub ≠∅)
2.3.1. btemp bsub
2.3.2. bsub FIND_SUB(Btemp, π1(btemp))

2.4. if (σC(π1(btemp)) == ‘selected’)
2.4.1. if (σB(btemp) == ‘deselected’ ∨ σC(π2(btemp)) == ‘deselected’)

2.4.1.1. NO SC POSSIBLE
2.4.2. else

2.4.2.1. σ  ξB
σ (btemp, ‘selected’)

2.4.2.2. σ  ξC
σ (π2(btemp), ‘selected’)

2.5. Btemp  Btemp \ {btemp}

Note that the additional algorithm FIND_SUB is a simple loop that goes through
the first input parameter and tries to find a relationship that has the second input pa-
rameter as the superconcept of another concept. This (inheritance) relationship is then
returned, or null if none was found. This algorithm is omitted from this article.

4.3.2 SC Rule 2
1. Btemp  Bagg // Bagg is the set of all the binary aggregation relationships

2. while (Btemp≠∅)
2.1. btemp Btemp[0]
2.2. bwhole FIND_WHOLE(Btemp, π2(btemp))

2.3. while (bwhole ≠∅)
2.3.1. btemp bwhole
2.3.2. bwhole FIND_WHOLE(Btemp, π2(btemp))

2.4. if (σC(π2(btemp)) == ‘selected’)
2.4.1. if (σB(btemp) == ‘deselected’ ∨ σC(π1(btemp)) == ‘deselected’)

2.4.1.1. NO SC POSSIBLE
2.4.2. else

2.4.2.1. σ  ξB
σ (btemp, ‘selected’)

2.4.2.2. σ  ξC
σ (π1(btemp), ‘selected’)

2.5. Btemp  Btemp \ {btemp}

 Extraction Process Specification for Materialized Ontology Views 169

Very similar to FIND_SUB, the FIND_WHOLE algorithm finds the ‘whole’ con-
cept of a ‘part’ input parameter, and because of the straight forward nature of the al-
gorithm, is omitted here.

4.3.3 SC Rule 3
1. Loop through concepts c∈C that are selected (σC(c) == ‘selected’)

1.1. Loop through all t∈attr with π1(t)=c

1.1.1. if (mmin(π2(t)) ≠ 0)
1.1.1.1. if (σA(π2(t)) == ‘deselected’ ∨ σattr(t) == ‘deselected’)

1.1.1.1.1. NO SC POSSIBLE
1.1.1.2. else

1.1.1.2.1. σ  ξA
σ (π2(t), ‘selected’)

1.1.1.2.2. σ  ξattr
σ (t, ‘selected’)

4.4 Total Simplicity Optimization Scheme Algorithm

The Total Simplicity Optimization Scheme is different from the other optimization
schemes in a number of ways, as already mentioned in section 3.2.4. Another difference
with the other optimization schemes that are presented in this paper, is that the rules to
adhere to are very clear as to what is optimal, but do not let themselves translate into
algorithms so straight forwardly as other optimization scheme rules. Therefore, another
approach is taken here, rather than providing transparent algorithms per rule.

The algorithms were first based on Kruskal’s algorithm, but a more custom solution
to the problem was needed, as Kruskal does not incorporate fixed elements, such as our
selected and deselected elements. Inspired by the firs attempt, ontology graphs are still
taken as the model to work on, instead of the actual ontology. Note that an abstraction
between the ontologies and ontology graphs is made, i.e. first the ontology graph is con-
structed from the ontology, but from there on changes to the ontology graph do not
automatically incur similar changes to the actual ontology. For instance, deleting a ver-
tex from the ontology graph will not result in the corresponding concept being deleted
from the ontology, but instead indicates a modification of the labeling of the concept to
‘deselected’. To clarify these differences between operations on the ontology graph and
changes that occur to the actual ontology, in the algorithm the different implications will
both be described (impact on the ontology always in brackets).

To simplify the algorithm, certain combinations of elements and their labels, are
explained separately, instead of in the algorithm. Also, redistribution of the attributes
is not covered here, but more information on this can be found in Appendix A. After
the algorithm has finished with the other elements (relationships and concepts), this
redistribution of attributes takes place, according to the reallocation via the best path,
as used previously.

TS algorithm
1. Construct ontology graph
2. Leave out all deselected elements
3. While combination1 is present

3.1. Make the edge selected (same for corresponding relationship in the ontology)

170 C. Wouters et al.

4. While combination2 is present
4.1. Make void vertex selected (same for corresponding concept in the ontology)

5. While combination3 is present
5.1. Replace combination3 with a new vertex with a selected label (no change to

ontology
5.2. If there is another void edge between the vertices

5.2.1. Remove edge (corresponding relationship becomes deselected)
5.3. Else // edge is selected

5.3.1. Remove edge (no change to the ontology)
6. While there are void vertices left, choose one (called v)

6.1. if connectivity ==1
6.1.1. if connecting edge has void label

6.1.1.1. Remove edge and vertex (deselect corresponding relationship
and concept)

6.1.2. else // this means edge is selected (deselected ones are already
removed)

6.1.2.1. Make vertex selected (same for corresponding concept)
6.1.2.2. if the edge given combination3

6.1.2.2.1. Replace combination3 with a new selected vertex (no
changes to the ontology)

6.2. Else // connectivity > 1
6.2.1. n  connectivity
6.2.2. call edges e1, …, en
6.2.3. call connected vertices v1, …, vn
6.2.4. delete v and e1, …, en (make corresponding concept and relation-

ships deselected in the ontology)
6.2.5. create C2

n new void edges, i.e. one between every possible combi-
nation of v1,…, vn (create corresponding relationships in ontology,
with a void label)

6.2.6. if there are multiple edges between any vertices of v1,…, vn
6.2.6.1. delete edge(s) with higher weight(s) (the corresponding rela-

tionships becomes deselected in the ontology)
7. If any changes to the ontology graph were made, repeat step 3 -6

First, the 4 specific combinations that are used throughout the algorithm will be

given here.

- combination1: A void edge connecting two selected vertices
- combination2: A selected edge with at least one void vertex
- combination3: A selected edge connecting two selected vertices

Besides the four combinations, the algorithm uses the connectivity of vertices,
which is defined as the number of edges that are connected to a vertex. As a valid
ontology does not contain any islands, this means that the vertices of the correspond-
ing ontology graph always have at least one edge, and in the algorithm care is taken
that when the last edge of a vertex is deleted, the vertex is removed as well (and ap-
propriate actions are taken for their impact on the ontology). A final comment about
the algorithm concerns step 6.2.6.1 where the edges with a higher weight are removed

 Extraction Process Specification for Materialized Ontology Views 171

(only the minimum weight is retained). What the weights are, and how they are calcu-
lated for newly constructed edges, relies on the cardinalities of the relationships. More
information about this can be found in Appendix A. As discussed previously, there are
many ways in which the weight of a relationship can be calculated, leading to very dif-
ferent results. Here only one method is shown, merely as an example of a possibility.

5 Conclusion

Transforming ontologies is becoming an important factor in the success of the seman-
tic web. Ontologies tend to grow larger, and this results in an extremely tedious proc-
ess – maybe to the point of being impossible – if an ontology needs to be modified
(e.g. new version, sub-ontology, distribution, materialized ontology view). The for-
malisms presented in this paper provide a way in which automated extraction of mate-
rialized ontology views becomes possible, thus preventing problems associated with
the manual extraction from occurring. After some general definitions, and introducing
some new concepts, optimization schemes were presented as a means of arriving at
high-quality or optimized results. As the notion of quality is multifaceted, various
optimization schemes were introduced, and the theory of how these different optimi-
zation schemes can be used as building blocks by ontology engineers to arrive at a
solution that they consider optimized, was covered. How the rules of optimization
schemes could be implemented was demonstrated by first providing some dynamic
rules that could be used by a system, in the form of transformation functions, and then
utilizing these transformation functions in algorithms that ensure the rules of every
optimization scheme are adhered to.

At the moment, only a limited number of optimization schemes has been devel-
oped, and in future work this will be addressed, firstly by the development of more
optimization schemes, but also by setting a standard of communication and working
of such an optimization scheme, so anyone can use these guidelines to develop opti-
mization schemes that can be dynamically loaded into an Extraction Framework. This
will lead to a plugin architecture where optimization schemes for various standards
can be used in a single framework, and where contributions to the library of optimiza-
tion schemes can be made by everyone.

References

Berners-Lee, T., Al: Reference Description of the DAML+OIL Ontology Markup Language
(2001)

Biggs, N.L., Lloyd, E.K., et al.: Graph Theory 1736-1936. Clarendon Press, Oxford (1976)
Chen, P.P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM Transaction

on Database Systems 1(1), 9–36 (1976)
Colomb, R.M., Weber, R.: Completeness and Quality of an Ontology for an Information Sys-

tem. In: Proceedings of International Conference on Formal Ontology In Information Sys-
tems, Trento, Italy (1998)

Date, C.J.: An Introduction to Database Systems. Addison Wesley, Reading (2000)
Feng, L., Chang, E., et al.: A Semantic Network Based Design Methodology for XML Docu-

ments. ACM Transactions on Information Systems 20(3) (2002)

172 C. Wouters et al.

Fensel, D.: The Semantic Web, Tutorial Notes. In: 9th IFIP 2.6 Working Conference on Data-
base Semantics (2001)

Fensel, D., Decker, S., et al.: Ontobroker: Or How to Enable Intelligent Access to the WWW.
In: Proceedings 11th Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada (1998)

Fensel, D., Horrocks, I., et al.: OIL in a Nutshell. In: Proceedings 12th International Conference
on Knowledge Engineering and Knowledge Management Methods, Juan-Les-Pins, France
(2000)

Genesereth, M.R.: Knowledge Interchange Format. In: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann
Publishers, San Francisco (1991)

Genesereth, M.R., Fikes, R.: Knowledge Interchange Format, version 3.0, reference manual.
Computer Science Department, Stanford University, Stanford (1992)

Gruber, T.R.: Ontolingua: A Mechanism to Support Portable Ontologies. Knowledge Systems
Laboratory, Stanford University, Stanford (1992)

Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. In:
Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Repre-
sentation. Kluwer Academic Publishers, Dordrecht (1993)

Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. Communications of
the ACM 45(2), 61–65 (2002)

Hahn, U., Schnattinger, K.: Towards Text Knowledge Engineering. In: Proceedings of the 15th
National Conference on Artificial Intelligence, Madison, Wisconsin (1998)

Halpin, T.: Conceptual Schema and Relational Database Design. Prentice Hall, Englewood
Cliffs (1995)

Heflin, J., Hendler, J.: Dynamic Ontologies on the Web. In: Proceedings of American Associa-
tion for Artificial Intelligence Conference, Menlo Park, California (2000)

Heflin, J., Hendler, J., et al.: SHOE: A Knowledge Representation Language for Internet Ap-
plications, Dept. of Computer Science, University of Maryland (1999)

Holsapple, C.W., Joshi, K.D.: A Collaborative Approach to Ontology Design. Communications
of the ACM 45(2), 42–47 (2002)

Hovy, E.H.: Combining and Standardizing Large-Scale, Practical Ontologies for Machine
Translation and Other Uses. In: Proceedings of the First International Conference on Lan-
guage Resources and Evaluation, Granada, Spain (1998)

Kaplan, A.N.: Towards a Consistent Logical Framework for Ontological Analysis. In: Proceed-
ings of the International Conference on Formal Ontology in Information Systems (2001)

Kim, H.: Predicting How Ontologies for the Semantic Web will Evolve. Communications of
the ACM 45(2), 48–54 (2002)

Klein, M., Fensel, D.: Ontology versioning for the Semantic Web. In: Proceedings of the Inter-
national Semantic Web Working Symposium, California, USA (2001)

Klein, M., Fensel, D., et al.: Ontology versioning and Change Detection on the Web. In: Pro-
ceedings of the 13th International Conference on Knowledge Engineering and Knowledge
Management, Sigüenza, Spain. Springer, Heidelberg (2002)

Kruskal, J.B.J.: On the shortest spanning subtree of a graph and the traveling salesman prob-
lem. Proc. American Mathematics Society (7), 48–50 (1956)

Lenat, D.B.: Cyc: A Large-Scale Investment in Knowledge Infrastructure. Communications of
the ACM 38(11) (1995)

McGuinness, D.L., Fikes, R., et al.: An environment for merging and testing large ontologies.
In: Proceedings of the Seventh International Conference on Principles of Knowledge Repre-
sentation and Reasoning. Morgan Kaufmann, San Francisco (2000)

 Extraction Process Specification for Materialized Ontology Views 173

Muslea, I.: Extraction Patterns for Information Extraction Tasks: A Survey. In: AAAI 1999
Workshop on Machine Learning for Information Extraction (1999)

Noy, N.F., Hafner, C.D.: The State of the Art in Ontology Design. AI-Magazine (Fall), 53–74
(1997)

Noy, N.F., Sintek, M., et al.: Creating Semantic Web Contents with Protégé-2000. IEEE Intel-
ligent Systems 16(2), 60–71 (2001)

Rumbaugh, J., Jacobson, I., et al.: Unified Modeling Language Reference Manual. Addison-
Wesley, Reading (1999)

Spyns, P., Meersman, R., et al.: Data modelling versus Ontology engineering. SIGMOD (spe-
cial issue), 14–19 (2002)

Van Harmelen, F., Fensel, D.: Practical Knowledge Representation for the Web. In: Proceed-
ings of International Joint Conferences on Artificial Intelligence (1999)

Von Staudt, G.K.C.: Geometrie der Lage. Nurnberg (1847)
W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation (1999)
W3C. Feature Synopsis for OWL Lite and OWL. W3C Working Draft (2002a)
W3C. OWL Web Ontology Language 1.0 Abstract Syntax. W3C Working Draft (2002b)
W3C. OWL Web Ontology Language 1.0 Reference. W3C Working Draft (2002c)
Wouters, C., Dillon, T., et al.: A Practical Walkthrough of the Ontology Derivation Rules. In:

Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002, vol. 2453. Springer, Hei-
delberg (2002a)

Wouters, C., Dillon, T., et al.: Transformational Processes for Sub-Ontologies Extraction (sub-
mitted for publication, 2002b)

Wouters, C., Dillon, T., et al.: A Practical Approach to the Derivation of Materialized Ontology
View. In: Taniar, D., Rahayu, W. (eds.) Web Information Systems. Idea Group Publishing
(to appear, December 2003)

Appendix A

A.1 Multiplication Table

The cardinality set used throughout this article is very limited (only consisting of
three elements). This set can easily be extended, but in order for the optimization
schemes to be able to use a new set, it needs to define a multiplication table. This is
done in a lookup matrix, so that the solution for every possible multiplication can be
found. The multiplication table for the cardinality set used here is given in Table 4.

Table 4. Multiplication Table for Cardinality Set

* 0 1 n
0 0 0 0
1 0 1 n
n 0 n n

A.2 Best Path Algorithm

The Best Path Algorithm starts with a concept, and looks for the best possible path. In
this context, ‘best’ means the lowest multiplication result of all the cardinalities (using

174 C. Wouters et al.

the multiplication table). It is possible that more than one paths are returned as ‘best’
paths (i.e. multiple paths with the lowest weight). In this case, branches for each pos-
sibility are created, and treated as independent extraction processes. At the end of the
extraction process, they are brought back together (and compared). In other words, it
is possible that an extraction process produces several results, all equivalents in terms
of quality.

Best_Path(concept c1)
- weight  infinity
- Premaining  all relationships connected to c1
- While there are paths left in Premaining

o Take first path in list (call it pi=bi0,…,bij)

o If σ(bij) ≠deselected

� If π2(pi)≠deselected // a solution found

• If Psol = ∅
o Weight  calc_weight(pi)
o Psol  { pi }

• Else
o If (weight = calc_weight(pi))

� Psol  Psol ∪{ pi }
o If (weight > calc_weight(pi))

� Psol  { pi }
� Weight  calc_weight(pi)

• Loop through Premaining (call it pn)
o If (calc_weight(pn) > weight)

� Premaining  Premaining \ { pn}

� Else // π2(pi)=deselected
• Rtemp  all relationships connected to π2(pi)
• Rtemp  Rtemp \ { pi}
• Loop through Rtemp (call it bx)

o Premaining  Premaining ∪ { bi0,…,bij,bx}
o Premaining  Premaining \ { pi }

- Return Psol

As discussed previously, this is merely an example of an algorithm that was used

throughout this article. It is not the intention of the authors to claim this is the most appro-
priate algorithm to use, it just worked well under conditions our testing was carried out.

A.3 Redistribution of Attributes

Attributes that are labeled ‘selected’, but belong to a deselected concept, need to be
put somewhere else in the solution, in other words, a redistribution of attributes is
required. This is done by looking for a proper path to a selected concept (which
should exist, as this is one of the rules for RCOS), and if multiple alternatives exist, a
similar algorithm to the previous one can be used to determine the ‘best’ option.

 Extraction Process Specification for Materialized Ontology Views 175

Fig. 17. Original (a) and Extracted (b) Ontology with Redistributed Attribute

Figure 17 shows an original ontology (a) where a deselected concept (“Author”)
has a selected attribute (“surname”). The second ontology (b) shows how the selected
attribute was redistributed, and now belongs to the “Article” concept. Note that the
name here has been changed to make the move of the attribute more meaningful.

	Extraction Process Specification for Materialized Ontology Views
	Motivation
	Defining the Ontology
	Overview of Ontology Definitions
	Concepts in Detail
	Attributes and Relationships in Detail
	Restrictions to Obtain Practical Ontology Definition
	Ontology Complement Theorem
	Materialized Ontology Views

	The Ontology Extraction Process
	Labeling an Ontology
	Optimization Criteria Related to Quality of an Ontology
	Dynamic Rules Necessary for Algorithmic Development

	Development of the Algorithms
	Requirement Consistency Optimization Scheme
	Well Formedness Optimization Scheme Algorithm
	Semantic Completeness Optimization Scheme Algorithm
	Total Simplicity Optimization Scheme Algorithm

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

